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Abstract

Rapid advances in neuroimaging and network science have produced powerful tools and measures to appreciate
human brain organization at multiple spatial and temporal scales. It is now possible to obtain increasingly mean-
ingful representations of whole-brain structural and functional brain networks and to formally assess macroscale
principles of network topology. In addition to its utility in characterizing healthy brain organization, individual
variability, and life span-related changes, there is high promise of network neuroscience for the conceptualiza-
tion and, ultimately, management of brain disorders. In the current review, we argue for a science of the human
brain that, while strongly embracing macroscale connectomics, also recommends awareness of brain properties
derived from meso- and microscale resolutions. Such features include MRI markers of tissue microstructure,
local functional properties, as well as information from nonimaging domains, including cellular, genetic, or
chemical data. Integrating these measures with connectome models promises to better define the individual el-
ements that constitute large-scale networks, and clarify the notion of connection strength among them. By enrich-
ing the description of large-scale networks, this approach may improve our understanding of fundamental
principles of healthy brain organization. Notably, it may also better define the substrate of prevalent brain dis-
orders, including stroke, autism, as well as drug-resistant epilepsies that are each characterized by intriguing in-
teractions between local anomalies and network-level perturbations.
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Introduction

NEUROSCIENCE IS MOVING beyond a modular apprehen-
sion of brain organization, which emphasizes the rele-
vance of individual regions, toward an approach that
prioritizes the wiring and interactions between areas
(Schroter et al., 2017; van den Heuvel et al., 2015). In
the study of the healthy human brain, the last decade has
witnessed major advances in characterizing large-scale
structural and functional networks, and in relating network
descriptions to interindividual variability, brain develop-
ment and aging, skill learning and plasticity, as well as

cognition and affect (Misic and Sporns, 2016). While the
shift from region-centric to network-based analysis is wel-
come and truly exciting, the increased focus toward high-
level network models should not undermine relevant infor-
mation embedded in regional structural and functional
properties as well as local circuits.

This review argues for a description of the human brain
that, while embracing network-level paradigms, should
also take advantage of the increasingly detailed information
on individual nodes and edges that can be gathered with
modern neuroimaging. Such an approach offers a rich de-
scription of the graph’s individual elements, including
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microstructural properties, local structural markup, and the
embedding of a region within large-scale networks. Address-
ing interactions between these domains may offer utility in
understanding fundamental principles of brain organization
and structure/function correspondence. Moreover, fusing
these different levels of analyses may serve the study of
brain disorders, in which anomalies may vary in location,
size, and which have been shown to differentially affect
whole-brain networks.

In what follows, we overview contributions of network
neuroscience to the understanding of macroscale brain or-
ganization, developmental and aging-related processes,
and the study of individual variations. We briefly outline
parallel advances in high-resolution neuroimaging of local
morphology, tissue microstructure, and function. Bridging
the gap between network-level descriptions and these in-
creasingly detailed markers of local properties promises a
comprehensive characterization of the brain [see Fig. 1;
for additional reviews, see Bullmore and Sporns (2009);
Stam (2014)]. Furthermore, recent years have witnessed in-
creased efforts to enrich neuroimaging analysis with noni-
maging data, including information on gene expression,
protein synthesis, and cytoarchitecture. In addition to dis-
cussing the promise of such multiscale paradigms to study
healthy brains, we illustrate the potential of microstructure-
informed connectomics in the study of diseases. We spe-
cifically focus on three broad classes of disorders, namely
acquired lesions (such as strokes), neurodevelopmental dis-
orders mainly characterized by network-level imbalances
(such as autism), and finally, drug-resistant epilepsies that
show an intriguing interplay between focal lesions and
network-level anomalies.

