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Abstract18

A popular way to analyze resting-state EEG and MEG data is to treat them as a functional network19

in which sensors are identified with nodes and the interaction between channel time-series with the20

network connections. Although conceptually appealing, the network-theoretical approach to sensor-21

level EEG and MEG data is challenged by the fact that EEG and MEG time-series are mixtures of22

source activity. It is therefore of interest to assess the relationship between functional networks of23

source activity and the ensuing sensor-level networks. Since these topological features are of high24

interest in experimental studies, we address the question of to what extent the network topology can25

be reconstructed from sensor-level FC measures in case of MEG data. Simple simulations that consider26

only a small number of regions do not allow to assess network properties; therefore, we use a di↵usion27

MRI-constrained whole-brain computational model of resting-state activity. Our motivation lies behind28

the fact that still many contributions found in the literature perform network analysis at sensor level,29

and we aim at showing the discrepancies between source- and sensor-level network topologies using30

realistic simulations of resting-state cortical activity. Our main findings are that the e↵ect of field31

spread on network topology depends on the type of interaction (instantaneous or lagged) and leads32

to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals,33

instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies34

are reduced when using planar gradiometers rather than axial gradiometers. We therefore recommend35

to use lagged interaction measures on planar gradiometer data when investigating network properties36

of resting-state sensor-level MEG data.37
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1 Introduction38

Electroencephalography (EEG) and magnetoencephalography (MEG) allow for non-invasive monitor-39

ing of electrical activity in the human brain at a time-scale of milliseconds [21]. EEG and MEG have40

been used extensively to characterize functional connectivity (FC) underlying healthy and impaired41

cognitive processes, and promoted the development of methods for characterizing FC in electrophysi-42

ological recordings (EEG/MEG). Today, one can choose from a wide variety of FC measures based on43

di↵erent mathematical theories, such as chaotic systems, weakly-coupled oscillators, linear stochastic44

processes, and information theory [36, 40, 44]. In applications to EEG and MEG data, it is common45

practice to calculate the FC measure for all channel-pairs, resulting in an FC matrix with the corre-46

sponding one-to-one relationships. The obtained FC matrices of di↵erent subjects are subsequently47

analyzed and can be used to characterize di↵erent cognitive states or pathological conditions. In this48

study, we focus on the fundamental question of what it is that sensor-level FC matrices say about the49

dynamical structure of the data, and to what extent the network topology can be reconstructed from50

sensor-level FC measures in case of MEG data. To that end, we compare sensor-level FC matrices51

with the underlying cortical FC matrices.52

53

The most common way to think about EEG/MEG FC matrices is in terms of functional networks54

[8,23,39]. Viewed as such, network nodes are assumed to correspond to cortical circuits underlying the55

EEG/MEG channels and network connections are assumed to correspond to functional dependencies56

between these circuits. Analysis of the network is typically carried out using graph-theoretic measures57

such as the clustering coe�cient, degree distribution, and average path length. The network approach58

to EEG/MEG brain dynamics has demonstrated that resting-state functional networks at sensor level59

posses small-world properties in several frequency bands [1, 46], which would enable fast and robust60

integration and segregation of information [2]. Moreover, graph-theoretic measures are able to dis-61

criminate between the ongoing brain dynamics of healthy individuals and those of psychiatric and62

neurological patients [29, 30,37,38].63

64

Although these results are encouraging and clinically relevant, by themselves they do not validate65

the network-theoretic view on sensor-level EEG/MEG brain dynamics. In addition, the network ap-66

proach to EEG/MEG brain dynamics is questionable from a physical perspective. Concerning the67

physics, because EEG/MEG channels register source activity not only from tissue directly underly-68

ing the channels but from distant sources as well, they cannot directly be associated with nodes of69

a functional network and the FC measures su↵er from spurious correlations due to the superposition70

of sources [22]. Moreover, scalp-based EEG connectivity estimates like vector autoregressive models71

have been shown to be highly a↵ected by volume conduction [7]. To isolate true FC from spurious72

FC due to volume-conduction (EEG) or field spread (MEG), several approaches have been proposed.73

Since volume-conduction/field spread is instantaneous, an alternative is to focus on time-lagged inter-74

actions between EEG/MEG channels [26,32,33,47], which necessarily reflect time-lagged interactions75

between sources. However, although these FC measures reduce spurious correlations and might lead to76

more faithful networks [5, 19,45], it remains unclear weather such measures actually reflect functional77

interaction between local circuits. Another alternative is to perform a source space projection prior78

to calculation. Source reconstruction techniques like beamforming have become standard for source79

space projection of EEG/MEG sensor data, and recent studies have proposed methods to mitigate the80

e↵ects of volume-conduction/field spread [10, 18, 41, 49]. Although these techniques have been shown81

to ease the e↵ects of field spread, still several contributions continue applying network theory to sensor82

level data, and in this study we highlight the consequences of carrying out such an analysis.83

84

85

Motivated by the existence of several fundamental methodological di�culties [22], we use models86

based on empirical data to uncover a discrepancy between cortical FC matrices and those computed87

at channel level. Whereas the authors in [22] focused on a single minimalistic scenario, the authors88
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in [10] studied the performance of a novel connectivity measure on both simulated and real data at89

source-level using simple networks composed of only a few nodes (five), without performing realistic90

simulations of resting-state cortical activity and without reporting results on sensor-level connectivity91

studies. The extended analysis we perform on simulated data can be contrasted with those based on a92

network view on EEG/MEG brain dynamics, e.g. [6,15,16,29,45,46]. To this extent, we focus on both93

real and complex-valued correlation measurements (or coherence), and argue that treating sensor-level94

resting-state EEG/MEG recordings as comprising a discrete network of interacting systems might not95

be appropriate and obscures rather than clarifies the true brain dynamics, since after all, the recorded96

electric and magnetic fields are continuous in space [42]. To demonstrate this, we use a di↵usion MRI-97

constrained whole-brain computational model of resting-state activity, where the activity at di↵erent98

areas of the brain emerges through long-range synchronization of Hopf oscillators. We stress that in99

