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Abstract

Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cog-
nition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted
to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic
resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain
states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means
clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indi-
cated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states.
Changes in the brain-state properties across the course of the scan were investigated as well. The results dem-
onstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reli-
ability, and thus, these patterns of brain activation may hold promise for individual-difference research.
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Introduction

The important relationship between dynamic chan-
ges in functional brain connectivity and human neuro-

cognitive processing has recently begun to be recognized
(Chang and Glover, 2010; Hutchison et al., 2013). For exam-
ple, temporal features of functional connectivity have been
linked to major depression, schizophrenia, and Alzheimer’s
disease (Hutchison et al., 2013). In addition, in healthy individ-
uals, brain dynamics has been shown to be related to attention
and cognitive flexibility (Nomi et al., 2017; Thompson et al.,
2013). Unfortunately, limited attention has been paid to the sta-
bility and reliability of these dynamic patterns (Abrol et al.,
2016; Choe et al., 2017). This is a critical limitation because
if the signals are not reliable, then their association with
human behavioral traits such as general intelligence and exec-
utive functioning is suspect.

It has been demonstrated that static functional connectivity
measures are reliable and consistent (Shah et al., 2016; Shehzad
et al., 2009; Varikuti et al., 2017), and there are improvements
in intersession reliability of static functional connectivity pla-
teau at scan lengths of between 9 and 12 min (Birn et al.,
2013). These factors paint a hopeful picture of what the future
might hold for the application of functional connectivity metrics
in individual-difference research, but the same assessment must
be applied to the myriad of new dynamic connectivity methods.

An assessment of reliability will also provide information
regarding the functional nature of the signal’s spatiotemporal
features. Assuming that intraindividual and interindividual
differences in spatiotemporal patterns are not the result of
spurious factors such as head motion, high reliability may
suggest that such patterns are functionally relevant and pre-
dictive of behavioral states and/or traits.

Dynamic connectivity methods may allow researchers to
capture changes in network configuration and how they af-
fect neurocognitive processes, but these new approaches
bring with them new challenges (Chen et al., 2016; Cocchi
et al., 2013; Fornito et al., 2012; Liu and Duyn, 2013; Majeed
et al., 2011). A large portion of dynamic connectivity meth-
ods are grounded on sliding window correlation analysis, but
this approach is constrained by the choice of the window size
(Hindriks et al., 2016; Shakil et al., 2016). Unfortunately, the
few studies that have assessed the reliability of dynamic con-
nectivity metrics have not evaluated the impact of the global
signal on reliability (Abrol et al., 2016; Choe et al., 2017).
Global signal removal has been shown to attenuate the reli-
ability of static connectivity (Varikuti et al., 2017).

Despite the pitfalls of sliding window-based methods,
connectivity states derived from these methods have been
shown to be reliable (Abrol et al., 2016; Choe et al., 2017).
For example, Abrol and colleagues identified five connectiv-
ity states in 28 groups comprising 250 age-matched subjects
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and showed that the patterns that defined the connectivity
states were highly reproducible across groups. The reliability
of connectivity state properties (dwell time, number of change
points from one brain state to another) based on sliding win-
dow and dynamic conditional correlation methods was mod-
erate, but the mean and variance of the dynamic correlations
exhibited a high degree of reliability (Choe et al., 2017).
Given these findings, it can be said that connectivity states
are fairly reliable. However, the reliability of brain states de-
rived from activation patterns has yet to be investigated.

An alternative to the sliding window approach of assessing
dynamic brain states is to capture brain dynamics via the
classification of individual time frames (single volumes).
Some researchers have even suggested that discrete neural
events form the basis of the canonical intrinsic connectivity
networks (Liu and Duyn, 2013; Petridou et al., 2013; Taglia-
zucchi et al., 2012). One popular approach is the coactivation
pattern (CAP) method developed by Liu and Duyn. They
showed that the activation maps produced by averaging
over a small number of time frames and seed region spatial
correlation maps based on the entire scan time course are
nearly identical.

In addition, they showed that the temporal decomposition
of resting-state networks into discrete patterns of coactiva-
tion was possible by applying k-means clustering to a subset
of the data (Liu and Duyn, 2013). Essentially, Liu and Duyn
demonstrated that functional connectivity networks can be
driven by a brief portion of the total scan time and that
these periods can be divided into instances of different
CAPs. Methods of classifying individual time frames lack
the shortcomings of sliding window approaches and can
provide insights into factors that drive connectivity.

Before using CAP-like methods in correlational research,
it is imperative to properly assess their reliability. To test the
reliability of single-volume brain-state analyses, we used k-
means clustering of resting-state time courses from two ses-
sions (collected on separate days) of 100 subjects from the
Human Connectome Project (HCP) (Van Essen et al.,
2013). The properties of the clusters were compared between
sessions. Cluster analysis was performed before and after the
application of global signal regression (GSR) to better under-
stand the global signal’s role in determining clusters and the
reliability of their properties. Given the reliability of static
functional connectivity and recent research demonstrating
that dynamic connectivity can predict certain behavioral
traits, it was expected that brain dynamics would be reliable
(Demirtasx et al., 2016; Nomi et al., 2017).

