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Abstract

Functional magnetic resonance imaging (fMRI)-based functional connectivity networks are often constructed by
thresholding a correlation matrix of nodal time courses. In a typical thresholding approach known as hard thresh-
olding, a single threshold is applied to the entire correlation matrix to identify edges representing superthreshold
correlations. However, hard thresholding is known to produce a network with uneven allocation of edges, result-
ing in a fragmented network with a large number of disconnected nodes. It is suggested that an alternative net-
work thresholding approach, node-wise thresholding, is able to overcome these problems. To examine this,
various network characteristics were compared between networks constructed by hard thresholding and node-
wise thresholding, with publicly available resting-state fMRI data from 123 healthy young subjects. It was
found that networks constructed with hard thresholding included a large number of disconnected nodes, while
such network fragmentation was not observed in networks formed with node-wise thresholding. Moreover, in
hard thresholding networks, fragmentized modular organization was observed, characterized by a large number
of small modules. On the contrary, such modular fragmentation was not observed in node-wise thresholding net-
works, producing modules that were robust at any threshold and highly consistent across subjects. These results
indicate that node-wise thresholding may lead to less fragmented networks. Moreover, node-wise thresholding
enables robust characterization of network properties without much influence by the selection of a threshold.
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Introduction

A functional connectivity network can be constructed
by correlating nodal time courses from functional mag-

netic resonance imaging (fMRI) time series data. In particular,
a cross-correlation matrix describing linear correlations be-
tween all node pairs is calculated, and edges are defined
based on the magnitude of correlation coefficients. Although
it is possible to construct a weighted network by ascribing the
correlation value to each edge, the vast majority of fMRI con-
nectivity networks are constructed by thresholding the correla-
tion matrix to identify strong correlations between nodes. Any
correlation above the threshold is interpreted as functional con-
nectivity, represented by an edge in the resulting network.

In a widely used network construction method, a single
threshold is applied to the entire correlation matrix to identify
edges. The use of a single threshold, also known as hard thresh-
olding, is motivated to identify strong correlations among a
large number of correlation coefficients. Identifying a small

number of true effects among a large number of statistic values
is a common problem in a statistical analysis of neuroimaging
data, in which a statistical test is performed at each voxel sep-
arately. The use of hard thresholding may be viewed as an ex-
tension of this problem in a correlation analysis (Worsley et al.,
1998). There are several ways to select a threshold for hard
thresholding. The threshold may be adjusted to control the pro-
portion of edges above the threshold (or sparsity) (Wang et al.,
2009), the average number of connections (or degree) (van den
Heuvel et al., 2008; Wang et al., 2009), or the false discovery
rate (Bassett et al., 2006). In hard thresholding, each correla-
tion coefficient is treated the same, and dichotomized into ei-
ther a strong correlation (thus an edge) or a weak correlation
(thus absence of an edge) based on the predefined criterion
as described above.

Although each edge is formed based on a statistical princi-
ple in hard thresholding, the resulting edges collectively do not
describe a network appropriately. In particular, edges are un-
evenly distributed in the resulting network. Edges tend to
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concentrate among highly connected nodes, while a large por-
tion of nodes may be isolated or sparsely connected (Foti et al.,
2011; Ruan et al., 2010). This is an inherent problem in net-
works formed by hard thresholding a correlation matrix, not
just functional connectivity networks. Figure 1 shows an ex-
ample of this. A stock price correlation network is formed
by thresholding a correlation matrix of stock price time series
of 491 companies [see Hayasaka (2016) for details]. With hard
thresholding, edges are concentrated among a subset of highly
connected companies, while a large number of companies are
disconnected from the network (Fig. 1a). Even when 90% of
nodes are connected to the main network, edges are still con-
centrated to a subset of network nodes (Fig. 1b).

Some may argue that these networks demonstrate charac-
teristics of typical self-organized networks, with a small num-
ber of high-degree hub nodes, while the vast majority of nodes
have low degrees (Barabasi and Albert, 1999). High-degree
hubs are relatively rare in real networks, but in a network
formed by hard thresholding (as seen in Fig. 1), high-degree
hubs are far more abundant, more so when there are a large
number of edges (Fig. 1b). Hard thresholding also results in
a fragmented network with a large proportion of disconnected
nodes. Many nodes are disconnected despite a large number of
edges (Fig. 1b).