contrast to existing simulation studies on sensor-level FC which typically use simple network models,100

we perform realistic simulations based on empirical data. The measured MEG signals are obtained101

from a forward model assuming two di↵erent systems: sensors with axial gradiometers and sensors102

with planar gradiometers, the latter obtained synthetically using the Fieldtrip toolbox [35]. Then,103

we perform a network analysis at both source level and sensor level, and contrast the results showing104

that they can lead to wrong interpretations. A Louvain modularity study is included, which sheds105

additional light on the results from the standard network analyses performed.106

2 Materials and Methods107

2.1 Cortical parcellation and white-matter tractography108

For the estimation of the whole-brain structural connectivity matrix S, we considered ten male healthy109

subjects aged 22.5 ± 1.8 years, nine right-handed and one left-handed. Each subject underwent a110

magnetic resonance imaging (MRI) session on a 3 Tesla scanner (Magnetom TrioTim, Siemens Medical111

Solutions), equipped with a 32-channel head coil. Each MRI session included a magnetization-prepared112

rapid acquisition gradient echo (MPRAGE) and a di↵usion spectrum imaging (DSI [52]) sequence.113

The MPRAGE acquisition had 1 mm in-plane resolution and 1.2 mm slice thickness, covering 240 ⇥114

257 ⇥ 160 voxels. The TR, TE and TI were 2300, 2.98 and 900 ms. The DSI acquisition had 2.2 ⇥115

2.2 ⇥ 3 mm resolution, covering 96 ⇥ 96 ⇥ 34 voxels, and it included 256 di↵usion-weighted volumes116

(with maximum b-value 8000 s/mm2) and one b0 volume. The TR and TE were 6100 and 144 ms.117

Informed written consent in accordance with institutional guidelines was obtained for all participants.118

Subject-wise MPRAGE volumes were segmented into white-matter, grey-matter and cerebrospinal-119

fluid compartments using FreeSurfer software [12], and linearly registered to the di↵usion space (b0120

volume) [20]. The grey-matter cortical volumes were segmented into 219 regions of interest (ROIs),121

according to the atlas described in [9] and using the Connectome Mapper Toolkit [11]. DSI data122

were reconstructed according to [52]. Deterministic streamline tractography [27] was performed on123

reconstructed DSI data, initiating 32 streamline propagations per voxel and per di↵usion direction. A124

representative structural connectivity matrix S was estimated by combining tractography and cortical125

parcellation results from the ten subjects.126

2.2 Computational model of resting-state cortical dynamics127

Recently, it has been reported that the dynamics of resting-state cortical fluctuations is poised at128

the transition between asynchronous to oscillatory behavior [14]. We use the model proposed in [14]129

to simulate resting-state cortical activity, where a general neural mass model based on the normal130

form of a Hopf bifurcation was proposed. The model describes the dynamics of n coupled brain areas131

(nodes). The global dynamics emerges through the mutual interactions between the nodes, which132

are coupled through a connectivity matrix S. The local dynamics are modeled by the normal form133

of a supercritical Hopf bifurcation, which describes the transition from asynchronous noisy behavior134
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to self-sustained oscillations, as controlled by the bifurcation parameter, denoted a. The complex-135

valued cortical activity at every node j is modeled by the following set of coupled non-linear stochastic136

di↵erential equations:137

d

dt

zj(t) = (a+ i!

0

)zj(t)� zj(t)|zj(t)|2 + g

nX

k=1

Sj,k (zk(t� tj,k)� zj(t)) + ⌘j(t), (1)

where i is the imaginary unit, !
0

is the intrinsic frequency, ⌘j is additive Gaussian white noise with138

intensity �j , and tj,k denotes the axonal delay between node j and node k. The parameter g globally139

scales the synaptic connections and is used to control the correlation between regions. When the nodes140

are uncoupled (i.e., g = 0), the local dynamics bifurcate when a crosses zero. Specifically, for a < 0, the141

local dynamics have a stable fixed point at zj = 0, which corresponds to a low-activity asynchronous142

state due to the additive noise. For a > 0, there exists a stable limit-cycle with angular frequency !
0

.143

The e↵ect of the bifurcation parameter value a on the local dynamics is illustrated in Fig. 1.144

145

The complex-valued variable zj can be decomposed into a real part xj and imaginary part yj as146

zj = xj + iyj . In terms of xj and yj , Eq. (1) takes the form147

d

dt

xj = axj � !

0

yj � xj(x
2

j + y

2

j ) + g

nX

k=1

Sc(j, k)(xk � xj) + ⌘j , (2)

d

dt

yj = ayj � !

0

xj � yj(x
2

j + y

2

j ) + g

nX

k=1

Sc(j, k)(yk � yj) + ⌘j , (3)

where we have suppressed the time-dependence of x and y. Cortical activity at node j is thus modeled148

by the real-valued variable xj .149

150

To simulate realistic cortical resting-state activity, the nodes of the computational model are taken to151

be the ROIs in the surface-based cortical atlas described in Sec. 2.1, and the connectivity matrix is152

taken to be the group-averaged structural connectivity matrix obtained from di↵usion MRI tractog-153

raphy. To obtained activity in each vertex of the cortical mesh, the activity for each ROI is copied to154

all vertices within that ROI. This e↵ectively means that we assume cortical activity to be locally syn-155

chronous over several squared centimeters, which is consistent with empirical estimates of the spatial156

extent of cortical activity underlying resting-state EEG and MEG recordings [21, 24,34].157

158

From the simulated cortical activity, MEG sensor data was computed by constructing a leadfield159

matrix for the 275-channel MEG gradiometer system (CTF Systems Inc., Port Coquitlam, Canada)160

using a single-sphere head model in the Fieldtrip toolbox [35]. The source space was restricted to the161

vertices of the left and right Freesurfer cortical template meshes, which were manually positioned inside162

the MEG helmet. The single-sphere had a radius of 10 cm and was manually positioned to enclose the163

source space. Dipoles were assumed to be oriented perpendicular to the local cortical surface. This164

yielded leadfield matrices of dimensions 273⇥ 130385 for the left hemisphere and 273⇥ 131547 for the165

right hemisphere (the system has two reference channels not used for recording). Besides these axial166

gradiometer data, we computed the corresponding planar gradiometer data using Fieldtrip [35].167