Materials and Methods

Subjects and preprocessing

Subjects were recruited by the HCP (Van Essen et al.,
2013). Data were taken from the ‘‘500 subject’’ release. Anal-
ysis was restricted to the ‘‘100 Unrelated Subjects’’ set, which
consists of 54 females and 46 males. Resting-state scans from
2 days were used each with a scan duration of 14.4 min (rep-
etition time [TR] = 720 msec). Data were preprocessed with
the HCP’s minimal preprocessing pipeline, and denoising
was performed by the ICA-FIX procedure (Glasser et al.,
2013; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).

Three additional preprocessing steps were applied to the
data. First, the voxels were smoothed with a 4 mm full-

width half-maximum kernel. This step was followed by the
application of a 0.01–0.1 Hz bandpass filter. Voxel time
courses were then z-scored (each individual voxel demeaned
and normalized by its temporal standard deviation). The
other procedure was identical to the one just described except
for the addition of whole-brain GSR, which was performed
before the previously outlined steps. The GSR is intended
to shed light on how the global signal may influence the clus-
tering results.

Regions of interest

To reduce computational load, 90 regions of interest (ROIs)
that have been shown to produce similar temporal clusters to
those obtained from individual voxels were used in the analy-
sis (Chen et al., 2015; Shirer et al., 2012). Shirer et al. (2012)
derived these 90 ROIs by thresholding (using a different
threshold for each network) 14 independent component net-
works found in a group-level analysis of 15 subjects. Before
the application of k means clustering, each ROI time course
was z-scored (each ROI demeaned and normalized by its tem-
poral standard deviation) so that deviations from regional
baseline could be viewed in terms of a region’s variance.

Clustering

Clustering of the scan time points based on ROI z-scores was
carried out at a global level. Each ROI z-score time course was
concatenated across all subjects separately for each session.
Clustering was performed via the k means algorithm with a
squared Euclidean distance metric (Everitt et al., 2011). For
each session, k values of 2–9 were used and for each k value,
25 replications were made. The replicate with the smallest
within-cluster sums of point to centroid distances was chosen
to represent its corresponding k value. The k value that marked
the elbow of a cumulative within-cluster sum of squared error
scree plot was selected for further analysis. The set of clusters
meeting the elbow criterion is referred to as brain states.

Brain-state metrics

Several properties of brain states are commonly assessed
and measured here: the temporal fraction, which is the fre-
quency of each brain state’s occurrence (Chen et al., 2015;
Liu and Duyn, 2013); the average dwell time, which was de-
fined as the average number of consecutive time frames an in-
dividual remained in a given brain state (Allen et al., 2014);
and the transition fractions (i.e., the number of transitions
from one state to another over all transitions to that state).

The Pearson correlation coefficient was used to measure the
test/retest reliability of the temporal fraction, the average
dwell time, and the transition fraction. This approach mea-
sures association between sessions but ignores absolute dis-
crepancies between sessions. Therefore, the mean absolute
difference between the two scan sessions, which captures
the absolute discrepancy between sessions and is less vulner-
able to outliers than measures based on sums of squares (Vari-
kuti et al., 2017), was calculated to ensure that differences
between scan sessions were not overlooked. In addition, the
intraclass correlation coefficient (ICC) was used to measure
test/retest reliability (Kim 2013; McGraw and Wong, 1996;
Shrout and Fleiss, 1979). The version of the ICC we used
(see Supplementary Data; Supplementary Data are available
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online at www.liebertpub.com/brain) can be interpreted as a
measure of absolute agreement (McGraw and Wong, 1996).

Brain-state occurrence, time, and motion

Brain-state frequency may not be uniform across a scan-
ning session. To investigate this, scans for each subject
were divided into quarters and the temporal fraction and av-
erage dwell time of each brain state were calculated for each
quarter. This approach allowed us to investigate the evolution
of the brain-state properties across a session. Motion may also
vary across scans and may be related to brain-state frequency
(Siegel et al., 2014). Therefore, the mean framewise displace-
ment (FD) was calculated from six motion parameters (Power
et al., 2012). This measure of motion was then averaged across
each of the quarters of a scanning session.

The main effect of time (four levels) was tested with a one-
way repeated-measures analysis of variance (ANOVA). The
Greenhouse–Geisser correction for violations of the sphe-
ricity assumption was applied in all cases where ANOVA
was used throughout the examination of the data set. The
relationships between grand average FD and the brain-
state properties were examined to help determine the ex-
tent of motion’s influence on the brain states.

Surrogate data

A supplemental analysis was conducted to compare the ob-
served evolution of the temporal fraction and the mean dwell
time with what would be expected in simulated time series
with the same static functional connectivity profile (Allen
et al., 2014; Hindriks et al., 2016; Prichard and Theiler,
1994). A phase randomization procedure was used to create
surrogate data that shared the correlation structure of the
HCP data set (Allen et al., 2014; Hindriks et al., 2016; Prichard
and Theiler, 1994). This process was conducted by introducing
random phase shifts. The Fourier transformations of each se-
ries were rotated by the same set of random phases (consistent
randomization) and the subsequent application of the inverse
fast Fourier transform yielded the surrogate time series. Con-
sistent application of randomization across the time series pre-
serves the correlation structure.