To overcome the problems of hard thresholding as described
above, one can apply a threshold at each node separately. In par-
ticular, one can threshold each row of a correlation matrix sep-
arately, controlling the number of edges (Ruan et al., 2010) or
the proportion of the superthreshold edges (Foti et al., 2011)
at each node. This thresholding approach, referred as node-
wise thresholding, still follows a statistical principle of selecting
strong correlation as edges, as done in hard thresholding. The
only difference is that edges are identified at each node sepa-
rately in node-wise thresholding. In a network formed by
node-wise thresholding, edges are more evenly distributed
throughout the network without any concentration among a sub-
set of nodes. For example, the network shown in Figure 1c,
formed by node-wise thresholding, has the same number of
edges as the network shown in Figure 1a. It can be seen from

the figure that almost all the nodes are connected as a single net-
work. In fact, networks formed by node-wise threshold undergo
a phase-transition phenomenon known as percolation during
network formation as edges are introduced. In percolation, the
largest connected component (known as the giant component)
grows dramatically from a fragmented state to the point
where almost all nodes are connected. High-degree hub nodes
still exist in a node-wise thresholding network, but far fewer
than a hard thresholding network of the same number of
nodes and edges. Thus, node-wise thresholding may solve the
problems associated with hard thresholding, namely uneven al-
location of edges and network fragmentation.

To demonstrate the utility of node-wise thresholding in con-
structing fMRI connectivity networks, I examine the charac-
teristics of networks formed by node-wise thresholding and
compare to that of networks formed by hard thresholding. A
particular focus is given to anti-fragmentation property of
node-wise thresholding. How does the giant component
grow? Are edges evenly allocated throughout the network?
In addition, I examine whether the networks formed by
node-wise thresholding are modular, comprising clusters of
highly interconnected nodes known as modules. I compare net-
work modular organization between node-wise thresholding
and hard thresholding networks. I used resting-state fMRI
data from n = 123 individuals from the 1000 Functional Con-
nectomes Project. Networks were generated at the regions of
interest (ROI) level with parcellation defined by the automated
anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002), as well as at the voxel level. The modular organization
analysis results focus mainly on voxel-based networks.

Materials and Methods

Data

Publicly available resting-state fMRI data were used in
this project. In particular, six data sets from six sites were
obtained from the 1000 Functional Connectomes Project
(1000FCP; http://fcon_1000.projects.nitrc.org). Total of
n = 123 subjects were included in the analysis for this project,

FIG. 1. Examples of network thresholding methods applied to the stock market correlation data with n = 491 nodes (Hay-
asaka, 2016). In a network formed by hard thresholding (a), edges concentrate only on a small portion of nodes, while the
majority of the nodes are disconnected. Even with 90% nodes connected to the giant component (b), hard thresholding still
leaves a number of disconnected or sparsely connected nodes. On the contrary, a network formed by node-wise thresholding
has virtually no disconnected nodes (c), even with as few edges as the example shown (a). Color images available online at
www.liebertpub.com/brain
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originating from Berlin (n = 26, M/F = 13/13), Leiden (n = 19,
M/F = 11/8), Newark (n = 18, M/F = 9/9), New York (n = 20,
M/F = 8/12), Oxford (n = 22, M/F = 12/10), and Queensland
(n = 18, M/F = 11/7). These data sets comprised resting-state
fMRI data from young (18–46 years old) healthy subjects
acquired while eyes open, along with a high-resolution T1-
weighted structural MRI image for each subject. The number
of time points for the fMRI data varied between sites,
ranging from 135 (Newark) to 215 (Leiden). Details on the
fMRI data sets can be found from the 1000FCP website.

fMRI data processing

Before the preprocessing of fMRI data, the first 3 volumes
were deleted from each subject’s fMRI data for steady-state
magnetization. The fMRI time series consisting of the remain-
ing time points was then aligned to the middle time point to
correct any displacement during the scan. The aligned fMRI
data were then coregistered to the subject’s T1-weighted struc-
tural MRI data by a six-parameter rigid body transforma-
tion. The structural image was spatially normalized to the
MNI (Montréal Neurological Institute) template with a 12-
parameter affine transformation and a nonlinear registration.
The resulting spatial warping was then applied to the fMRI
data to normalize it to the template space. Each 3D volume
in the normalized fMRI time series data was then resliced to
a 3D matrix of 46 · 55 · 42 voxels of 4 · 4 · 4 mm cube.
These steps were carried out using FSL5.0 (The Oxford Centre
for Functional Magnetic Resonance Imaging of the Brain,
Oxford, UK) (Jenkinson et al., 2012; Smith et al., 2004).

