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Abstract 

There is ample evidence from basic research in neuroscience of the importance of local cortico-

cortical networks. Millimetric resolution is achievable with current functional MRI (fMRI) scanners 

and sequences, and consequently a number of “local” activity similarity measures have been 

defined to describe patterns of segregation and integration at this spatial scale. We have introduced 

the use of Iso-Distant local Average Correlation (IDAC), easily defined as the average fMRI 

temporal correlation of a given voxel with other voxels placed at increasingly separated iso-distant 

intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be 

statistically compared using parametric multivariate statistics. Furthermore, by using RGB color-

coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can 

also be displayed as multi-distance IDAC maps. We applied IDAC analysis to a sample of 41 

subjects scanned under two different conditions, a resting state and an auditory-visual continuous 

stimulation. Multi-distance IDAC mapping was able to discriminate between gross anatomo-

functional cortical areas and, moreover, was sensitive to modulation between the two brain 

conditions in areas known to activate and de-activate during audio-visual tasks. Unlike previous 

fMRI local similarity measures already in use, our approach draws special attention to the 

continuous smooth pattern of local functional connectivity. 
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List of Abbreviations 

 

ACF: Autocorrelation Function 

ASL: Arterial Spin Labelling 

Cohe-ReHo: Coherence Regional Homogeneity 

EPI: Echo-Planar Imaging 

fMRI: Functional Magnetic Resonance Imaging 

IDAC: Iso-Distant Average Correlation 

KCC: Kendall’s Coefficient of Concordance 

MRI: Magnetic Resonance Imaging 

ReHo: Regional Homogeneity 
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Introduction 

Local activity integration is one of the most important organizational principles of the brain in 

vertebrates (Abeles, 1982; Felleman and Van Essen, 2011; Tononi, 1994), prevalent at a neuron’s 

scale as well as at larger scales (Burkhalter, 2016). Cortico-cortical axon collaterals are known to 

innervate neuronal column units stretching several millimeters away in the cortex mantle (Amir et 

al., 1993; Varela et al., 2001). Excitatory (or inhibitory) events do not occur in a spatially isolated 

manner; instead, they involve a regional neighborhood whose coupling gradually decays as 

recordings are taken farther away from the activity source
 
(Grinvald et al, 2015; Liang et al, 2015) .  

 

For a neuroimaging researcher, the question arises whether local activity coupling or local 

functional connectivity can be accessed via fMRI. Earlier fMRI studies have already demonstrated 

that it is possible to extract neurally significant results from local similarity measures and have 

applied them to hundreds of clinical studies. Coming from graph theory, Tomasi and Volkow 

(2010) and Sepulcre et al. (2010) proposed the use of local connectivity degree mapping, which 

basically counts the number of local temporal correlations above a certain significant threshold 

within a local neighborhood of a given voxel.  Another popular local similarity measure proposed 

by Zang et al. (2004) is regional homogeneity (ReHo), which uses the Kendall’s coefficient of 

concordance (KCC) (Baumgartner et al., 1999; Kendall and Gibbons, 1990), and, to a lesser degree, 

Cohe-Reho (Liu et al., 2010), which uses the frequency coherence to determine the temporal 

similarity of a given voxel with its adjacent voxels. The number of clinical publications indexed in 

the Pubmed database using ReHo is today greater than 200, a figure that will give the reader an idea 

of the growing interest in the use of local similarity measures. In such studies, local similarity 

measures have been used to characterize functional asymmetries of the human brain (Tomasi and 

Volkow, 2012a), the effects of task performance (Tomasi et al., 2014), gender differences (Xu et 
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al., 2015), aging (Tomasi and Volkow, 2012b; Bernier et al., 2017), genetic disorders (Pujol et al., 

2015), and, above all, neurological and psychiatric disorders (Liu et al., 2008; Tomasi and Volkow, 

2012c; Pujol et al., 2014b). 

 

Most local similarity measures use predefined neighborhood sizes, whether it is as an arbitrary 

distance setting in terms of a neighborhood radius in mm (Sepulcre et al., 2010), as a fixed number 

of adjacent voxels (Zang et al., 2004), or as a varying number of adjacent voxels determined by 

some kind of searching algorithm (Tomasi and Volkow, 2010). However, in all of them, the 

definition of what is local and what is not remains arbitrary and dychotomic. Our present work is 

precisely motivated by the notion that, by limiting the concept of locality to one “optimal” threshold 

distance, we risk losing the capacity of describing the rich smooth spatial gradient of local fMRI 

correlations. 

 

To characterize such radial gradient voxelwise, we defined the concept of Iso-Distant Average 

Correlation (IDACs), which is the average temporal correlation of one voxel with all its 

neighboring voxels placed at different spatial lags. Several IDAC values computed from increasing 

distance lags generate IDAC curves, which we used extensively in this study. We hypothesized that 

IDAC curves would be able to capture the smooth spatial structure of functional connectivity with 

relation to distance.  