To determine if the evolution of the brain-state properties
found in the HCP data would be expected in a null data set
of matching static connectivity, 200 surrogate data sets were
generated with consistent phase randomization reproducing
the static connectivity profile (Prichard and Theiler, 1994).
For each surrogate data set, clustering was performed with a
k of 4. The temporal fraction and mean dwell were calculated
for each quarter. Confidence intervals (with a two-tailed alpha
corrected for the number of quarters) were determined for
each scan quarter for each brain state.

Results

Brain states without GSR

We used the elbow method to determine that a k of 4 was
appropriate for both Sessions 1 and 2 (Everitt et al., 2011).
Elbow plots are presented in Supplementary Figure S1.
The four brain-state centroids for Sessions 1 and 2 are
shown in Figure 1A. The first pair is marked by more pro-
nounced deviations from baseline in two nodes of the default
mode network (DMN).

State 1 shows activity below baseline in regions of the pos-
terior cingulate, inferior precuneus, and medial prefrontal cor-
tices (regions of the DMN) and activity above baseline in the
anterior cingulate, superior parietal regions, and the prefrontal
cortex (regions of the frontoparietal and salience networks).
State 2 showed the inverse pattern of activity to State 1. Activ-
ity in the anterior and posterior DMN nodes was above base-
line and the nodes of the frontoparietal and salience networks
showed below baseline activity. An inversion pattern was
present in the other pair of brain-state centroids as well. All
nodes in State 3 showed activity below baseline and all
nodes in State 4 showed activity above baseline.

The centroids for States 1–4 were very similar for both ses-
sions. Supplementary Table S6 displays the between-session
centroid reliability measures. Correlations were greater than
or equal to r = 0.95 for all states. This finding is similar to
the between-session spatial correlations found by Choe et al.
(2017), for connectivity defined brain states. Given the cen-
troid correlations, the brain states are clearly reliable in
terms of their spatial configuration across scanning sessions.

Box plots for the temporal fraction and mean dwell time
can be found in Supplementary Figure S3. The mean tempo-
ral fraction for each brain state is presented in Figure 2A.
Brain States 1 and 2 occurred more often than brain States
3 and 4. The Pearson correlations between Sessions 1 and
2 show test/retest reliability for the temporal fractions of
the four brains states. As shown in Table 1, all the correla-
tions were significant after applying a Bonferroni correction
for multiple tests. Brain State 1 had the weakest correlation
and the lowest ICC, whereas brain State 2 had the strongest
correlation and highest ICC. The mean absolute difference
did not differ much between states.

Figure 3A and B displays the mean transition fraction ma-
trices for Session 1 and 2. Like the mean temporal fractions
for each session, these values appear similar. However, this
apparent similarity is somewhat misleading. Figure 3C and
D shows the matrix of transition fraction correlations and
ICC values for these fractions. It is clear that there is a fair
amount of variability between sessions given the maximum
correlation magnitude of r = 0.39. Yet, the between-pair tran-
sition fractions for States 1–4, 2–4, 3–2, and 4–1 all survived
multiple comparison correction. Thus, there was some con-
sistency between scan sessions. The most striking character-
istic of the transition fraction matrices is the lack of
particular transitions. On Sessions 1 and 2, State 3 (global de-
activation) never directly transitioned to State 4 (global acti-
vation) and vice versa.

As shown in Figure 2C and Table 2, the average dwell
time was similar for each state and consistent across sessions
although less so than the temporal fraction. State 2 had the
highest correlation and ICC. State 3 had the lowest correla-
tion values. The mean absolute difference did not differ
much between states, but States 3 and 4 exhibited values
somewhat higher than States 1 and 2.

State properties across scan time

Figure 4A and B presents the mean temporal fraction for
each quarter of the scan. For both sessions, States 1 and 2 de-
crease and States 3 and 4 increase in frequency as the scan
progresses. Figure 4C and D displays the mean dwell times
for each scan quarter across sessions.
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FIG. 1. The brain-state centroids, Sessions 1 and 2 without GSR (A) and with GSR (B). Brain-state centroids are presented
in the sagittal (x = 0), axial (z = 44), and coronal (y =�16) planes. In all figures when referring to the states derived without
GSR, brain state 1 = DMN deactivation, brain state 2 = DMN activation, brain state 3 = universal deactivation, and 4 = univer-
sal activation. In all figures when referring to the states derived with GSR, brain state 1 = DMN deactivation, 2 = DMN ac-
tivation, 3 = motor deactivation, and 4 = motor activation. The scale (shown to the right of each row) is identical for all
images. DMN, default mode network; GSR, global signal regression.
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The dwell times of the DMN states (1 and 2) show a minor
downward trend and those of the universal activation/deacti-
vation states (3 and 4) increase with time. As can be seen in
Table 3, the temporal fraction significantly differed from the
null distribution for the most part during the first two scan
quarters. Temporal fractions for States 1 and 2 exceeded
the upper bounds and States 3 and 4 fell below the lower
bounds of the quarterly confidence intervals. As shown in
Table 3, despite being relatively lower than those observed
for States 3 and 4, the average dwell time for States 1 and
2 was above the upper bounds of their corresponding confi-
dence intervals for the first three quarters for both sessions.
The average dwell times for States 3 and 4 fell below the
lower bounds of their corresponding confidence intervals
for the first quarter for both sessions, and during the fourth
quarter of Session 2, State 4’s dwell time exceeded the
upper bound.