168

Noisy MEG data is obtained by adding correlated Gaussian noise to the simulated signals, for dif-169

ferent values of the peak signal-to-noise ratio (PSNR), given by170

PSNR = 20 log
maxi,t |si(t)|

�N
, (4)

where si(t) is the noise-free MEG signal at channel i at time t. The noise covariance matrix was171

obtained from an empty-room MEG recording and further scaled by a factor �2

N/�̄

2 to obtain the172

desired PSNR values, where �̄2 is the mean of the entries of its main diagonal.173
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2.3 Functional connectivity matrices174

There exist a wide range of measures to characterize functional connectivity between two simulta-175

neously recorded time-series [36] and most of them have been applied to sensor-level EEG and MEG176

recordings [40]. Since EEG and MEG sensor-level time-series are linear superpositions of cortical time-177

series (volume-conduction/field spread), the results of sensor-level FC analyses are generally di�cult178

to interpret. This motivated the development of FC measures that are based on time-lagged inter-179

actions, since these cannot be explained by field spread. Examples of such measures are imaginary180

coherency [33], phase-slope-index [32], phase-lag-index [47], and the (symmetric part of the) phase-181

modulation function [26]. In the current study we consider two such measures: the imaginary part of182

the complex-valued Pearson correlation coe�cient (IC) and the phase-lag index (PLI). For comparison,183

we also use the real part of the (complex-valued) Pearson correlation, which quantifies instantaneous184

FC. Below, a short description of these three measures is given.185

186

Given two oscillatory time-series x = (x
1

, · · · , xn) and y = (y
1

, · · · , yn), the complex-valued Pearson187

correlation coe�cient rx,y between x and y is defined as the Pearson correlation coe�cient between188

the analytic signals x

A and y

A of x and y, respectively. Thus, let x

A = x + ix

H and y

A = y + iy

H
189

denote the analytic signals of x and y, respectively, where x

H and y

H denote the Hilbert transforms190

of x and y, then191

rx,y =

Pn
k=1

�
x

A
k � x̄

A
� �

y

A
k � ȳ

A
�⇤

⇣Pn
k=1

��
x

A
k � x̄

A
��2
⌘
1/2 ⇣Pn

k=1

��
y

A
k � ȳ

A
��2
⌘
1/2

, (5)

where x̄

A denotes the mean of xA, | · | denotes absolute value, and (⇤) denotes complex conjugation.192

Note that rx,y is complex-valued and that |rx,y|  1, where an absolute value of 0 and 1 correspond193

to uncorrelated and completely correlated, respectively. Also, its angle corresponds to the phase-delay194

between x and y. It particular, ry,x = r

⇤
x,y, where ⇤ denotes complex conjugation. The absolute195

imaginary Pearson correlation coe�cient between x and y, denoted by r

imag

x,y , is obtained by taking196

the absolute value of the imaginary part of rx,y:197

r

imag

x,y = |Im(rx,y)|. (6)

Similarly, the absolute real Pearson correlation coe�cient between x and y, denoted by r

real

x,y , is obtained198

by taking the absolute value of the real part of rx,y:199

r

real

x,y = |Re(rx,y)|. (7)

Note that r

real

x,y and r

imag

x,y measure the instantaneous and lagged functional connectivity respectively,200

and take values within the interval [0, 1]. By calculating the real and imaginary Pearson correlation201

coe�cients for all pairs of cortical regions, we obtained n-dimensional cortical FC matrices RC
cortex

202

and IC
cortex

, respectively, where n is the number of cortical regions. Furthermore, by calculating the203

real and imaginary Pearson correlation coe�cients between the time-series of every pair of MEG chan-204

nels, we obtained s-dimensional sensor FC matrices, denoted by RC
sensor

and IC
sensor

, respectively,205

where s is the number of sensors. In fact, we obtained two sensor FC matrices, corresponding to axial206

and planar gradiometer data.207

208

As a third measure, we take the phase-lag index (PLI), which is a measure of the asymmetry of209

the distribution of phase-di↵erences between x and y and takes values in the interval [0, 1]. A value210

of 0 corresponds to no coupling or instantaneous coupling (that is, phase-di↵erence centered around211

0 mod ⇡), and a value of 1 corresponds to perfect phase locking at an angle 6= 0 mod ⇡ [47]. Let212

 = ( 
1

, · · · , n) denote the phase-di↵erences between xA and yA The phase-lag index between x and213

y is then defined as214

⇢x,y = |hsign( k)i|, (8)
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where h·i denotes the average over k. By calculating ⇢x,y between the time-series of every pair of cortical215

regions or MEG sensors, we obtain FC matrices PLI
cortex

and PLI
sensor

. As for the Pearson correlation216

coe�cient, we calculated the sensor-level FC matrix for both the axial and planar gradiometer data.217

In the two following sections, we describe the methods we used for characterizing the FC matrices218

described above and for comparing corresponding cortical and sensor FC matrices.219

2.4 Network analysis220

We characterize and compare the topological features of the cortical and MEG sensor-level FC matri-221

ces, considering commonly used indices in MEG (and EEG) sensor-level network-theoretical studies as222

in e.g. [45].223

224

Clustering coe�cient: The clustering coe�cient is the likelihood that neighbors of a given node will be225

connected to each other [51]. This measure reflects the organization of the network: whereas a random226

network will have clustering coe�cient equal or close to 0, one with a high degree of organization (e.g.227

a small-world network) will have a large clustering coe�cient. Consider a matrix C whose (i, j)th entry228

cij specifies the correlation measure between point i and point j. The weighted clustering index of229

node i is defined as230

ci =

P
k 6=i

P
l 6=i
l 6=k

cikcilckl

P
k 6=i

P
l 6=i
l 6=k

cikcil
(9)

whereas the mean clustering coe�cient is given by231

cw =
1

N

NX

i=1

ci. (10)