 

IDAC values can easily be plotted, compared with multivariate statistics as Hotelling’s T
2
 tests 

(Anderson, 2003; Worsley et al., 2004), and even represented as multi-distance brain maps (see 

Methods). We further hypothesized that IDAC values would be able to capture differences between 

adjacent histological areas as well as different brain functional states. Like other local similarity 

measures, IDAC would allow us to compare continuous activity conditions without the requirement 

of a changing (baseline-activation) paradigm.   
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To test the sensitivity of IDAC, we applied it to a sample of 41 subjects during an eyes-closed 

resting state versus an auditory-visual continuous presentation. We used the resting state to assess 

the tissue specificity of the measure by generating group-average multi-distance IDAC maps, 

thanks to the display strategy of RGB color overlays that allowed us to visualize several distances 

jointly. Finally, we showed that IDAC is sensitive to modulation by comparing the resting state to 

the stimulus presentation.  

 

Materials and Methods 

Study Population 

A total of 41 participants completed the imaging protocol (mean age of 36.2 years, SD 6.0 and 

range 32 years, 27 males). Individuals with relevant medical or neurologic symptoms, substance 

abuse or psychiatric illness and subjects undergoing medical treatment were not considered eligible 

for inclusion in the study. The study was conducted according to the principles expressed in the 

Declaration of Helsinki and was approved by the Clinical Research Ethical Committee of the Parc 

de Salut Mar of Barcelona. Written informed consent for fMRI assessment and subsequent analyses 

was obtained from every participant. 

 

MRI acquisition 

1.5 Tesla Signa Excite system (General Electric, Milwaukee, WI, USA) equipped with an eight-

channel phased-array head coil and single-shot echo-planar imaging (EPI) software was used. The 

imaging protocol involved the following sequences: 

 

Anatomical 3D. High-resolution anatomical images were obtained using an axial T1-weighted 

three-dimensional fast spoiled gradient inversion recovery-prepared sequence. A total of 134 

http://www.sciencedirect.com.sire.ub.edu/science/article/pii/S1053811914005424%2523200018125
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contiguous slices were acquired with repetition time 11.9 ms; echo time 4.2 ms; flip angle 15
o
; field 

of view 30 cm; 256 x 256 pixel matrix; slice thickness 1.2 mm. 

 

Functional MRI. The functional MRI sequence consisted of gradient recalled acquisition in the 

steady state with repetition time 2000 ms; echo time 50 ms; pulse angle 90º; field of view 24 cm; 64 

x 64-pixel matrix; slice thickness 4 mm (inter-slice gap, 1.5 mm). Twenty-two interleaved slices 

were prescribed parallel to the anterior-posterior commissure line covering the whole-brain. Two 6-

min continuous scans with 180 whole-brain EPI volumes were acquired for each participant. The 

first four (additional) images in each run were discarded to allow magnetization to reach 

equilibrium. The first scan was acquired in the resting state for which the participants were 

instructed to relax, stay awake and lie still without moving, while keeping their eyes closed 

throughout. The second scan involved sustained visual-auditory stimuli presentation. The 

participants were shown a video composed of slides with happy faces and music showing a rapid 

tempo (Beethoven’s 6
th

 Symphony “Pastoral”) using MRI compatible goggles and headphones 

(VisuaStim Digital, Resonance Technology, USA). 

 

Image pre-processing  

Anatomical and functional images were all visually inspected before analysis by a trained operator 

to detect possible acquisition artifacts. Functional MRI images were slice-time corrected and 

realigned. The resulting affine realignment parameters were used for scrubbing, i.e. discarding 

motion-affected volumes (Power et al., 2014). For each subject, inter-frame motion measurements 

(Pujol et al., 2014a) served as an index of data quality to flag volumes of suspect quality across the 

run. At time points with inter-frame motion > 0.2 mm, the corresponding volume, the immediately 

preceding and the succeeding two volumes were all discarded. Using this procedure, the average 

number of censored volumes per acquisition was 4% (SD, 9.9%). EPI volumes were then co-

registered to their anatomical images with an affine transformation using Statistical Parametric 
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Mapping (SPM). A warping matrix was also estimated for every subject to match a group template 

created from the 3D anatomical individual acquisitions and then to the Montreal Neurological 

Institute (MNI) space using DARTEL normalization (Ashburner, 2007).  

 

Analyses were carried out on every subject’s native space after EPI volumes were all realigned to 

their mean. EPI volumes were re-sliced to 3x3x3 mm. Estimated DARTEL normalizations to the 

MNI space mentioned above were applied to the IDAC results (see below) to enable group 

inferences.  

 

Analyses were conducted in a gray matter mask split into left and right hemispheres, so that no 

adjacent voxels from the medial regions of one hemisphere would be locally associated with those 

from the other hemisphere. The two hemispheres were brought back together once the IDAC values 

had been calculated. The left and right hemisphere gray matter masks were obtained by setting a 

threshold of p>0.4 on the gray matter probability maps obtained from the DARTEL group template.  

As analyses were carried out in every subject’s native space, the template masks were back-

transformed with the inverse estimated normalization. We preferred applying an inverse 

normalization to the group-level gray matter masks as opposed to defining individual masks in the 

native gray matter segmentation to avoid important edge effects. 