Brain states with GSR

For the sake of comparison with the analysis without
GSR, a k of 4 was chosen for the post-GSR clusters. The
set of four brain states present after the inclusion of GSR
did not include universal activation and deactivation states.
State 1 was defined by a centroid with deactivation in the
DMN especially in the two nodes showing the most pro-
nounced deviations from baseline in the analysis without
GSR and the frontoparietal/salience network regions showed
above baseline activation. State 2 showed deactivation in
the nodes of the frontoparietal and salience networks and ac-
tivation in the DMN. The magnitude of the activation/deac-
tivation in these states was greater than in their counterparts
in the analysis without GSR.

Deactivation in the motor cortex was the defining feature
of State 3. The inferior parietal lobules and the middle frontal
gyri showed above baseline activity. State 4 was marked by
activation in the motor cortex. Deactivation was present in
the inferior partial lobules and the middle frontal gyri for
this state. As can be seen in Figure 1B, the centroids
were similar between the two sessions.

Figure 2B shows the temporal fraction means for each ses-
sion. As with the original set of states, the temporal fraction
means were similar for the two sessions. The grand means of
the dwell times (Fig. 2D) were less similar between sessions
than those of the temporal fraction (Fig. 2B). Test/retest reli-
abilities as measured by the Pearson correlation (Table 4)
were moderate, with the default mode activation state (State
2) having the greatest reliability in terms of this metric. All cor-
relations survived correction for multiple comparisons. The
ICC values were similar to the Pearson correlations for the

FIG. 2. The grand mean temporal fractions (A, B) and grand mean dwell times (C, D) for the four brain states during Ses-
sions 1 and 2. (A, C) Show the data without GSR. (B, D) Show the data after GSR. The error bars represent the standard error
of the mean.

Table 1. Reliability Measures of the Temporal

Fraction for Brain States Without

Global Signal Regression

Brain state
Pearson

correlation
Mean absolute

difference
Intraclass

correlation

State 1 0.40* 0.04 0.36*
State 2 0.56* 0.04 0.54*
State 3 0.49* 0.03 0.49*
State 4 0.53* 0.03 0.53*

An asterisk denotes values that survived the Bonferroni-corrected
threshold. *p < 0.0125.
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motor states, but they were much lower for both DMN states.
The default mode deactivation state (State 1) did not have a
significant ICC. For the most part, the rankings of the mean
absolute differences corresponded to those of the ICC.

As in the absence of GSR, the transition fractions averaged
to approximately the same values each session (Fig. 5A, B). In
contrast to the output of the analysis that did not include GSR,
all possible transitions were observed (Fig. 5). Transitions to

the default mode deactivation state (State 1) were more likely
on average to come from the motor activation state (State 4).
Transitions to the default mode activation state (State 2) were
more likely on average to come from the motor activation
state (State 4) as well. A smaller share of the transitions to
the default mode states came from the motor deactivation state
(State 3) relative to its opposite. Transitions from the default
mode activation state to the default mode deactivation state
(States 2 and 1) and vice versa were rare. Transitions between
the states marked by motor activation/deactivation (States 4
and 3) were not as infrequent as those between the DMN states.

Also, the correlations between the two sessions were gen-
erally weaker than those found when GSR was not conducted
and only one (transition fraction for going from State 1 to 3)
of these correlations survived correction for multiple tests
(Fig. 5C). As with the states derived without GSR, the ICC
values for the transition fractions (Fig. 5D) were similar to
the Pearson correlations.

The average dwell times (Table 5) showed moderate
correlations between the two sessions as well. The correla-
tions for the State 1 (DMN deactivation) were very low in
magnitude and did not survive correction for multiple tests.

FIG. 3. The transition fractions for the brain states derived without GSR. Each element represents the mean transition frac-
tion, going from a state along the x-axis to a state along the y-axis, for the first (A) and second (B) sessions. Each cell in (C)
representing the Pearson correlation between sessions for a given transition fraction and each cell in (D) representing the ICC
values that survived the Bonferroni correction are marked with an asterisk. White cells show the diagonal (nontransitions) or
transitions that were not observed. ICC, intraclass correlation coefficient.

Table 2. Reliability Measures of the Average

Dwell Time for Brain States Without

Global Signal Regression

Brain state
Pearson

correlation
Mean absolute

difference
Intraclass

correlation

State 1 0.43* 1.16 0.43*
State 2 0.48* 1.27 0.47*
State 3 0.41* 1.47 0.40*
State 4 0.47* 1.44 0.45*

An asterisk denotes values that survived the Bonferroni-corrected
threshold. *p < 0.0125.
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This was paralleled by State 2 (default mode activation)
displaying the highest Pearson correlation for both mea-
sures. For average dwell time, the mean absolute differ-
ence followed the same trend as the correlations with the
State 1 having the largest absolute difference between ses-
sions and the opposite state having the lowest. For the most
part of the average dwell time, the ICC values were similar
to the values of the corresponding Pearson correlations.
The DMN deactivation state’s coefficients did not reach
significance.