To highlight the di↵erences with respect to a random network, we compute the absolute di↵erence232

|cw � c̄w|, where the value c̄w is the clustering coe�cient of a random network, which is equal to the233

network density.234

235

Average path length: this measure is the average number of steps along the shortest paths for all236

possible pairs of nodes in the network, and is a measure of the e�ciency of information transport on237

the network [39]. The average path length depends on the network size but does not change drastically238

with it. We define the length of an edge as239

lij = 1

cij
, if cij 6= 0,

lij = 1, if cij = 0
240

The average weighted path length is given by241

lw =

0

@ 1

N(N � 1)

NX

i=1

NX

j 6=i

l(i, j)�1

1

A
�1

(11)

Global e�ciency: e�ciency is a measure of how e�ciently the network exchanges information, it quan-242

tifies the exchange of information across the network. The global e�ciency is computed as the average243

of the inverse shortest path length [39].244

245

Communities are groups of nodes within a network that are more densely connected to one another than246

to other nodes. The metric modularity quantifies the quality of an assignment of nodes to communities247

by evaluating how much more densely connected the nodes within a community are compared to how248
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connected they would be, on average, in a random network. We consider therefore an analysis which249

may shed additional light on the group organization of the network: the Louvain community detection.250

251

Louvain community detection: The Louvain method is an algorithm for detecting communities in252

networks that relies upon heuristics for maximizing the modularity [3]. The optimal community struc-253

ture returned by the algorithm is a subdivision of the network into non-overlapping groups of nodes,254

such that the number of within-group edges is maximized, whereas the number of between-group edges255

is minimized. The size and the number of communities detected is controlled by the resolution pa-256

rameter, with standard value equal to 1. Whereas resolutions higher than 1 produce larger number of257

clusters, resolutions lower than 1 produce lower number of clusters.258

3 Results259

3.1 Simulated resting-state cortical activity260

We simulate resting-state cortical oscillations in the alpha frequency band (⇡ 10 Hz) for a total of five261

minutes using the Hopf oscillators coupled through the structural connectivity matrix S, obtained from262

di↵usion MRI fiber-tracking (see Section 2.1). We want to investigate whether there is a correlation263

between the FC matrices at source level and the FC matrices at sensor level; therefore, to fit the 273264

sensors of the MEG helmet we choose a brain parcellation composed of n = 219 ROIs, listed in Table 1.265

Fig. 2 (a) shows the empirical structural connectivity matrix S, which exhibits a sparse connectivity,266

whereas Fig. 2 (b) shows the instantaneous FC matrix, denoted RC
cortex

. Observe that the first267

quadrant of the matrix S contains the connectivity information from the right hemisphere, whereas268

the fourth contains the connectivity information from the left hemisphere. Moreover, the second and269

third quadrants of the matrix show the connections between the left and right hemispheres. The brain270

model described in Sec. 2.1 is implemented with the parameter values listed in Table 2, and a time271

sample of brain activity is shown in Fig. 2 (c) where di↵erent colors are used to distinguish between272

nodes with di↵erent activity. A seed-based RC
cortex

matrix has been computed for the right Caudal273

Middle Frontal 1 region and mapped onto the di↵erent brain areas, as shown in Fig. 2 (d).274

Fig. 3 (a) depicts the time series generated for 10 seconds of brain activity at one node of the brain275

model, and Fig. 3 (b) shows the MEG signal obtained with axial gradiometer sensors for consecutive276

time samples as measured at sensor level (plots are read from left to right and top to bottom). The277

propagation patterns observed in Fig. 3 (b) suggest a spatial organization of the relative latencies in278

the oscillations recorded at the di↵erent sensors. From these images we may infer that a more natural279

way to conceptualize sensor-level resting-state MEG brain dynamics is as a spatiotemporal continuum280

sampled in space and time by the channels [24]. Motivated by these observations, we investigate if a281

network-theoretical approach might be appropriate to characterize them.282

3.2 Comparison of cortical and MEG functional networks283

In this section we systematically compare the network-theoretical properties of the simulated FC ma-284

trices at the cortical- and sensor-level using the network indices described in Sec. 2.4. As outlined in285

Section 2.3, we use FC matrices computed using three di↵erent measures: instantaneous/real correla-286

tion (RC), lagged/imaginary correlation (IC), and the phase-lag index (PLI). Moreover, sensor-level287

activity is computed assuming either axial or planar gradiometer MEG sensors. After considering288

some general properties of the cortical and sensor functional networks in Sec. 3.2.1, we characterize289

and compare their clustering coe�cients and global e�ciency in Sections 3.2.2 and 3.2.3, respectively.290

Finally, in Sec. 3.2.4 we compare their community structure.291
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RIGHT hemisphere RIGHT hemisphere LEFT hemisphere LEFT hemisphere

1 lateralorbitofrontal 1 57 superiorparietal 4 109 lateralorbitofrontal 1 165 superiorparietal 1
2 lateralorbitofrontal 2 58 superiorparietal 5 110 lateralorbitofrontal 2 166 superiorparietal 2
3 lateralorbitofrontal 3 59 superiorparietal 6 111 lateralorbitofrontal 3 167 superiorparietal 3
4 lateralorbitofrontal 4 60 superiorparietal 7 112 lateralorbitofrontal 4 168 superiorparietal 4
5 parsorbitalis 1 61 inferiorparietal 1 113 parsorbitalis 1 169 superiorparietal 5
6 frontalpole 1 62 inferiorparietal 2 114 frontalpole 1 170 superiorparietal 6
7 medialorbitofrontal 1 63 inferiorparietal 3 115 medialorbitofrontal 1 171 superiorparietal 7
8 medialorbitofrontal 2 64 inferiorparietal 4 116 medialorbitofrontal 2 172 inferiorparietal 1
9 medialorbitofrontal 3 65 inferiorparietal 5 117 parstriangularis 1 173 inferiorparietal 2