 

We repeated the analysis using a whole-brain mask that was not split into separate hemispheres and 

that included CSF and white matter tissue to assess the impact of the masking choice. The very few 

differences we found are reported in the supplementary material.  

 

Analyses were also repeated with and without isotropic smoothing on the EPI volumes prior to the 

computation of IDAC values voxelwise. When applied, the smoothing involved convolving the 

image with a 4x4x4mm
3
 full width at half maximum (FWHM) Gaussian kernel. The results 
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reported in the main text are obtained with unsmoothed EPIs, but results using smoothed EPIs are 

reported in the Supplementary Material. 

 

Filtering and de-noising of data. All fMRI time series were band-passed with a Discrete Cosine 

Transform (DCT) filter letting through frequencies in the 0.01-0.1Hz interval. We regressed all time 

series on the 6 rigid body realignment parameters and their 6 first-order derivatives, and on the 

average white matter and CSF signal extracted from the native tissue masks. To assess the 

robustness of our analyses to the selected de-noising strategy, we repeated them introducing 

changes in the nuisance design matrix. Small or moderate changes were found, not compromising 

the major clusters of our results (see Supplementary Material). 

 

Definition of Iso-Distant Average Correlation (IDAC) 

We defined the concept of “Iso-Distant Average Correlation” (IDAC) to describe the pattern of 

correlation decay in the close vicinity of a voxel. IDACi(h) was consequently defined as the average 

temporal correlation of voxel i with all the voxels located at a given distance lag h. fMRI data sets 

being a discrete sample, any distance lag h must be necessarily transformed into a discrete iso-

distant interval Hk=[hk, hk+1), with hk being a set of successively increasing distances covering the 

whole vicinity of a given voxel (see Figure 1). 

 

The set of iso-distant intervals Hk were selected so that temporal correlations were mainly positive, 

decreased monotonically and in which horizontal axon collaterals were considered likely to form 

local networks. For the present study, we chose the distances: 0, 5, 10, 15, …, 30mm. These 7 

distances defined 7-1=6 iso-distant intervals, with constant thicknesses but increasing number of 

voxels (see Figure 1-Right).  
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IDAC values could have been calculated for farther iso-distant intervals as well as within thinner 

intervals, providing a richer characterization of IDAC curves (but also noisier ones). However, 

beyond a 30mm-radius, negative correlations might also begin to be prevalent and give way to 

cancellation phenomena. 

 

We first computed a correlation matrix C of Pearson coefficients comparing the BOLD time course 

of all the voxels in our study mask with each other's. 

 

𝐶𝑖,𝑗 =
∑ (𝑌𝑖,𝑘 − 𝑌𝑖̅) · (𝑌𝑗,𝑘 − 𝑌𝑗̅)
𝑀
𝑘=1

√∑ (𝑌𝑖,𝑘 − 𝑌𝑖̅)
2𝑀

𝑘=1 · √∑ (𝑌𝑗,𝑘 − 𝑌𝑗̅)
2𝑀

𝑘=1

 

 

where M is the length of the BOLD time series and i and j index all the voxels entering our study 

mask. We then transformed the Pearson correlation matrix C into a gaussian distributed z-score 

correlation matrix Z by applying a Fisher transform. 

 

𝑍𝑖,𝑗 =
√𝑀 − 3

2
· ln⁡(

1 + 𝐶𝑖,𝑗

1 − 𝐶𝑖,𝑗
) 

 

We obtained then IDACi(hk) by averaging the correlation coefficients of voxel i with all the voxels j 

belonging to the interval Hk.  

 

𝐼𝐷𝐴𝐶𝑖(ℎ𝑘) =
∑ 𝑍𝑖,𝑗𝑗𝜖𝐻𝑘,𝑖

𝑁𝑘,𝑖
 

 

In short, IDAC values are defined as the mean correlation z-score between one voxel’s fMRI signal 

and the fMRI signal of all the voxels within the iso-distant interval Hk,i. Note that, for a given 
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distance lag k, the number of voxels within the concentric iso-distant interval Nk,i is not necessarily 

the same for every voxel i due to the edge effects of the study mask. 

 

Of course, as the distance lag hk increases, IDACi(hk) will drop, defining a decreasing curve in 

average local correlations. Figure 1 (left) shows the spatial distribution of the correlation z-scores 

within a range of 30mm to the origin coordinate (“seed”) for a subject in its native space. As we can 

see, the correlation decays almost monotonically as the distance lag is increased.  

 

Descriptive and statistical interpretation of IDAC 

IDAC curves can largely benefit from a representation where more than one distance lag is plotted 

or mapped at the same time.  

 

Group-averaged IDAC Plots. As is usually done with correlograms, we plotted the correlation 

coefficient on the ordinate and the spatial lag on the abscissa. Group-averaged IDAC plots were 

straightforwardly generated by averaging IDAC values across subjects voxelwise. The group 

variance of every IDAC value was also used to shade an interval confidence for the group-averaged 

values. Comparing group-averaged IDAC plots from different brain areas allowed us to visually 

inspect those distances at which local functional connectivity varies the most between two 

anatomical regions (Figure 4). Likewise, the plot of different IDAC curves together also helped us 

visualize the differences in functional connectivity that one same brain area present during different 

functional states (applied in Figure 6 and 7). 