When looking at the temporal fraction across the course of
the scan, the two sessions were not as consistent post-GSR, but
commonalities certainly exist between the two scan sessions.
As can be seen in Figure 6A, for Session 1, States 3 and 4

FIG. 4. Regularities in the properties of brain states without GSR across the four quarters of each scan. The grand mean
temporal fraction is shown for Session 1 (A) and Session 2 (B) for each brain state (shown as separate lines). (C, D) Show the
grand mean dwell time data organized the same way.

Table 3. The Average Quarterly Temporal Fractions

and Average Dwell Times from Both Sessions

for the Brain States Derived Without

Global Signal Regression

Brain state Quarter 1 Quarter 2 Quarter 3 Quarter 4

Session 1: Temporal fraction by scan quarter significance
State 1 *> *>
State 2 *> *>
State 3 *< *<
State 4 *< *<

Session 2: Temporal fraction by scan quarter significance
State 1 *>
State 2 *> *> *>
State 3 *< *< *<
State 4 *< *<

Session 1: Average dwell time by scan quarter significance
State 1 *> *> *>
State 2 *> *> *>
State 3 *<
State 4 *<

Session 2: Average dwell time by scan quarter significance
State 1 *> *> *>
State 2 *> *> *>
State 3 *<
State 4 *< *>

An asterisk significantly differed from what would be expected given
the corresponding surrogate-based null distribution (*p < 0.0125).

<, Signifies less than the confidence interval; >, signifies greater
than the confidence interval.

Table 4. Reliability Measures of the Temporal

Fraction for Brain States After

Global Signal Regression

Brain state
Pearson

correlation
Mean absolute

difference
Intraclass

correlation

State 1 0.43* 0.07 0.04
State 2 0.55* 0.06 0.42*
State 3 0.47* 0.06 0.43*
State 4 0.41* 0.06 0.40*

An asterisk denotes values that survived the Bonferroni-corrected
threshold. *p < 0.0125.
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(motor network states) increased in frequency across the scan
duration. The opposite was true for the DMN states. Figure 6B
clearly shows this was not the case for Session 2, but the mean
temporal fractions remained higher for the motor states
throughout the course of the scan. On average, the motor
states had somewhat higher temporal fractions than the
DMN states over most of the scan time for both sessions.

As is shown in Table 6, the temporal fraction for State 1
fell above upper bounds of its confidence intervals for Ses-
sion 1’s first two scan quarters and fell below the lower
bound for the third quarter of Session 2. State 2’s temporal
fraction fell below the confidence interval for Session 1’s
fourth quarter and above the upper bounds for the first and
third quarters of Session 2. State 3’s temporal fraction only
significantly differed from the null distribution for the first
quarter of Session 1 (below lower bound), and State 4’s tem-
poral fraction only significantly deviated from the null during
Session 2’s second quarter (above the upper bound).

The grand average dwell times are presented in Figure 6C
and D. The motor states showed minor increases in dwell
time over the course of the scan. The opposite was true of
the DMN states. Table 6 shows that when the post-GSR quar-
terly dwell time differed from the null distribution, it only
fell above the upper bound. State 1’s dwell time only reached
significance for the first two quarters of Session 1 and State
2’s dwell time only reached significance during the first quar-
ter of Session 2. The average dwell time for State 3 was sig-
nificant for the third and fourth quarters of Session 1 and the
second and fourth quarters of Session 2. State 4 was

FIG. 5. The transition fractions for the brain states derived after the application of GSR. Each element represents the mean
transition fraction, going from a state along the x-axis to a state along the y-axis, for the first (A) and second (B) sessions. Each
cell in (C) representing the Pearson correlation between sessions for a given transition fraction and each cell in (D) repre-
senting the ICC values that survived the Bonferroni correction are marked with an asterisk. White cells show the diagonal
(nontransitions) or transitions that were not observed.

Table 5. Reliability Measures of the Average

Dwell Time for Brain States After

Global Signal Regression

Brain state
Pearson

correlation
Mean absolute

difference
Intraclass

correlation

State 1 0.15 1.45 0.12
State 2 0.48* 1.25 0.46*
State 3 0.39* 1.35 0.38*
State 4 0.38* 1.30 0.38*

An asterisk denotes values that survived the Bonferroni-corrected
threshold. *p < 0.0125.
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significant for the third and fourth quarters of Session 1 and
the second and third of session 2.