The normalized fMRI time series data were band-pass fil-
tered (0.009–0.08 Hz) to reduce physiological and scanner
noises (Fox et al., 2005; Van Dijk et al., 2010). From the filtered
fMRI time series data, some confounding time series were
regressed out, including the six realignment parameters from
the rigid body transformation, as well as the mean time courses
from the brain parenchyma, deep white matter, and cerebrospi-
nal fluid voxels (Hayasaka, 2013; Hayasaka and Laurienti,
2010). The filtered and regressed fMRI data were then scrubbed
for excessive motion, using the frame displacement (FD) crite-
rion of FD >0.5 (Power et al., 2012). The resulting fMRI data
were then masked to include gray matter areas in the AAL
atlas (Tzourio-Mazoyer et al., 2002) as well as the subject’s
own parenchyma mask. Finally, the mean time course was
extracted in 90 ROIs in the cerebrum defined by the AAL atlas.

Based on the preprocessed data, two correlation matrices
were calculated for each subject: (1) a voxel-level correlation
matrix of *19,000 · 19,000 with each gray matter voxel rep-
resenting a node and (2) an ROI-based correlation matrix of
90 · 90 with each ROI representing a node. The band-pass fil-
tering, regression, motion scrubbing, masking, ROI extraction,
and calculation of correlation matrices were implemented by
custom scripts in Python. Interested readers can download
the Python codes used in this article from a GitHub repository
(https://github.com/sathayas/fMRIConnectome). The main di-
agonal elements of a resulting correlation matrix were set to
zero to avoid self-loops during network construction.

Network construction

A node-wise thresholding network was constructed by
selecting d largest correlation coefficients on each row of the
correlation matrix (Hayasaka, 2016; Ruan et al., 2010). For

voxel-based networks, networks were constructed for d = 3, 4,
5, 6, 8, 10, 15, 20, and 30. For ROI-based network, networks
were constructed for d = 1, 2, 3, 4, 5, 6, 8, 10, and 15. It should
be noted that the degree at each node is not necessarily d. Even
if an edge (i,j) is attributed to one of the top d correlations for
node i, it may not be part of the top d correlations for node j.
This results in the node degree of j greater than d. Thus, in
the resulting network, the minimum node degree is d but
node degrees can range dramatically. In fact, as it can be
seen from degree distributions below, there is a wide variety
of node degrees in a node-wise thresholding network. More-
over, local variability in node degrees can be observed, with
concentrations of highly connected nodes in certain brain areas.

To facilitate a comparison with node-wise thresholding
networks, hard thresholding networks were constructed by
adjusting the threshold in a way that the number of edges
is the same as the node-wise thresholding network with a par-
ticular value of d. Needless to say that node-wise threshold-
ing networks and hard thresholding networks were derived
from the same set of correlation matrices; only the threshold-
ing method differed between the two types of networks.

Network characteristics

Various network metrics were calculated and compared be-
tween the networks constructed by node-wise thresholding and
by hard thresholding. The metrics included the relative giant
component size G (the number of nodes connected to the
giant component divided by the number of all nodes), the char-
acteristic path length L (the average shortest distance between
any pairs of nodes), and the clustering coefficient C (the aver-
age probability that two nodes connected to a particular node
are also connected to each other). For the calculation of L,
only the nodes in the giant component were included. The for-
mulae for C and L can be found in Rubinov and Sporns (2010)
and Stam and Reijneveld (2007). The network metrics were
compared by paired t-tests between node-wise thresholding net-
works and hard thresholding networks at different values of d.

In addition to the network metrics, node degrees were also
examined. The degree distributions were generated for dif-
ferent types of networks (node-wise thresholding and hard
thresholding) at different values of d. In addition, the consis-
tency of the hub nodes was examined. In particular, the spa-
tial overlap maps of hub node locations were generated.
Hubs were defined as the nodes with top 20% highest de-
grees, in the spirit of the 80–20 rule by Pareto (Hayasaka
and Laurienti, 2010).