 

Group-averaged Multi-distance IDAC maps. It is also possible to generate multi-distance IDAC 

maps obtained from the overlay of IDAC values from three different distance intervals using an 

RGB color codification. RGB color channels permit the display of three IDAC values obtained 

from different distance lags at the same time. In all the figures in our study (Figures 3, 4, 6 and 7), 
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we chose RED for interval 5-10mm, GREEN for 15-20mm and BLUE for 25-30mm. The rationale 

behind mixing colors is that overlapping primary colors will produce secondary and tertiary colors, 

each of which characteristic of a different IDAC curve shape. It is true that RGB color coding 

grossly simplifies the information in IDAC curves down to a three-dimensional vector but it offers 

the insight of capturing the anatomical distribution of the measure.  

 

To establish a color-coding scale that was not exceedingly sensitive to outliers, we used for every 

RGB color channel a maximum color saturation for values above the 90th percentile and a 

minimum color saturation (i.e. black) for values below the 10th percentile. Percentiles were 

calculated independently for every distance lag and considering the distribution of the group-

averaged IDAC values over all the voxels entering the study mask.   

 

We produced a group-averaged multi-distance IDAC map from the resting-state acquisition of 41 

control subjects and displayed it on 3D and surface renderings (see Figures 2, 3 and 4).  

 

Multivariate tests for comparing group-level IDAC curves.  

The comparison of our IDAC curves was conducted with the natural extension of univariate 

Student’s t-tests, which are multivariate Hotelling’s T
2 

tests. Our IDAC curves were parametrized 

by six values obtained from six iso-distant intervals, so that IDAC= (IDAC(h1), IDAC(h2),…, 

IDAC(h6)) was a random vector, that was assumed to satisfy all the conditions for a Hotelling T
2
-

test (Anderson, 1986). These conditions are exactly the same assumptions as the ones required in a 

univariate Student’s t-test with the sole difference that here the random variable is not a scalar, but a 

vector sampled from a multivariate gaussian population.  
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We used a paired Hotelling’s T
2 

test to compare the audio-visual and the rest condition voxelwise 

(Figure 6 and 7). Additionally, a paired Hotelling’s T
2  

test was also used to compare IDAC curves 

obtained from adjacent brain regions (Figure 4). 

 

IDAC Hotelling’s T
2
 Maps. When we compared between the audio-visual and rest condition, 

paired Hotelling’s T
2
 tests were conducted voxelwise, and therefore could be represented as 

statistical brain maps (see Figure 5).  

 

Hotelling’s T
2
 maps, like other statistical maps, require a correction for multiple comparisons given 

that every voxel is a different statistical test strongly dependent on the tests of the neighboring 

voxels. We addressed this issue with a Montecarlo simulation of the cluster size distribution of 

significant voxels conducted with the AFNI 3dClustSim function. Our Montecarlo simulation was 

based on the assumption that the final Hotelling’s T
2
 statistical map had a spatial auto-

correlation function (ACF) given by a Gaussian function.  

 

The simulation parameters used in our Montecarlo simulation were: 45,653 voxels in the simulation 

mask, cluster forming probability threshold of p<0.005, with estimated FWHM of 9.0x9.7x9.4mm
3
. 

The above procedure resulted in a threshold cluster size of 52 voxels (1.4cm
3
), corresponding to a 

corrected significance level of 0.05. Such results are valid for the Hotelling’s T
2
 map of Figure 5, 

but each sensitivity analyses repeated in the Supplementary Material required its own simulation 

whose details are reported there. 

 

Multi-distance paired t-student maps 

Hotelling’s T
2
 statistical maps can provide us with a tool to detect areas where local connectivity is 

significantly different under different conditions, but unfortunately they can only test an omnibus 

hypothesis and cannot reveal us the precise distance lags or the sign where these differences occur. 
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A way to address this is to generate repeated Student’s t-maps using IDAC values from different 

distance lags and display them together using again an RGB color-code.  

 

After we had produced the paired Hotelling’s T
2
 map, we generated three different paired t-test 

maps comparing IDAC values from intervals 5-10mm, 15-20mm and 25-30mm, and overlaid their 

results on different RGB color channels (see Figure 6 and 7). Considering this procedure as a post-

hoc explanatory analysis, we masked the multi-distance t-test maps with the significant clusters 

from the Hotelling’s T
2 
map results. The RGB color-coding convention was chosen the same as for 

group-averaged multi-distance IDAC maps.  

 

Paired t-student profile plots 

Multi-distance t-student maps are necessarily limited to three distance lags, three being the number 

of RGB colors that we can meaningfully mix up. However, we can further generate paired t-student 

profile plots for particular regions or voxels. In this case, we are not limited to only three distances, 

but we can extent the calculation to all the distance lags of our IDAC curves. T-student profile plots 

can help us determine the distance lags at which local similarity differences occur as well as the 

sign of these differences, in an even more detailed way than multi-distance t-student maps can, 

despite the clear disadvantage that here we lose all the precious anatomical information we had in 

multi-distance t-maps. In this study, we took advantage of paired t-student profile plots to compare 

between different anatomical regions during one same condition (Figure 4) as well as to compare 

between different conditions within one same anatomical region (Figure 6 and 7). We generally 

plotted these paired t-test profile plots on the same x-axis as the two group-averaged IDAC curves 

being compared (see Figures 4, 6 and 7). 