Brain states and global signal

As can be seen in the Supplementary Data (see Supple-
mentary Table S1), global signal’s variance was reliable
and strongly correlated (r = 0.73) from Session 1 to 2. The
magnitude of the global signal, however, differed between
time frames from brain states without GSR on Session 1,
F(1.164, 115.262) = 694.717, p < 0.05, g2

p = 0.875, and Ses-
sion 2, F(1.096, 108.533) = 511.595, p < 0.05, g2

p = 0.838.
Post hoc paired t-tests were carried out for each scan ses-
sion. The means and standard deviations of the global signal
for each brain state can be found in the Supplementary Data
(see Supplementary Table S2) in addition to the post hoc
comparisons. State 3 had a significantly lower global signal
than the other states. State 4, on the contrary, had a higher
mean signal than the other states.

The time frames for the brain states obtained after the ap-
plication of GSR exhibited statistically significant differences
in average global signal as well. Essentially the preregression
global signal differed between brain states. The effect of brain
state on global signal was significant for Session 1, F(1.496,
148.085) = 16.339, p < 0.05, g2

p = 0.142, and Session 2,
F(1.470, 145.570) = 17.835, p < 0.05, g2

p = 0.153. The
means and standard deviations for the global signal in

FIG. 6. Regularities in the properties of brain states derived after the application of GSR across the course of a scan. The
grand mean temporal fraction is shown for Session 1 (A) and Session 2 (B) for each brain state (shown as separate lines). (C,
D) Show the grand mean dwell time data organized the same way.

Table 6. The Average Quarterly Temporal

Fractions and Average Dwell Times from Both

Sessions for the Brain States Derived

with Global Signal Regression

Brain state Quarter 1 Quarter 2 Quarter 3 Quarter 4

Session 1: Temporal fraction by scan quarter significance
State 1 *> *>
State 2 *<
State 3 *<
State 4

Session 2: Temporal fraction by scan quarter significance
State 1 *<
State 2 *> *>
State 3
State 4 *>

Session 1: Average dwell time by scan quarter significance
State 1 *> *>
State 2
State 3 *> *>
State 4 *> *>

Session 2: Average dwell time by scan quarter significance
State 1
State 2 *>
State 3 *> *>
State 4 *> *>

*p < 0.0125.
<, Signifies less than the confidence interval; >, signifies greater

than the confidence interval.
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these data and post hoc comparisons are in the Supplemen-
tary Data (see Supplementary Table S3).

Motion and brain states

Motion varied across the course of both sessions in a sys-
tematic way (motion increased over the course of the scan as
can be seen in Supplementary Figure S2). The influence of
quarter on mean FD was assessed via repeated-measures
ANOVA for each session. There was a statistically significant
effect of scan quarter for both Session 1, F(1.872, 185.281) =
9.868, p < 0.05, g2

p = 0.091, and Session 2, F(1.808,
178.980) = 5.565, p < 0.05, g2

p = 0.053. No significant corre-
lations were found between the properties of the brain states
without GSR and each scan session’s grand average FD.

For the brain states obtained with GSR, only the motor ac-
tivation state’s temporal fraction for Session 1 correlated sig-
nificantly with the grand average FD (r = 0.26, p < 0.01). State
3, the motion deactivation state is correlated with across the
scan motion during Session 2 (r = 0.29, p < 0.01). The aver-
age dwell time for the motor activation state was positively
correlated with the grand average FD for both sessions (Ses-
sion 1: r = 0.27, p < 0.01; Session 2: r = 0.28, p < 0.01).

Brain states obtained without GSR also differed in average
motion. A statistically significant effect of brain state on aver-
age motion (grand average FD for a brain state) was present on
Session 1, F(2.741, 271.368) = 33.107, p < 0.05, g2

p = 0.251,
and Session 2, F(2.289, 226.595) = 28.730, p < 0.05, g2

p =
0.225. Means, standard deviations, and post hoc comparisons
can be found in the Supplementary Data (Descriptive statistics
for states derived without GSR are found in Supplementary
Table S4 and descriptive statistics for states derived with
GSR are found in Supplementary Table S5). State 3 showed
significantly lower average motion, and State 4 showed signif-
icantly higher average motion than the other states.

Because the distribution of average motion showed signs
of deviation from normality for all brain states especially
on Session 2, a nonparametric alternative to the single-
factor, within-subject ANOVA, the Friedman test, was per-
formed and yielded the same pattern of results. In addition,
a Wilcoxon signed-ranked test produced the same pattern of
significant results as the paired t tests (see Supplementary
Data). The brain states detected after the application of
GSR did not differ in average motion on Session 1,
F(2.707, 267.990) = 2.250, p = 0.089, g2

p = 0.022, and Session
2, F(2.428, 240.358) = 1.813, p = 0.157, g2

p = 0.018.

Discussion

Overview of results

Considered together, these findings demonstrate that
brain-state properties are reliable across sessions conducted
on separate days. The reliability of these measures implies
that brain-state metrics have the potential to predict behav-
ioral factors. The properties of brain states were shown to
be reliable with and without GSR. The temporal fraction,
or the frequency of occurrence of each brain state, exhibits
the strongest reliability, and the average dwell time (i.e., du-
ration of each brain state) is the next most reliable measure
over time. The transition fraction (i.e., the number of transi-
tions from one state to another over all transitions to that
state) was reliable without GSR but not after GSR.