10 parstriangularis 1 66 inferiorparietal 6 118 parsopercularis 1 174 inferiorparietal 3
11 parstriangularis 2 67 precuneus 1 119 parsopercularis 2 175 inferiorparietal 4
12 parsopercularis 1 68 precuneus 2 120 rostralmiddlefrontal 1 176 inferiorparietal 5
13 parsopercularis 2 69 precuneus 3 121 rostralmiddlefrontal 2 177 precuneus 1
14 rostralmiddlefrontal 1 70 precuneus 4 122 rostralmiddlefrontal 3 178 precuneus 2
15 rostralmiddlefrontal 2 71 precuneus 5 123 rostralmiddlefrontal 4 179 precuneus 3
16 rostralmiddlefrontal 3 72 cuneus 1 124 rostralmiddlefrontal 5 180 precuneus 4
17 rostralmiddlefrontal 4 73 cuneus 2 125 rostralmiddlefrontal 6 181 precuneus 5
18 rostralmiddlefrontal 5 74 pericalcarine 1 126 superiorfrontal 1 182 cuneus 1
19 rostralmiddlefrontal 6 75 pericalcarine 2 127 superiorfrontal 2 183 pericalcarine 1
20 superiorfrontal 1 76 lateraloccipital 1 128 superiorfrontal 3 184 lateraloccipital 1
21 superiorfrontal 2 77 lateraloccipital 2 129 superiorfrontal 4 185 lateraloccipital 2
22 superiorfrontal 3 78 lateraloccipital 3 130 superiorfrontal 5 186 lateraloccipital 3
23 superiorfrontal 4 79 lateraloccipital 4 131 superiorfrontal 6 187 lateraloccipital 4
24 superiorfrontal 5 80 lateraloccipital 5 132 superiorfrontal 7 188 lateraloccipital 5
25 superiorfrontal 6 81 lingual 1 133 superiorfrontal 8 189 lingual 1
26 superiorfrontal 7 82 lingual 2 134 superiorfrontal 9 190 lingual 2
27 superiorfrontal 8 83 lingual 3 135 caudalmiddlefrontal 1 191 lingual 3
28 caudalmiddlefrontal 1 84 fusiform 1 136 caudalmiddlefrontal 2 192 lingual 4
29 caudalmiddlefrontal 2 85 fusiform 2 137 caudalmiddlefrontal 3 193 fusiform 1
30 caudalmiddlefrontal 3 86 fusiform 3 138 precentral 1 194 fusiform 2
31 precentral 1 87 fusiform 4 139 precentral 2 195 fusiform 3
32 precentral 2 88 parahippocampal 1 140 precentral 3 196 fusiform 4
33 precentral 3 89 entorhinal 1 141 precentral 4 197 parahippocampal 1
34 precentral 4 90 temporalpole 1 142 precentral 5 198 entorhinal 1
35 precentral 5 91 inferiortemporal 1 143 precentral 6 199 temporalpole 1
36 precentral 6 92 inferiortemporal 2 144 precentral 7 200 inferiortemporal 1
37 paracentral 1 93 inferiortemporal 3 145 precentral 8 201 inferiortemporal 2
38 paracentral 2 94 inferiortemporal 4 146 paracentral 1 202 inferiortemporal 3
39 paracentral 3 95 middletemporal 1 147 paracentral 2 203 inferiortemporal 4
40 rostralanteriorcingulate 1 96 middletemporal 2 148 rostralanteriorcingulate 1 204 middletemporal 1
41 caudalanteriorcingulate 1 97 middletemporal 3 149 caudalanteriorcingulate 1 205 middletemporal 2
42 posteriorcingulate 1 98 middletemporal 4 150 posteriorcingulate 1 206 middletemporal 3
43 posteriorcingulate 2 99 bankssts 1 151 posteriorcingulate 2 207 middletemporal 4
44 isthmuscingulate 1 100 superiortemporal 1 152 isthmuscingulate 1 208 bankssts 1
45 postcentral 1 101 superiortemporal 2 153 postcentral 1 209 bankssts 2
46 postcentral 2 102 superiortemporal 3 154 postcentral 2 210 superiortemporal 1
47 postcentral 3 103 superiortemporal 4 155 postcentral 3 211 superiortemporal 2
48 postcentral 4 104 superiortemporal 5 156 postcentral 4 212 superiortemporal 3
49 postcentral 5 105 transversetemporal 1 157 postcentral 5 213 superiortemporal 4
50 supramarginal 1 106 insula 1 158 postcentral 6 214 superiortemporal 5
51 supramarginal 2 107 insula 2 159 postcentral 7 215 transversetemporal 1
52 supramarginal 3 108 insula 3 160 supramarginal 1 216 insula 1
53 supramarginal 4 161 supramarginal 2 217 insula 2
54 superiorparietal 1 162 supramarginal 3 218 insula 3
55 superiorparietal 2 163 supramarginal 4 219 insula 4
56 superiorparietal 3 164 supramarginal 5

Table 1: Brain parcellation composed of 219 ROIs.
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Parameter symbol value

Number of areas n 219
Bifurcation parameter a 10
Global coupling constant g 50-100
Areal oscillation frequency f

0

10± 1 Hz
Areal noise intensity � 1⇥ 10�3

sampling frequency fs 100 Hz
time t 300 s
peak SNR of MEG data PSNR 0� 30 dB

Table 2: Parameters of the cortical Hopf model, their symbols, and nominal values.