 

Results 

Group-average IDAC multi-distance maps 
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IDAC values neatly discriminated between gray and white matter tissue. Unsurprisingly, gray 

matter IDAC showed much higher values at all distance lags than those extracted in white matter 

regions. In addition to that, IDAC values were able to reveal further anatomical distinctions within 

the gray matter tissue, provided that IDAC values from different distance lags were considered 

together.  

The overlay of three IDAC values belonging to increasingly distant lags using RGB color coding 

gave place to an eloquent cortical segmentation of the brain into gross anatomo-functional brain 

regions. Figure 2 shows the group-averaged IDAC maps generated from three different distance 

lags (5-10mm, 15-20mm and 25-30mm) displayed separately and then overlaid together (multi-

distance). Figure 3 renders the same group-average multi-distance IDAC map on a cortical surface. 

 

Statistical comparison of cortical locations according to their IDAC 

Using the exploratory multi-distance IDAC map of Figure 2 and 3, we selected six pairs of ROIs 

that were adjacent to one another (all ROIs compared were less than 2cm apart), that belonged to 

distinct regions (Talairach and Tournoux, 1988), and that multi-distance color mapping was able to 

differentiate. Then, we compared the selected pairs using a paired Hotelling’s T2 test. Figure 4 

illustrates the ROI’s locations and the statistical significance of the differences. 

 

Additionally, in three out of the six comparisons in Figure 4, we generated group-average IDAC 

plots and paired t-Student profile plots to determine which distances were mainly responsible for 

the differences. For example, sensorimotor and premotor ROIs turned out to vary mostly within the 

5-20mm proximity range; the posterior and the anterior insula within the 10-25mm range; whilst the 

anterior cingulate cortex and the paracingulate cortex at more peripheral local ranges, 25-30mm.   

 

Comparison of different brain functional states 
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We also compared IDAC, voxelwise, from a continuous eyes-closed resting state with a continuous 

audio-visual presentation. Figure 5 shows the paired Hotelling’s T
2
 statistical map testing potential 

differences in IDAC values between the two conditions. Significant differences in IDAC curves 

mainly involved bilateral areas and large clusters of the visual cortex, auditory cortex, the anterior 

insula, posterior areas of the default mode network and lateral frontal areas (Table 1). 

 

Like an F statistic in the context of an ANOVA, significant Hotelling’s T
2
 clusters cannot 

distinguish between the sign of differences. Furthermore, it cannot inform us either of the range of 

distances responsible for the differences. Differences could arise from higher values in certain 

distance lags and lower values in other distance lags (if plotted, IDAC curves would, in such cases, 

cross in a conspicuous way). 

 

To address this question, we generated multi-distance one tailed t-student maps whose results were 

restricted (masked) within significant clusters from the Hotelling’s T
2
 analyses. Red, green and blue 

color channels were used for 5-10mm, 15-20mm and 25-30mm distance lags respectively (see 

METHODS). Figure 6 shows that IDAC values during the visual-auditory stimulation significantly 

increased in the visual cortex, the fusiform gyrus and the auditory cortex. By contrast, they 

decreased in the posterior cingulate cortex, anterior insula, opercular region and the lateral-ventral 

aspect of the frontal cortex (Figure 7).  

 

Such results strongly suggest that IDAC values are indeed modulated by evoked brain activity. The 

maps largely coincide, although they are clearly not identical, with traditional 

activation/deactivation maps in face presentation tasks (Fusar-Poli et al., 2009; Pujol et al., 2009). 

However, quite unexpectedly, some frontal areas which had been reported in the literature to 

activate during a face visual task, were here recorded as IDAC decreases (Figure 7). Such frontal 
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decreases in local functional connectivity particularly involve medium and far distance lags (15-

30mm).  

 

The multi-distance mapping technique using RGB color coding also allowed us to spot which local 

distances were responsible for the differences. Figure 6 shows that increases in the innermost range 

of functional connectivity (colors red and yellow) involved areas closer to the primary visual cortex, 

together with the center of the auditory cortex. At further distance ranges (coded in white, cyan and 

blue), increases in IDAC values covered extrastriate visual areas and the fusiform gyrus. Arguably, 

the fact that the most associative areas in the visual and auditory cortex are mainly modulated in the 

long ranges of local connectivity also seems biologically plausible. 

 

Discussion 

In an effort to draw attention to the biological significance of the spatial structure of local activity 

similarities in fMRI data, we proposed a multivariate measure, called IDAC, that derives from the 

popular concept of spatial correlogram. IDAC computation voxelwise is easy to reproduce by other 

research teams, computationally little intensive, and easy to visualize either in plots or displayed as 

multi-distance maps. 