Modular organization

For voxel-based networks, modular organization was ex-
amined. In particular, the giant component of each network
was parcellated into modules by the Louvain method (Blon-
del et al., 2008). The resulting modularity Q, the metric de-
scribing the quality of modular parcellation [see Newman
(2006a, 2006b) and Newman and Girvan (2004) for the for-
mula], was calculated and compared between the threshold-
ing methods (node-wise thresholding vs. hard thresholding).
In addition, the number of modules and the median module
size were also compared between the thresholding methods
with paired t-tests at different values of d. Finally, the consis-
tency of the default mode network (DMN) module and the
sensory motor (SM) module was compared between the
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thresholding methods. In particular, for each network, a DMN
module was identified as the module with the largest spatial
overlap, measured by the Jaccard index (the ratio of the inter-
section to the union), with the following ROIs: bilateral medial
orbitofrontal cortex, posterior cingulate gyrus, precuneus, and
angular gyrus. Similarly, an SM module was identified as the
module with the largest spatial overlap with the bilateral pre-
and postcentral gyri. Binary images for the DMN module
and the SM module were produced for each network for
each subject, indicating the module with 1 sec. Then, the bi-
nary images were summed across subjects, producing the over-
lap map of the DMN module and the SM module for different
thresholding methods and different values of d. The DMN and
SM modules were chosen since they are known to be consis-
tent across subjects (Moussa et al., 2011).

Aside from being highly consistent across subjects, the SM
module was chosen to assess the modular parcellation accuracy
for two additional reasons. First, the main constituents of the
SM module, the sensory and motor cortices, have been exten-
sively examined in vivo in humans by direct electrical stim-
ulation since the early 1900s (Borchers et al., 2011), with
well-delineated boundaries. Second, the functional connec-
tivity between the bilateral sensory and motor cortices has
been documented since the earliest report of functional
connectivity by Biswal and coworkers (1995). A numerous
seed-based connectivity and independent component analy-
sis studies have demonstrated the correlated BOLD signals
in these areas. For these reasons, I considered the SM mod-
ule to be a module with the known ground truth. If the sen-
sory and motor cortices are part of a single module in most

subjects, then the consistency of the SM module should be
elevated in these brain areas. On the contrary, if the SM
module does not cover the sensory and motor cortices in
their entirety in a large portion of subjects, then the consis-
tency for the SM module will be diminished. This is because
each subject’s SM module covers only some parts of the sen-
sory and motor cortices, and the coverage may not overlap
across subjects.

Results

Network statistics

Figure 2 shows the mean and standard deviation (SD) of
network statistics for voxel-based networks and ROI-based
networks, formed by the two thresholding methods. There
are three notable findings from the network statistics.

First, the relative giant component size G was almost 1 for
d ‡ 3 for node-wise thresholding networks, whereas G did not
approach 1 for hard thresholding networks unless d was large.
See Figure 2a for voxel-based networks and Figure 2d for
ROI-based networks. G was close to 1 for node-wise networks
due to a phase-transition phenomenon known as percolation,
in which fragmented network components coalesce into a
giant component comprising a majority of nodes with an intro-
duction of a small number of edges. It has been reported that,
for networks formed by node-wise thresholding, percolation
occurs somewhere between d = 2 and 3 (Hayasaka, 2016).
Hard thresholding networks, in contrast, do not undergo
such a system-wide network formation phenomenon. The
giant component grew only incrementally as edges were

FIG. 2. The mean and SD
of various characteristics of
networks formed by different
thresholding methods (node-
wise thresholding or hard
thresholding) over a range of
d. The results for the voxel-
based networks are shown on
the top row, whereas the re-
sults for the ROI-based net-
works are shown on the
bottom row. The relative
giant component size G (a,
d), the clustering coefficient
C (b, e), and the path length L
(c, f) are shown. Network
characteristics were com-
pared between the two
thresholding methods by
paired t-tests for each d.
Significant differences be-
tween the thresholding
methods ( p < 0.05, Bonfer-
roni corrected across d) are
indicated by stars. ROI, re-
gions of interest; SD, stan-
dard deviation. Color images
available online at
www.liebertpub.com/brain
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added as d increased. While G eventually reached 1 for ROI-
based hard thresholding networks for sufficiently large d, G
did not reach 1 for voxel-based counterparts. Even with
d = 30, G was around 90%, indicating that about 10% nodes
were still fragmented in hard thresholding networks.