3.2.1 General properties292

Fig. 4(a)-(c) show the cortical FC matrices RC
cortex

, IC
cortex

, PLI
cortex

, and the ensuing sensor FC293

matrices RC
sensor

, IC
sensor

, PLI
sensor

, for both axial (Fig. 4(d)-(f)) and planar (Fig. 4(g)-(i)) gra-294

diometer MEG sensors. Moreover, Fig. 4(j)-(l) depict the distributions of FC values for each of the295

three FC types. We can make a number of observations. First, notice that the RC cortical FC exhibits296

a similar structure than IC and PLI cortico FC, but significanlty higher values. Furthermore, this is297

approximately true for the sensor activity as well, which agrees with experimental observations [33].298

It means that latencies between oscillations at di↵erent areas or sensors are much smaller than the299

oscillation period (which is about 100 ms for alpha oscillations). Lagged cortical FC (IC and PLI)300

values, however, are larger than lagged sensor FC values, which means that sensor FC matrices un-301

derestimate lagged FC. The main cause of this reduction in lagged FC is the instantaneous mixing of302

cortical signals through field spread. This phenomena is not unique to MEG recordings but can be303

observed in EEG and local field potential (LFP) recordings as well [25]. Second, lagged functional304

networks as measured with PLI are sparser than as measured with IC, and the distribution of their305

values is less spread for the planar gradiometer system.306

307

Concerning the gradiometer type, notice that the instantaneous functional network (RC) is sparser for308

planar gradiometers (Fig. 4(g)) than for axial gradiometers (Fig. 4(d)). This is to be expected since309

planar gradiometers yield the highest signal intensities right above active cortical tissue and integrate310

source activity over smaller regions of cortex [21]. We observe that the matrices at sensor level (Fig.311

4 (d)-(i)) show more modularity and a higher level of organization, and as expected, from the first312

column (Fig. 4(a), (d), (g)) we can see that the real correlation matrix RC is more sensitive to field313

spread.314

3.2.2 Topology of resting-state networks I: MEG axial gradiometers315

The network indices computed from the FC matrices at source level are compared here with those316

obtained from the FC matrices at sensor level assuming the MEG system with axial gradiometers. In317

order to do so, we apply a threshold and compute the binary FC matrices to analyze their organization318

structure for di↵erent threshold values. Fig. 5 (a) shows the clustering coe�cient for RC computed319

with (9) as a function of the binarization threshold, along with the density. Observe that for values320

in the range [0.2, 0.9] the clustering coe�cient of RC
sensor

exhibits a sort of flooring e↵ect, showing321

that, although the total number of connections decreases, the number of 3-dimensional cliques remains322

almost unchanged within that range. This is equivalent to say that the links connecting three nodes323

are robust. However, this e↵ect is not observed in the RC
cortex

where the clustering coe�cient curve324

shows a decreasing trend more similar to the one for the density at sensor level. Fig. 5 (b) shows the325

absolute di↵erence |cw � c̄w| for both RC
cortex

and RC
sensor

, where c̄w denotes the average clustering326

coe�cient of a random network, which in this case is equal to the density. In other words, this measure327

quantifies the di↵erence in clustering with respect to a random network. The larger the value obtained328
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is, the higher the organization of the network (for that particular threshold value). We identify (and329

highlight) an optimum value for each curve, which clearly do not coincide at source and at sensor level.330

Fig. 5 (c) shows the e�ciency of the network as a function of the binarization threshold. Again, the331

e�ciency computed for RC
cortex

evidences a di↵erent organization than the one for RC
sensor

. From332

these results we can infer that RC
sensor

exhibits a higher level of organization than RC
cortex

for values333

above 0.35, or equivalently, less randomness. Di↵erent results are obtained for IC and PLI matrices,334

where both IC
cortex

and PLI
cortex

exhibit larger clustering coe�cients than those at source level in335

IC
sensor

and PLI
sensor

. Note that the FC matrix exhibiting largest distance with respect to a random336

network in this case is PLI
sensor

followed by PLI
cortex

, as shown in Fig. 5 (e). On the other hand, the337

global e�ciency for these matrices is highest for IC
cortex

(see Fig. 5 (f)), followed by PLI
cortex

.338

339

The results presented so far are obtained considering noise-free measurements. To asses the impact340

of measurement noise, we perform simulations for several values of PSNR, as defined in (4). Fig. 6341

plots the results vs. PSNR values in the range [0, 30] dB: (a) and (b) show respectively the clustering342

coe�cient and the global e�ciency vs. PSNR for the real correlation matrix RC
sensor

, along with343

the results for its randomized counterparts, obtained by randomly shu✏ing the entries of the upper344

triangular part of the matrix. Fig. 6 (c) and (d) show the same results for IC and PLI. As expected,345

the clustering coe�cient is slightly larger for the FC matrices than their random versions in all cases,346

while the global e�ciency is slightly higher for the random versions in all the PSNR spectrum. In all347

cases, we observe that the network indices increase with high PSNR, with a clear transition starting348

from 10 dB. These incremental behaviors are also observed in the number of communities detected, as349

explained in Sec. 3.2.4.350

3.2.3 Topology of resting-state networks II: MEG planar gradiometers351

In this section we compare the network indices assuming the MEG system with planar gradiometers.352

Fig. 7 (a) shows the clustering coe�cient for RC
cortex

and RC
sensor

as functions of the binarization353

threshold. For the sake of clarity, we include again the curve for the density. Moreover, Fig. 7 (b)354

shows the absolute di↵erence |cw � c̄w| computed for both RC
cortex

and RC
sensor

. As expected, the355

results obtained for the RC matrices are similar to those obtained with the axial gradiometer sensors,356

whereas the results for IC and PLI matrices are slightly di↵erent. In Fig. 7 (e) we can see that in357

this case, IC
cortex

and PLI
cortex

show less distance with respect to a random network than IC
sensor

358

and PLI
sensor

. Regarding noisy data, Fig. 8 (a) and (b) show the clustering coe�cient and the global359

e�ciency vs. PSNR in the range [0, 30] for the real correlation matrices RC, along with the results360

for their randomized counterparts. Fig. 8 (c) and (d) show the same results for IC and PLI at both361

source and sensor level. The clustering coe�cient and the e�ciency increase with PSNR for all FC362

matrices. From Fig. 8 (c) and (d) we can see that both the clustering coe�cient and the global363

e�ciency are higher for IC
sensor

than for PLI
sensor

. From all the results presented, we can infer that364

the FC matrices at sensor level show a di↵erent level of organization than the FC matrices at source365

level, independently of the gradiometer system used.366

3.2.4 Community structure367

The Louvain modularity analysis performed for all FC matrices and assuming di↵erent values of the368

resolution parameter yields more interesting results. Table 3 lists the number of detected communities369

for each network assuming the standard value of the resolution parameter (i.e., 1), and Fig. 9 provides370

a graphical representation of these results, where the nodes belonging to the same community are371

rearranged and the communities are reordered by size within the respective matrix. Note that a large372

number of communities at the cortex are composed of only a few elements, whereas at sensor level,373

the planar matrices have a smaller number of communities (last row of Fig. 9). Moreover, the axial374