 

An IDAC curve is generated by the average fMRI temporal correlation of one given voxel with its 

surrounding voxels at different spatial lags. Given that fMRI data sets are not continuous, IDAC 

curves must be generated by sampling a vector whose length depends on the number of iso-distant 

intervals defined. We hypothesized that different brain areas would have characteristic IDAC 

curves and that these curves would be functionally modulated whenever the region’s local 

connectivity changed. 

 



18 

 

IDAC curves can be compared statistically, voxelwise or region to region, using multivariate 

statistics. In this study, we used a paired Hotelling’s T
2 

test to compare different values from IDAC 

curves jointly between a continuous stimulation and a resting state and, also, to compare IDAC 

values between two same regions during the same condition. In general, for single contrast tests, the 

natural test statistic would still be a Hotelling’s T
2
, whereas the multivariate analogue of an F-

statistic would be a Wilks’s Λ (Worsley et al., 2004). Once multivariate statistical mapping has 

established those brain areas that show significant changes in local functional connectivity, post-hoc 

multi-distance IDAC mapping, though limited to the display of only three distance lags, is a display 

strategy that is able to provide anatomically rich representations of the dynamics of local functional 

connectivity at different local scales. 

 

Our first important result on applying IDAC to a testing set of 41 acquisitions was that IDAC values 

belonging to different distance lags, when displayed together in multi-distance maps using RGB 

color coding, were able to parcel the brain cortex into regions arguably resembling those we can 

find in traditional anatomo-functional brain atlases. For example, the visual cortex is distinguished 

from the temporal and parietal lobes, and perirolandic cortex from premotor and prefrontal areas 

(Figure 3). In the occipital lobe, the dominant pattern involves high local connectivity at all local 

distance ranges (typically white in the maps), whereas the angular (Brodmann area, BA39) and 

supramarginal gyri (BA40) of the inferior parietal lobule (Talairach and Tournoux, 1988) are both 

mostly connected at short and medium local distances (yellow). See Supplementary Figure 5 for 

more detail. Remarkably, the yellow pattern was also found in the caudal aspect of the posterior 

cingulate cortex. In the typical long-distance (brain-scale) functional connectivity mapping, 

although both the core posterior cingulate cortex and the angular gyrus are strongly coupled in the 

context of the default mode network, the network does not include the supramarginal gyrus 

(Harrison et al., 2008). 
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Therefore, IDAC mapping has not a complete match with a single anatomical, histological or 

functional brain parcellation, but the correspondence is partial and mixed. This notion is also 

illustrated in the primary motor area and primary somatosensory area that appear to be relatively 

highly connected at all local distances (Supplementary Figure 5), although both areas show very 

distinct cytoarchitectonic features (Garey, 2006). However, the motor cortex and the somatosensory 

cortex have notable similarities in terms of myeloarchitecture, with high cortical myelin content 

(Glasser et al., 2014).  

 

Of note, by estimating differences between local and distant degree connectivity, Sepulcre et al. 

(2010) also obtained a degree of brain parcellation into major anatomo-functional regions. 

Interestingly, as in our maps, the motor cortex was jointly identified with the somatosensory cortex 

and the angular gyri with the supramarginal gyri. 

  

Our second important result was that local functional connectivity described with IDAC is not a 

static characteristic of the brain tissue. We showed that IDAC curves can be critically modulated in 

relevant areas with changes in experimentally controlled brain states. When we compared an eyes-

closed resting state versus a visual-auditory continuous stimulation, we discovered that a number of 

well-known activation-related areas (Fusar-Poli et al., 2009) showed significant increases in local 

correlations. At the innermost distance lags, we found increases in core visual areas, parts of the 

fusiform and the center of the auditory cortex; at more peripheral local regions, higher-level visual 

areas also came into play (fusiform gyrus and extrastriate areas). Such differential modulation of 

local functional connectivity between low- and high-level primary areas seems to us biologically 

convincing and suggests that the technique, by introducing a smooth spatial description of the 

integration phenomenon, introduces new possibilities of understanding that are not available in 

previous measures of local similarity. 
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We also found important decreases during the audio-visual stimulation in areas known to deactivate 

during attention-demanding tasks, mainly the posterior cingulate cortex as part of the default mode 

network (DMN). We found that this is particularly conspicuous at the shortest ranges (R<20mm) of 

local functional connectivity. A less predictable result was to find other areas, not directly 

associated with the traditional DMN anatomy, which also showed decreased local connectivity 

during stimulation. These areas mainly involved parts of the lateral frontal cortex, anterior insula 

and opercula bilaterally. Here, IDAC values were significantly lower at medium and long ranges 

(15-30mm). This finding is particularly challenging to our interpretation because some of these 

areas have been reported to “activate” in visual bloc task experiments (Fusar-Poli et al., 2009). 

Hence, our study shows that it is possible for a cortical area that is known to activate also to 

decrease its local functional connectivity at certain critical distances. This should not come as a 

surprise, since already in the seminal paper by Zang et al. (2004) where ReHo, perhaps the most 

popular measure of local similarity today, was first proposed, it was already found that local 

similarities increased ipsi-laterally during a finger-tapping task, instead of contra-laterally as was 

expected from traditional univariate activation analyses. Thus, IDAC mapping cannot merely be 

taken as a surrogate for activation experiments. 