Second, the clustering coefficient C was always higher for
hard thresholding networks compared to node-wise thresh-
olding networks, more so for larger d. See Figure 2b for
voxel-based networks, and Figure 2e for ROI-based net-
works. Interestingly, for voxel-based networks, C seemed
to plateau for node-wise thresholding networks, whereas C
increased as d increased in hard thresholding networks.
Higher C is an indication of a larger number of triangles in
a network. Thus, an introduction of more edges (associated
with an increase in d) likely results in formation of more tri-
angles, possible redundant connections, in hard thresholding
networks compared to node-wise thresholding networks.

Third, the path length L was always shorter for node-wise
thresholding networks compared to hard thresholding networks.
See Figure 2c for voxel-based networks, and Figure 2f for ROI-
based networks. This means the average distance between any
node pair is shorter for node-wise thresholding networks, indi-
cating more global integration as a network as a whole.

Node degree distribution

Figure 3 shows node degree distributions of the voxel-
based and ROI-based networks (Fig. 3a, b, c, and d, respec-

tively) formed by node-wise thresholding (Fig. 3a, c) and
hard thresholding (Fig. 3b, d), at various values of d. In par-
ticular, the complementary cumulative distribution function
[1�F(ki)] was plotted against the node degree ki. Each de-
gree distribution was a combined distribution of n = 123 sub-
jects. For networks formed with node-wise thresholding, the
shape of the distribution was similar across the range of d. In
other words, the relative abundance (or scarcity) of low-
degree (or high-degree) nodes was preserved across different
values of d. This was observed in both voxel-based and ROI-
based networks (Figure 3a, c, respectively).

On the contrary, the shape of the distribution changed with
different values of d for hard thresholding networks. In partic-
ular, an increase in d was associated with increased curvature
of the degree distribution. This is consistent with a previous
report on degree distributions at different sparsity (Fornito
et al., 2010). The increased curvature indicated that the rela-
tive abundance of medium- to high-degree nodes increases
as d increases, whereas low-degree nodes become less abun-
dant. In other words, additional edges associated with an in-
crease in d seem to be allocated among already highly
connected nodes, as it can be seen in Figure 1b.

Consistency of high-degree nodes

The consistency of high-degree nodes, or hubs, across
n = 123 subjects was examined. In particular, top 20% highest
degree nodes were identified in each subject’s network, and

FIG. 3. Degree distribu-
tions of node-wise thresh-
olding networks (a, c) and
hard thresholding networks
(b, d) formed at different
values of d. Degree distribu-
tions from voxel-based net-
works are shown on the top
row, and degree distributions
from ROI-based networks
are show on the bottom row.
Each degree distribution is a
combined distribution of
n = 123 networks. Color im-
ages available online at
www.liebertpub.com/brain
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their spatial overlap was examined across subjects (Fig. 4).
For voxel-based networks, high-degree nodes were consistent
in the posterior cingulate, precuneus, angular gyrus, and me-
dial prefrontal cortex (Fig. 4a). These areas constitute a collec-
tion of brain areas known as the DMN (Raichle and Snyder,

2007), and the results were similar to previous voxel-level
resting-state fMRI network studies (Hayasaka and Laurienti,
2010; Power et al., 2011; van den Heuvel et al., 2008). Both
thresholding methods produced similar areas of overlap and
did not vary much across d. However, the spatial extent and

FIG. 4. Consistency of high-degree
nodes. The locations of top 20% highest
degree nodes were identified in each
subject’s network, and the overlap of the
high-degree node locations is visualized
for voxel-based networks (a) and ROI-
based networks (b). The overlap maps
were calculated for different thresholding
methods, node-wise thresholding (top)
and hard thresholding (bottom) at differ-
ent values of d. For voxel-based net-
works, overlap maps are shown for d = 5,
10, and 30. For ROI-based networks,
overlap maps are shown for d = 5, 10, and
15. Color images available online at
www.liebertpub.com/brain