Changes in the temporal fraction across the course of the
scan were also consistent across sessions. States 1 and 2
showed decreasing temporal fractions and dwell time within
each session. These metrics increased over the same period
in States 3 and 4. Given the consistency of this pattern across
sessions, numerous observations of significant deviations
from the surrogate null distributions, and the lack of this pat-
tern in the surrogate data, these changes over time likely re-
flect an underlying temporal dependence in the brain-state
properties. In addition, significant differences in the effect
of global signal were found between brain states. Differences
in the centroids of the states derived before and after the ap-
plication of GSR suggest that global signal is tied to the com-
position of brain states.

Interpretation of results

We used both the Pearson correlation coefficient and the
ICC to show that dynamic connectivity measures are reliable
across sessions. Both measures demonstrated reliability, how-
ever, they were not identical. State 1 had ICC values much
lower than the Pearson correlation for both the temporal frac-
tion and mean dwell time after GSR. These discrepancies likely
stem from the fact that the Pearson correlation coefficient is a
measure of association and the ICC is a measure of absolute
agreement. State 2 after GSR showed large mean temporal
fraction differences between sessions and relatively large dis-
crepancies between the correlation and ICC measures.

The Pearson correlation is not sensitive to the differences in
the temporal fractions between sessions, as a measure of asso-
ciation it is sensitive to the consistency of the relative standing
of individuals between sessions. These observations illustrate
why it is important to use both measures of relative agreement
and absolute agreement when assessing reliability.

After denoising, GSR leads to a minor attenuation of reli-
ability but major changes in the detected patterns of activa-
tion. While motion, as measured by the mean FD across
the entire time course, did not correlate consistently with
any of the brain states except State 4 (the motor activation
state). The State 4’s dwell time and temporal fraction were
positively related to grand average motion.

Considering that it is related to motion throughout the
course of the scan, the motor activation state may reflect the
neural impetus of motion, but there was a lack of a significant
difference in motion between time frames belonging to the
motor activation state and time frames belonging to other
states derived after the application of GSR. The sluggish na-
ture of the blood oxygen level–dependent (BOLD) response
likely accounts for the lack of motion differences between
the time frames of the post-GSR states and the correlation be-
tween overall motion and the motor activation state.

There was also an interaction between motion and global
signal. Motion before the application of GSR differed between
brain states. The universal activation/deactivation states were
marked by relatively high and low motion, respectively. The
time frames that belonged to these states were also associated
with high and low global signal and the average motion of post-
GSR brain states did not differ. Global signal did not correlate
with motion, the average correlation across subjects between
the two standing at r = 0.01 for both scan sessions. This is
not surprising considering the incorporation of motion param-
eters in the denoising procedure (Salimi-Khorshidi et al.,
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2014). Nevertheless, without GSR, statistically significant dif-
ferences in motion are found between brain states, but states
derived after GSR do not show significant differences in mo-
tion and this suggests that motion-related information remains
in the post-denoising global signal.

Motion’s influence on the brain states cannot be ruled out
given the persistent and complex nature of motion’s effects
(Power et al., 2014). A portion of the effect of motion on
brain state may be reflected in the global signal but it is un-
likely the primary factor driving state differentiation, given
the large difference in the effect size of brain state on motion
(Session 1: g2

p = 0.251; Session 2: g2
p = 0.225) and global

signal (Session 1: g2
p = 0.875; Session 2: g2

p = 0.838).
The global signal is widely believed to contain both nuisance

components and functionally relevant neural components (Liu
et al., 2017; Murphy and Fox, 2017). Considering that a denois-
ing procedure was applied to this data set before the implemen-
tation of GSR, it is possible that the global signal captured in
this analysis was a manifestation of factors with less weight
in the global signal present in most studies (Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014). Changes in arousal over
the course of scanning sessions might be one such factor.

It is likely that the global signal in the present data is more
related to a factor such as arousal than in other studies due to
the denoising procedure, which mitigates the influence of
numerous factors of minimal to no behavioral relevance. A
growing line of research has documented a negative relation-
ship between global signal and measures of vigilance or
arousal (Chang et al., 2016; Goldman et al., 2002; Liu
et al., 2012; Olbrich et al., 2009; Wong et al., 2013, 2016).
For example, in macaque monkeys, the expression of a func-
tional magnetic resonance imaging (fMRI) arousal template
closely follows electrophysiological arousal such that peri-
ods positively correlated with arousal show widespread
cortical deactivation and those negatively correlated with
arousal show widespread cortical activation (Chang et al.,
2016).

Given the literature on arousal templates, States 3 and 4,
which show whole-brain activity changes (Fig. 1), may be
a manifestation of a neuromodulatory process that contrib-
utes to the global signal and is implicated in arousal. How-
ever, despite the similarity between these states and the
BOLD signal patterns associated with high and low arousal,
the arousal literature typically shows that activation in the
thalamus is inversely related to the neocortex (Chang et al.,
2016), and this pattern did not appear in the current analysis
of the HCP data. Nevertheless, evidence suggests there are a
progressive decrease in arousal during monotonic stimula-
tion (Baumann et al., 1968; Richter et al., 2005) and an in-
crease in the probability of sleep as the resting-state scan
continues (Tagliazucchi and Laufs, 2014). The temporal
fraction and mean dwell time measures in States 3 and 4 (uni-
versal deactivation/activation) may relate to these changes in
arousal.