 

Local similarity analyses are well-suited to studying psychological and neurological conditions such 

as sustained emotional states, moods, hormone or drug level effects that are difficult to test with 

activation/deactivation analyses, because of the necessity for the experimenter to force the 

participant to change from one condition to another at a fast pace (<30s). 

 

The underlying biological phenomena responsible for changes in local activity similarities remain 

partially unknown. A number of studies have pointed out that the strength of local correlations may 

be associated with average regional metabolic activity, as can be accessed indirectly with arterial 

spin labelling (ASL) MRI (Liang et al., 2013) or, more directly, with PET (Aiello et al., 2015, 
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Nugent et al., 2015). In particular, Liang et al. (2013) found a strong coupling between blood supply 

and brain functional topology, which, furthermore, could be modulated in response to task 

demands. Others have preferred to interpret it from the connectivity paradigm (Rubinov and Sporns, 

2010; Sporns, 2013; Tomasi et al., 2010). Both assumptions may be appropriate and local fMRI 

signal integration may have to do with both local connectivity and local coactivation. Indeed, we 

know that at a microscopic level, a spatially broad intra-columnar and cortico-cortical synapsing 

cascade is responsible for amplification, modulation and processing of a single input signaling.  

 

We reported results obtained with the least possible processing sophistication to make IDAC 

mapping an appealing technique to other laboratories. A more sophisticated processing pipeline 

may perhaps be pertinent in future developments. Some important processing variations that were 

likely to affect IDAC values, such as image smoothing, use of gray matter masking, proportional 

scaling of IDAC values at a subject level, etc. were also appraised. These results and the few 

differences they generated are reported in the Supplementary Material. 

 

Being also concerned by the robustness of IDAC maps to differences in acquisition resolution, we 

also calculated group-averaged IDAC maps on high resolution fMRI data (2x2x2 and 3x3x3mm
3
). 

We used the resting-state data of a subsample of the publicly available NKI-Rockland sample, after 

matching it by sample size, age and sex to our study sample. Almost imperceptible differences were 

found between multi-distance IDAC maps from the two resolutions and relatively few differences 

between those from our sample and the validation sample. The results are amply described in the 

Supplementary Material. 

 

A processing variation that could be explored in the future is the effect of using more realistic non-

Euclidian “cortical” iso-distant intervals. This could be achieved, for instance, by defining geodesic 

distances over the cortex surface or using a closest path search algorithm confined to every 
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participant’s native gray matter mask. However, a word of caution is necessary. The use of non-

Euclidian metrics raises additional problems: non-Euclidian distances might indeed be more 

suitable to model the spatial autocorrelation of data arising from neural origin but would unfairly 

treat the spatial autocorrelation due to smoothed noise (the main contributor to IDAC measures), 

which is assumed to be relatively isotropic and not related to cortical distances. 

 

Another concept worth mentioning is that IDAC does not account for the eccentricity of 

correlations with neighboring voxels along the different orientation axes. IDAC computation 

requires the definition of iso-distant intervals that do not take into account the fact that correlations 

in these intervals will not in general have the same strength along different reference axes. In other 

words, the 3D gradient of local correlations to a center point (a seed) is anisotropic. Taking this 

anisotropy into account could open up a new and interesting field of analysis. 

 

Conclusion 

We showed that the smooth spatial structure of local fMRI signal correlations as it can be described 

with IDAC is a promising source of biologically relevant information. IDAC curves can be viewed 

as the signature of a given brain location under a certain brain condition.  IDAC curves can be 

compared and studied, even voxelwise, using the natural generalizations of univariate parametric 

statistics to their multivariate homologues as we did by replacing a t-student by a Hotelling’s T
2
. 

Furthermore, post-hoc multi-distance IDAC mapping, although it can only test and display results 

combining three distance lags at a time, are rich representations of the dynamics of local functional 

connectivity the form of statistical maps. 
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Figures 

 

 

 

Figure 1. fMRI Temporal correlations between one voxel (“seed”) and its neighboring 

peripheries present a characteristic decreasing spatial gradient. 

LEFT: Fisher-transformed z-scores of a correlation map with a “seed” voxel in the visual area from 

a single subject. Voxel resolution is 3x3x3mm and results are constrained to distance lags hk<30mm 

and within the subject’s native gray-matter mask (blue shade). RIGHT: Six different Iso-distant 

intervals as they are used to calculate different IDAC values in our study. 
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Figure 2. Formation of a group-averaged multi-distance IDAC map. 