FIG. 5. The mean and SD of various statistics associated with modular parcellation. The modularity Q (a), the number of
modules (b), and the median module size (in voxels) (c) are plotted for hard thresholding networks and node-wise thresholding
networks formed at different values of d. Significant differences between the two thresholding methods (paired t-test, p < 0.05,
Bonferroni corrected) are indicated by stars. Color images available online at www.liebertpub.com/brain
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the magnitude of overlap were larger in the hard thresholding
networks. This may be due to concentration of edges among
high-degree nodes, as seen in Figure 1b. For ROI-based net-
works, high-degree nodes were consistent in the medial prefron-
tal cortex, insula, superior temporal gyrus, and operculum
(Fig. 4b). For low d, a strong overlap was also found in the pos-
terior cingulate and in the occipital lobe. The results were sim-
ilar between the thresholding methods.

Modular organization

Figure 5 shows the mean and SD of various statistics asso-
ciated with modular parcellation of voxel-based networks
across different values of d and different thresholding meth-
ods. The modularity Q, the statistic indicating the modular
tendency of a network, was higher among hard thresholding
networks compared with node-wise thresholding networks
(Fig. 5a, p < 0.05 Bonferroni corrected). However, hard
thresholding networks had a considerably larger number of
modules compared with node-wise thresholding networks
(Fig. 5b, p < 0.05 Bonferroni corrected). Moreover, the me-
dian module size is much smaller among hard thresholding
networks compared with node-wise thresholding networks
(Fig. 5c, p < 0.05 Bonferroni corrected). These results sug-

gest that hard thresholding networks may have a large num-
ber of small modules, and the existence of such small
modules may be driving the higher modularity Q, since the
calculation of modularity does not penalize a large number
of modules (Newman, 2006a, 2006b; Newman and Girvan,
2004).

Figure 6 illustrates differences in modular organization
between hard thresholding and node-wise thresholding net-
works in a representative subject. Figure 6a shows relative
module sizes as tree maps. In each tree map, the area of
each rectangle represented the relative module size com-
pared with the size of the giant component, represented as
the collection of rectangles (Bruls et al., 2000). From the
tree maps, it can be seen that the giant component was
smaller than all the available nodes in hard thresholding net-
works, leaving many nodes fragmented from the giant com-
ponent. Even within the giant component, the modular
parcellation included a large number of small modules, as
seen on the top right corner of each tree map. This was
more apparent in networks formed with a small value of d.
This demonstrated that even the giant component was frag-
mented into a large number of small modules in a hard
thresholding network. On the contrary, there were no discon-
nected nodes in node-wise thresholding networks. Moreover,

FIG. 6. Examples of modular parcel-
lation from a representative subject at
d = 5, 10, and 30. (a) Relative module
sizes are displayed as tree maps. The
areas of rectangles correspond to relative
module sizes compared to the giant
component. The size of the giant com-
ponent, as well as the collection of dis-
connected nodes, is also proportional to
the availability of all nodes in hard
thresholding networks. The colors of the
rectangles are arbitrarily chosen to dis-
tinguish different modules. (b) Different
modules are indicated by different colors
in their locations in the brain space,
overlaid on a template image. Due to a
large number of disconnected compo-
nents, there are holes in hard thresholding
networks (b). Colors of modules are ar-
bitrarily chosen to distinguish different
modules. Color images available online
at www.liebertpub.com/brain
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there were no extremely small modules comparable to frag-
mented micromodules seen in the hard thresholding network
tree maps.

In Figure 6a, disconnected components were not consid-
ered as modules and were displayed collectively at the bot-
tom left of each tree map. A network module is defined as
a collection of nodes that are highly interconnected among
themselves and sparsely connected to the rest of nodes in
the network. Disconnected components are fundamentally
different from modules according to this definition, thus
were not considered as network modules. The blank space
at the bottom left shows how many of network nodes were
disconnected.

Figure 6b shows modular parcellation in the brain space.
Modules are shown with different arbitrary colors to show
different modules. For node-wise thresholding networks,
all available nodes were parcellated into different modules
covering the gray matter areas in the cerebrum. On the con-
trary, for hard thresholding, modular parcellation images
showed fragmented modules, with holes and missing voxels
corresponding to disconnected nodes. Consequently, the
gray matter cortical areas were not covered entirely, unlike
the modular parcellation of node-wise thresholding net-
works. Even with d = 30, holes were still visible.