IC
sensor

and PLI
sensor

have a large number of communities with only one element. Fig. 10 shows the375

results of mapping the Louvain communities detected onto the MEG helmet, where only the most six376
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RC
cortex

= 28 IC
cortex

= 18 PLI
cortex

= 20
RC

sensor

axial = 6 IC
sensor

axial = 51 PLI
sensor

axial = 28
RC

sensor

planar = 4 IC
sensor

planar = 14 PLI
sensor

planar = 8

Table 3: Number of communities detected for each FC matrix.

significant communities are highlighted in colors (the remaining communities are all colored in black).377

The first row of Fig. 10 depicts the distribution of communities for RC
sensor

, IC
sensor

and PLI
sensor

378

for the MEG system with axial gradiometer sensors, whereas the second row shows the distribution of379

communities for RC
sensor

, IC
sensor

and PLI
sensor

assuming the MEG system with planar gradiometer380

sensors. Except for the case of RC (first column of Fig. 10 ), no particular patterns can be identified381

for the imaginary correlation matrices, and the communities seem to follow a radial distribution rather382

than a well-defined network. These images reveal that we should be careful in order not to draw wrong383

conclusions about the underlying structure of the brain.384

385

We investigate next the impact of the resolution parameter of the Louvain method on the number of386

detected communities for all matrices. Fig. 11 (a) depicts the number of communities detected as a387

function of the resolution parameter in the range [0.5, 1.5] for all FC matrices with the axial gradiome-388

ter system, where the results have been obtained averaging 500 independent realizations. Analogously,389

Fig. 11 (b) shows the results obtained with the planar gradiometer system. As expected, the number390

of communities detected increases with increasing resolution parameter in both cases. Except for RC,391

the number of communities detected at the cortex is smaller than the number of communities detected392

at sensor level, and this di↵erence is more evident for RC and PLI matrices in both MEG systems.393

The di↵erence at source and sensor level for RC remains almost constant for the entire resolution range394

for the axial gradiometer system. This might be interpreted as the planar system having a greater395

impact on the RC measures as the resolution parameter of the algorithm is increased, and less on the396

IC measures.397

398

From these results we can see that, increasing the resolution we systematically obtain a larger number399

of communities for all matrices. We can also observe that the number of communities is larger at400

sensor level than at source level for lagged correlations, as shown by the curves. The implications of401

the results in Fig. 11 (a)-(b) are: first, we observe a discrepancy between the community structure of402

cortical resting-state activity and that of the ensuing sensor level measurements (namely a di↵erent403

number of communities). Second, it shows that this discrepancy is systematic, that is, at source level404

the number of communities is always larger than at sensor level. Third, this observation holds for405

lagged FC matrices (IC and PLI) and di↵erent gradiometer systems (axial/planar).406

407

Analyzing the impact of noise in the number of detected communities, we observe from Fig. 11408

(c)-(d) that noise has greater impact on the IC
sensor

, as more communities are detected with higher409

PSNR for both systems. The impact of noise is lower for RC
cortex

, where the number of communities410

detected does not change significantly with PSNR.411

4 Discussion412

A common way to conceptualize and analyze sensor-level EEG and MEG resting-state data is in terms413

of functional networks [1,4,19,29,38,43,45,46]. In this approach, the nodes of the network correspond414

to EEG or MEG sensors and (the strength of its) links correspond to the estimated values of an inter-415

action measure between the time-series recorded at the corresponding nodes. The functional network416

is subsequently analyzed using graph-theoretical indices [8, 23, 39]. Although the network-theoretical417

approach to sensor-level EEG/MEG data is potentially interesting since resting-state cortical dynamics418

is known to be comprised of a number of functional networks [1, 2, 46], it is not without methodolog-419
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ical challenges [28, 50]. One of these challenges, which has received surprisingly little attention, is420

the fact that EEG/MEG record linear superpositions of cortical activity [21]. Although this nature421

of EEG/MEG signals has motived the development of interaction measures that are less a↵ected by422

volume-conduction/field spread [7,26,32,33,47], as well as the use of source reconstruction using tech-423

niques such as beamforming [10, 18, 41, 49], surprisingly few studies have investigated the relationship424

between cortical and sensor-level EEG/MEG networks [22, 41], despite the fact that these topologi-425

cal features are of high interest in experimental studies [4–6, 15, 16, 19, 29, 45, 46]. Moreover, simple426

simulations that consider only a small number of regions do not allow to assess network properties.427

In this study we used a whole-brain computational modeling approach to resting-state dynamics [13]428

to compare cortical and sensor-level resting-state MEG networks, and considering two di↵erent MEG429

systems: sensors with axial gradiometers and sensors with planar gradiometers. In our simulations,430

we included both instantaneous interaction, as measured by real-valued correlation, as well as lagged431

interaction, as measured by imaginary-valued correlation and the phase lag index (PLI) [47]. In ad-432

dition to the commonly studied network measures, we performed a Louvain community analysis and433

we studied the impact of noise in the measurements using empty-room MEG recordings. Below, we434

discuss our main findings and their implications for network-based analysis of MEG sensor-level data.435