Potential limitations

The current analyses were based on a set of 90 ROIs that
have been shown to produce similar clustering results as
voxel-based analyses in other data (Chen et al., 2015).
Nevertheless, one cannot be completely sure the results
here are not specific, at least to some extent, to the ROIs

used. In addition, k means clustering has its own inherent
limitations. It ignores regional differences in the lag of the
BOLD signal (Handwerker, et al., 2004). This factor could
lead to patterns of BOLD coactivation that do not reflect
the underlying pattern of neural coactivation. Another chal-
lenge is that brain states may occur at time scales faster
than the temporal resolution of fMRI (Khanna et al., 2015).
In addition, clustering of individual time frames does not
measure extended spatiotemporal patterns. Such patterns
may have been missed by the time frame clustering approach
(Majeed, et al., 2011; Yousefi et al., 2018).

Despite the limitations of the k-means clustering algo-
rithm, it was used here because k-means is a common ap-
proach for measuring brain states and was therefore a good
choice to test brain state reliability. However, alternative
methods such as hierarchical clustering might reveal embed-
ded clusters that may be missed by k-means clustering
(Ward, 1963). For example, during periods of dwelling
within an overarching cluster, it might be the case that the
start of the period tends to be grouped into one of the clus-
ter’s two subclusters and the second half of the dwelling pe-
riods is more frequently classified into the other subcluster.
This is an area for future research.

Future directions

The lack of universal activation/deactivation states for the
GSR analysis was predicable but more needs to be learned
about these universal activation/deactivation states (c.f.,
Yousefi et al., 2018). The upward trend in motion across
time corresponds with the progressive increase in the tempo-
ral fraction observed for these two states, but the progressive
increase in the temporal fraction and mean dwell time could
be the result of changes in arousal. Also, information rele-
vant to behavior and mental states might be contained in se-
quences of brain states. The universal activation/deactivation
states might be stages of an overarching pattern of state tran-
sitions considering that they never directly transition to each
other. The post-GSR states infrequently transitioned directly
between opposites further suggesting that the brain states
might be stages of some sort of cycle.

Other researchers have produced evidence of state se-
quences in the HCP resting-state data set (Chen et al.,
2016). Chen and colleagues used a Gaussian hidden Markov
model to capture a brain-state switching process. The authors
reported nine reproducible brain states consisting of combina-
tions of activated and deactivated regions. Many of the states
resembled the canonical intrinsic brain networks. Two states
that stood out were defined by across the brain activation and
deactivation. The most interesting findings concerned the
brain-state transitions. States were likely to transition to a
baseline state, and there was a tendency to transition from a
default mode state to an attention network state (Chen
et al., 2016).

Future research should focus on determining brain-state se-
quences and comparing them to patterns detected by other
means (Chen et al., 2016; Majeed et al., 2011). The universal
activation/deactivation states we found resemble the states
reported by Chen and colleagues (2016), BOLD signal
templates indicative of arousal, and stages of quasiperiodic
patterns in the BOLD signal (Chang et al., 2016; Chen
et al., 2016; Majeed et al., 2011). The regularities associated
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with the brain states we found, not to mention their parallels
to states derived by other researchers using different meth-
ods, mandate further investigation into the nature of these
states.

Conclusions

Prior research suggests that fluctuations in the correlation
structure of BOLD signal might be attributed to head motion
and level of arousal (Laumann et al., 2017). The results pre-
sented here are generally consistent with these results.
Arousal is physiologically meaningful and its relationship
to patterns of coactivation and with global signal deserves
more investigation. In addition, the reliability metrics, for
the temporal fraction and the dwell time, were generally
greater than or roughly equal to those reported for the
dwell times of brain states derived using sliding windows
(Choe et al., 2017). Furthermore, as with static functional
connectivity, reliability was attenuated by GSR. However,
post-GSR, temporal fractions and dwell times remained reli-
able (Liao et al., 2013; Varikuti et al., 2017; Zuo et al., 2013).

The brain states identified here are similar in terms of their
spatial composition to those measured with other techniques
(e.g., Chen et al., 2016; Choe et al., 2017) and are reliable
across experimental sessions. The application of GSR is detri-
mental to the reliability of the brain-state properties but does
not catastrophically affect the measures’ reliability. Much re-
mains to be learned about the role of global signal in these
brain states, but changes in arousal may be a key factor.

Global signal has an effect on brain-state composition, and
motion-related information seems to be present in this post-
denoising global signal. Nevertheless, the similarity of the
universal activation/deactivation states to templates of
arousal and the relatively low frequency of occurrence that
these states exhibit early in the scanning sessions suggest
that arousal fluctuations have a role in defining and driving
these states. We believe that these explanations are not mu-
tually exclusive and that neither can be ruled out. Finally, the
approach used here has the potential to capture reoccurring
patterns of brain activation in resting-state data without mak-
ing many assumptions regarding the nature of brain-state se-
quences and thus has the potential to lead to future important
discoveries.
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