ABOVE: single color IDAC maps obtained from three different iso-distant intervals:  RED for 

distances 5-10mm, GREEN for 15-20mm, BLUE for 25-30mm. IDAC values are calculated 

voxelwise as the group average of 41 acquisitions during a resting state. Color bar ranges are set 

using the histogram of the group-averaged IDAC values over all the voxels entering the study mask 

independently for each distance lag. BELLOW-LEFT: percentile color bar limits and diagram of 

RGB mixtures. BELLOW-RIGHT: result of overlapping the single-colored three IDAC maps from 

the top row. Note that all IDAC maps shown in this figure were generated without gray-matter 

masking to show that white matter and CSF tissue present much lower IDAC values at all distance 

lags than gray matter and therefore are shown in dark (<10%).    
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Figure 3. Group-averaged multi-distance IDAC map projected onto a cortical surface. RED 

for r=5-10mm, GREEN for r=15-20mm, BLUE for r=25-30mm. The color bar range is set using the 

histogram of the group-averaged IDAC values over all the voxels entering the study mask 

independently for each distance lag as in Figure 2.  
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Figure 4. Comparison of IDAC curves from adjacent anatomical regions. Group-average multi-

distance IDAC maps with pairs of ROIs indicated with red and blue dots. Color bar ranges are set 

using IDAC percentiles (see Figures 2 and 3). A), B) and C): adjacent locations compared with 

paired Hotelling’s T
2
 tests. D), E) and F): further adjacent locations compared with multivariate 

statistics complemented by group-averaged IDAC curves and t-student profile plots. Red IDAC 

curves are extracted from red dot ROIs and blue curves from blue dot ROIs. The shaded area in the 

plots represent the group mean 95% confidence interval for every group-averaged IDAC value 

calculated for N=41 subjects. Dashed green lines are paired t-student profile plots comparing the 

two IDAC curves at every distance lag. Note that for N=41 subjects, t>2.7 corresponds to a 

p<0.005.   
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Figure 5. Omnibus comparison of IDAC values,  audio-visual vs. rest 

Paired Hotelling’s T
2
 map comparing the audio-visual stimulation with the rest condition. Results 

are thresholded at cluster-size corrected significance level of 0.05 and include voxels where IDAC 

curves have significantly different shapes between the two conditions. Such differences may 

include both increases and decreases and may involve different distance lags of connectivity for one 

same voxel. Differences mainly involve the visual and auditory cortices, posterior areas of the 

default mode network, operculum, anterior insulae and frontal cortex. 
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Figure 6. MULTI-DISTANCE t-MAP COMPARING STIMULATION > RESTING.  

TOP: Multi-distance paired t-map comparing IDAC values from AUDIO-VISUAL 

STIMULATION > REST, calculated at three different distance lags. Being a post-hoc analysis, 

results were masked with significant clusters from the paired Hotelling’s T
2
 maps (see Figure 5). 

Visual and auditory cortices show significant increases in functional connectivity within a short 

neighborhood, which is indicated by red and yellow (yellow combines red and green colors); 

extrastriate cortex and parts of the fusiform gyrus tend to present differences at all distances 

(white). BOTTOM: IDAC curves with their corresponding paired t-test profile plots from ROIs A 

and B indicated on the map above. Coordinates in Montreal Neurological Institute (MNI) space. 
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Figure 7. MULTI-DISTANCE t-MAP COMPARING STIMULATION < RESTING. 

TOP: Multi-distance paired t-map comparing STIMULATION < RESTING of IDAC values 

calculated at three different distances. Being a post-hoc analysis, results were masked with 

significant clusters from the paired Hotelling’s T
2
 maps (see Figure 5). BOTTOM: IDAC curves 

with their corresponding paired t-test profile plots from ROIs A and B indicated on the map above. 

The curves allow us to interpret why RGB coloring is important. Blue areas correspond to 

significant lower connectivity at the farthest local peripheries (A) whereas yellow correspond to 

short and medium local peripheries (B). 
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Table 1. Comparison of different brain functional states.   

Cluster location Cluster size 

(voxels) 

Cluster size 

corrected 

p-value 

Peak 

Hotelling’s T
2
 

MNI 

Coordinates 

Visual Cortex 4065 <1.0e-06 24.02 -32, -84, 13 

PCC & Precuneus 4065* <1.0e-06 14.3 -2, -52, 28 

Right Lateral Frontal Cortex 747 <1.0e-06 12.1 46, 9, 27 

Right Anterior Insula 747* <1.0e-06 11.6 42, 13, 0 

Left Lateral Frontal Cortex 697 <1.0e-06 10.5 -45, 40, 20 

Left Anterior Insula 697* <1.0e-06 15.7 -45, 5, 18 

Left Auditory Cortex 364 <1.0e-06 12.05 -50, -18, 6 

Right Auditory Cortex 249 <1.0e-06 8.73 68, -22, 6 

Left Supramarginal and Parietal 

Cortex 
303 <1.0e-06 7.6 -30, -58, 48 

Right Supramarginal Cortex 94 <0.001 8.5 55, -32, 44 

Left Orbito-Frontal Cortex 189 <1.0e-06 7.3 -12, 30, -18 

Right Orbito-Frontal Cortex 53 <0.05 5.6 9, 54, -18 

Right Angular Cortex 146 <0.0001 7.8 49, -54, 21 

Left Angular Cortex 68 <0.02 8.5 -52, -59, 21 

Right Anterior Cingulate Cortex 59 <0.05 5.8 7, 4, 52 

Left Superior Frontal Cortex 70 <0.005 7.9 -19, 41, 33 

x y z, coordinates (mm) given in Montreal Neurological Institute (MNI) space. Statistics at 

corrected threshold PFWE < 0.05 estimated using Monte Carlo simulations. *Same cluster. PCC, 

posterior cingulate cortex. 

 