436

One of our main findings is that the e↵ect of field spread on network topology depends on the type437

of interaction (instantaneous or lagged), measured by di↵erent interaction measures. This holds both438

for the magnitude of the e↵ect as well as for how field spread changes network topology. In particu-439

lar, instantaneous correlations are more susceptible for field spread than lagged correlations, which is440

not surprising because field spread is instantaneous [21]. In fact, the interaction measures that have441

been proposed to deal with volume-conduction or field spread [26, 32, 33, 47] all are based on lagged442

correlations, in one way or another. But field spread also a↵ects instantaneous and lagged interac-443

tion in di↵erent ways: for instantaneous interaction, it leads to a ”flooring” of the mean clustering444

coe�cient and global e�ciency (as a function of binarization threshold) and to an increased threshold445

for maximal distance to a random network. For lagged interaction, the mean clustering coe�cient446

and global e�ciency descrease (for any given threshold). Thus, our simulations suggest that lagged447

interactions are more easily assessed from sensor-level MEG data, a finding that generalizes previous448

studies [26, 32,33,47] to large-scale functional networks.449

450

The Louvain community analysis yields interesting results. First of all, at source level there is a451

large number of modules with few elements, a particularity not observed at sensor level. For imagi-452

nary correlation (IC) and phase-lag index (PLI) at source level there is only one big community. These453

organizations do not reflect the coupling among nodes due to the structural connectivity matrix, but454

rather reflect the spatial low-pass properties of the MEG forward model. The same e↵ect is captured455

by the axial system at sensor level. On the other hand, a significantly smaller number of communities456

is detected by the algorithm for the planar system, which may lead to the conclusion of a more orga-457

nized underlying structure. In general, the number of communities at source and sensor level do not458

match, and the results suggest a di↵erent structural organization of the functional connectivity (FC)459

matrices. Similar conclusions can be drawn from the case of noisy MEG measurements: as the peak460

signal-to-noise (PSNR) increases, the number of communities increases and the results approach the461

noise-free case. Regarding the network indices studied, their values are also a↵ected by noise, showing462

a discrepancy with respect to the noise-free case.463

464

Another main finding is that the discrepancy between (sensor-level) MEG and cortical networks is465

larger when using axial gradiometers than when using planar gradiometers. This holds for both in-466

stantaneous and lagged interaction and for all studied network-theoretical measures (mean clustering467

coe�cient, network density, average path-length, and global e�ciency). Most network-theoretical468

studies using sensor-level MEG, however, have used axial gradiometers [1, 5, 17, 45], and (as far as we469

know), (virtual) planar gradiometers have not yet been used for this purpose. To understand why470

planar gradiometer data is less a↵ected by field spread, recall that the (virtual) planar transformation471

13



is the sum of the squared magnetic fluxes through two perpendicular directions that are (approxi-472

mately) perpendicular to the skull. This transformation, which is called the Laplacian, behaves like a473

spatial high-pass filter. It hence reduces the MEG sensor’s sensitivity to distant sources because the474

source’s magnetic fields contains predominantly low spatial frequencies. In contrast to MEG studies,475

the Laplacian has been used frequently applied to (scalp) EEG data [48] as well as to local field po-476

tential recordings [25, 31] to increase spatial resolution. Based on our findings, we recommend using477

(virtual) planar gradiometer data when assessing network properties from sensor-level MEG data.478

5 Conclusions479

Functional networks constitute a common way to conceptualize and analyze sensor-level EEG and480

MEG resting-state data, in which sensors are identified with nodes and the interaction between chan-481

nel time-series with the network connections. The network-theoretical approach is however challenged482

by the fact that EEG and MEG time-series are mixtures of source activity. Since still many contri-483

butions found in the literature perform network analysis at sensor level, in this study we address the484

question of to what extent the network topology can be reconstructed from sensor-level FC measures485

in case of MEG data. Using a di↵usion MRI-constrained whole-brain computational model of resting-486

state cortical activity, we report discrepancies between source- and sensor-level network topologies,487

and observe that the e↵ect of field spread on network topology depends on the type of interaction488

(instantaneous or lagged). Moreover, we found that instantaneous interaction is more sensitive to field489

spread than lagged interaction, and that the discrepancies are reduced when using planar gradiometers490

rather than axial gradiometers. We therefore recommend to use lagged interaction measures on planar491

gradiometer data when investigating network properties of resting-state sensor-level MEG data.492
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Figure 1: (a) Impact of the bifurcation parameter a on the Hopf normal equation in (1). (b) For a < 0,
the signal traces a spiral converging to zero in the complex plane, and a damped oscillation in the real
domain. (c) For a > 0, the signal traces a circle in the complex plane and a self-sustained oscillation
in the real domain.
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Figure 5: Network topologies for cortical and axial gradiometer resting-state networks. (a) Clustering
coe�cient as a function of the threshold for RC, (b) absolute di↵erence with respect to a random
network and (c) global e�ciency vs. threshold. (d) Clustering coe�cient as a function of the threshold
for IC and (PLI), (e) absolute di↵erence with respect to a random network, and (f) global e�ciency
vs. threshold for IC and PLI.
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Figure 6: E↵ect of measurement noise-level for axial gradiometers. (a) Clustering coe�cient vs. PSNR
and (b) global e�ciency for the RC matrices. (c) Clustering coe�cient vs. PSNR and (d) global
e�ciency vs. PSNR for IC and PLI matrices. The results for the noise-free MEG data are marked
with filled patterns.
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Figure 7: Network topologies for cortical and planar gradiometer resting-state networks.(a) Clustering
coe�cient as a function of the threshold for RC, (b) absolute di↵erence with respect to a random
network and (c) global e�ciency vs. threshold. (d) Clustering coe�cient as a function of the threshold
for IC and (PLI), (e) absolute di↵erence with respect to a random network, and (f) global e�ciency
vs. threshold for IC and PLI.
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Figure 8: E↵ect of measurement noise-level for planar gradiometers. (a) Clustering coe�cient vs.
PSNR and (b) global e�ciency for the RC matrices. (c) Clustering coe�cient vs. PSNR and (d)
global e�ciency vs. PSNR for IC and PLI matrices.
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Figure 9: Louvain communities detected for every FC matrix and parameter resolution equal to 1 at
source level (CORTEX), at sensor level with axial gradiometers (MEG AXIAL) and at sensor level
with planar gradiometers (MEG PLANAR).
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Figure 11: Number of communities detected for all FC matrices as a function of the resolution pa-
rameter for (a) the axial gradiometer MEG system and for (b) the planar gradiometer MEG system.
Number of communities detected vs. PSNR obtained with the Louvain modularity algorithm with
resolution parameter equal to one at sensor level for (c) the axial gradiometer MEG system and for
(d) the planar gradiometer MEG system.
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