The fragmentation of modules seen in Figure 6 is based on
one subject. To examine whether such fragmentation is a

consistent phenomenon across subjects, the consistency of
two known modules (DMN and SM modules) was examined
(Fig. 7). Figure 7a shows the consistency of the DMN mod-
ule. It can be seen that the DMN module was consistent for
both thresholding methods and across different values of d,
particularly in the precuneus and posterior cingulate cortex.
This is not surprising since the DMN module likely coincides
with areas of high-degree nodes (Fig. 4a). It is likely that
such high-degree nodes are interconnected among them-
selves, forming the DMN module. Figure 7b shows the con-
sistency of the SM module. The SM module was highly
consistent in node-wise thresholding networks, regardless
of the value of d. On the contrary, the SM module was con-
sistent only for high d (d = 30) for hard thresholding net-
works. When d is small, modules, including the SM
module, may be fragmented in hard thresholding networks,
and this can lead to the lack of consistency across subjects,
as seen in Figure 7b.

Discussion

In this work, I have shown that networks formed with
node-wise thresholding are less fragmented. In a node-wise
thresholding network, the giant component included virtually
all nodes even with a small value of d. On the contrary, hard
thresholding networks included a large portion of disconnected

FIG. 7. The consistency of the DMN
module and the SM module across sub-
jects. The overlap of the DMN module
(a) and the SM module (b) across sub-
jects was examined for different thresh-
olding methods and d values. DMN,
default mode network; SM, sensory
motor. Color images available online at
www.liebertpub.com/brain
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nodes, especially when d is small. Even with a large value of
d, voxel-based hard thresholding networks still included
fragmented components. I have also shown that the modular
organization of hard thresholding networks was also frag-
mented, including a large number of small modules. Such
a fragmentation of modules was not observed in node-wise
thresholding networks. Consequently, some of the modules,
such as the SM module, are likely more robust in node-wise
thresholding networks than hard thresholding networks.

Although both hard thresholding and node-wise threshold-
ing networks were formed from the same correlation ma-
trices, a node-wise thresholding network may be a more
appropriate representation of the brain network as a whole.
Unless the sparsity is high, a hard thresholding network
likely includes disconnected nodes, and as it can be seen in
Figure 6b, such fragmented nodes are located at seemingly
random locations. In other words, the brain network is repre-
sented as a collection of disjoint networks; while the majority
of nodes may be connected as the giant component, some
parts of the brain are disconnected from the rest of the
brain network. On the contrary, a node-wise thresholding
network includes all available nodes, representing all
brain nodes as part of a single network. As mentioned ear-
lier, node-wise threshold networks undergo percolation, a
system-wide phase-transition phenomenon in formation of
a fully connected network (Hayasaka, 2016).

Although percolation is mentioned for hard thresholding
networks in the literature (Alexander-Bloch et al., 2010; For-
nito et al., 2012), no sign of percolation can be observed in
hard thresholding networks, as it can be seen in Figure 2a
and d, as well as in Hayasaka (2016). In node-wise threshold-
ing networks, when new edges are added as d increases, edges
are evenly distributed throughout the network in a way that
does not alter the relative abundance of high- or low-degree
nodes. In fact, the shape of degree distributions resembles
with each other across different values of d (Fig. 3). On the
contrary, in hard thresholding networks, the larger the d be-
comes, the more curved the degree distribution becomes,
with edges unevenly concentrated in medium- to high-degree
nodes. Larger clustering coefficient C seen in hard threshold-
ing networks may be simply a manifestation of such concen-
tration of edges. Although node-wise thresholding networks
may have a smaller clustering coefficient C, they are more
globally efficient with a smaller path length L.

Node-wise thresholding can be a great remedy for frag-
mented modules in hard thresholding. There are fewer yet
larger modules in a node-wise thresholding network com-
pared with the equivalent hard thresholding network. Such
modules are robust and consistently observed across sub-
jects, regardless of the value of d. On the contrary, some
modules, such as the SM module, may be consistent only
for a large value of d in hard thresholding networks. From
these observations, one can conclude that the modular orga-
nization is more stable in node-wise thresholding than hard
thresholding. One may argue that the modular organization
can be examined in a hard thresholding network if d is suffi-
ciently large, or equivalently the network has a sufficiently
large number of edges. However, it is hard to determine
what constitutes the adequate number of edges, since the
modular organization is highly dependent on it.

There is no clear consensus in the field as to what thresh-
old or sparsity should be used to form a functional connectiv-

ity network. In fact, people often use a range of thresholds
and examine network characteristics over that range [see
Fornito et al. (2013) for a review]. The rationale for using
multiple thresholds is that network characteristics are depen-
dent on the threshold. This is likely true for hard thresholding
networks, but for node-wise thresholding, especially for
voxel-based networks, the relative giant component size G
or the clustering coefficient C does not vary across different
values of d. Only the path length L shortens as d increases.
Although modular organization statistics, such as the modu-
larity Q or the median module size, may change over differ-
ent values of d in node-wise thresholding networks, key
modules such as the DMN and SM modules are robust re-
gardless of the value of d.

Thus, in my opinion, examining multiple node-wise thresh-
olding networks formed at different values of d may not be
necessary. The information ascertained from a network
formed at a particular value of d can be likely replicated in
a network formed at a different value of d. For voxel-based
networks, any d ‡ 5 would be adequate. Based on the network
density formula for self-organized networks by Laurienti et al.
(2011), the average degree of a network with M = 19,000
nodes should be M · 7.89 M�0.986 = 9.06. Thus, I recommend
d = 10 to ensure that the average degree is at least 10. One can
use a larger value of d, but that involves more edges in a net-
work and consequently that may slow down various computa-
tionally intensive analysis procedures, such as path length
calculation or modular parcellation.

Although node-wise thresholding can address some short-
comings of hard thresholding, there are some limitations.
First, node-wise thresholding forces each node to have a cer-
tain number of connections, dictated by d. This means that, if
there are truly disconnected nodes, such nodes may be erro-
neously included in a network. Second, correlation coeffi-
cients associated with some edges may be considerably
small. This can be seen as inclusion of weak connections to
a network. Individually, such weak connections may appear
unrealistic, especially when compared to high correlation

FIG. 8. Degree distribution of voxel-based hard threshold-
ing networks with 99% of nodes connected to the giant com-
ponent. The degree distribution is a combined distribution of
n = 123 networks.
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coefficients in a correlation matrix. However, such weak con-
nections may play a crucial role in forming a network to-
gether, connecting otherwise disconnected components to
the main network (Foti et al., 2011).

There is an alternative way to construct nonfragmented net-
works with hard thresholding. This is done by lowering the
threshold sufficiently so that almost all (e.g., 99%) nodes are
connected as a giant component (Bassett et al., 2006; van
Wijk et al., 2010). Although the resulting network may not con-
tain a large number of disconnected components, it still suffers
from the same shortcomings of hard thresholding networks.

To demonstrate this point, I performed an additional
analysis of hard thresholded networks whose 99% or
more nodes were connected to the giant component. The
degree distribution (shown in Fig. 8) was similar to the de-
gree distributions of hard thresholding networks with high
d, suggesting relative abundance of medium- to high-degree
nodes. Fragmentation of network modules was also observed.
Of networks generated from n = 123 subjects, 84.6% of them
contained at least one extremely small module (consisting of
£20 nodes, or *0.1% of nodes). Of those, 84.6% of networks
were with extremely small modules, on average 31.1% of
modules were extremely small modules. This suggests that
fragmentation of network modules cannot be prevented sim-
ply by lowering the threshold in hard thresholding.

Conclusion

In this work, I applied an alternative thresholding ap-
proach, node-wise thresholding, to construct a functional
connectivity network derived from a correlation matrix. I
demonstrated that the network generated from this alterna-
tive method is robust against fragmentation in a network
resulting from hard thresholding: fragmentation manifest-
ing as disconnected nodes and fragmentation manifesting
as a large number of small modules. This anti-fragmentation
property resulted in networks with highly consistent modules,
regardless of the threshold. Moreover, edges are evenly dis-
tributed in node-wise thresholding networks without altering
the relative abundance of low- or high-degree nodes. This is
in contrast to hard thresholding where edges tend to concen-
trate in medium- to high-degree nodes as new edges are intro-
duced. In conclusion, considering all these points, I believe
that the functional connectivity of the brain as a single system
can be more appropriately represented in a node-wise thresh-
olding network.
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