Modeling Brain Networks

Over the past decade, the neuroimaging and neuroscience
communities have witnessed a paradigm shift away from the
focus on single regions and toward models that emphasize
connectivity (Bassett and Bullmore, 2009; Bassett and
Sporns, 2017; Bullmore and Sporns, 2009; Craddock et al.,
2013). Increased availability of high-definition and multi-
modal neuroimaging, the maturation of data coregistration
and integration processing pipelines, as well as advances in
complex systems analytics have all contributed to an explo-
sion of interest in the field. With respect to network-level
approximations, diffusion MRI tractography has made it
possible to approximate fiber tracts and derive structural
connectomes in individual subjects (Jbabdi et al., 2015).
In addition, analysis of statistical dependencies of func-
tional MRI (fMRI) signals between different regions, espe-
cially in “‘resting’ brains not engaged by any specific and
controlled task, has been used to target multiple intrinsic
functional networks using a single, preferably long acquisi-
tion (Biswal et al., 1995; Fox et al., 2005; Friston, 1994).
Finally, structural MRI covariance analysis can tap into
patterns of coordinated maturational trajectories in popula-
tions (Evans, 2013) and, more recently, in single individu-
als (Seidlitz et al., 2017).

The field of network science has offered formal analytics
to parameterize whole-brain networks. Notable examples in-
clude decomposing the whole brain into a set of smaller com-
munities (Girvan and Newman, 2002; Meunier et al., 2009;
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Newman and Girvan, 2004) and mapping network properties
back to individual nodes, for example, in terms of overall
connectivity degree or regional routes of communication ef-
ficiency (Sporns et al., 2007; van den Heuvel and Sporns,
2013). In parallel, graph-theoretical metrics can capture mac-
roscale topology derived from fMRI (He et al., 2009; Honey
et al., 2009; Salvador et al., 2005; Watts and Strogatz, 1998),
diffusion MRI (Gong et al., 2009; Hagmann et al., 2008;
Iturria-Medina et al., 2007), and MRI covariance analysis
(Bassett et al., 2008; Chen et al., 2008; He et al., 2007), to-
gether with metabolic uptake data (Hu et al., 2015) as well
as meta-analytical activations (Crossley et al., 2013). Collec-
tively, these studies have shown that the human brain is nei-
ther organized purely randomly nor regularly, but rather
according to principles that incorporate high clustering
within segregated communities together with short paths be-
tween them. This small-world organization enables func-
tional specialization and integration (Sporns et al., 2004),
and closely relates to modularity, that is, network decompos-
ability (Bullmore and Sporns, 2009). Modularity may offer
adaptability and robustness to changing environmental con-
ditions (Meunier et al., 2010), help to segregate externally
oriented from internal processing (Vidaurre et al., 2017),
and promote diverse functional dynamics (Gu et al., 2017;
Kaiser and Hilgetag, 2010). Brain networks also seem to ad-
here to principles of hierarchy; connectomes have been sub-
divided into core and peripheral regions, a finding sometimes
dubbed the rich-club principle, where a set of high-degree
nodes are excessively interconnected (van den Heuvel and
Sporns, 2011). Interestingly, the rich-club subnetworks
seem to accumulate most long-range connections, indicating
their role as a backbone for cross-module connectivity (van
den Heuvel and Sporns, 2011) and functional diversity (Sen-
den et al., 2014). By counting connections of a region (or al-
ternatively the number of efficient paths passing through),
network properties can be mapped back to individual
nodes (Buckner et al., 2009; Hagmann et al., 2008; Zuo
et al., 2012). Such “‘centrality mapping’’ can help to visual-
ize connectome organization and accordingly identify hub
regions that play key roles in network organization, commu-
nication, and dynamics. As an illustration of how different
levels of network organization can be integrated, centrality
mapping techniques can be enriched by modularity infor-
mation, classifying hubs into those with provincial roles
(mediating primarily connectivity within modules) versus
connector hubs mediating between-module cross talk
(Sporns et al., 2007). Conversely, it is also possible to sim-
ulate random failures as well as targeted attacks on specific
nodes or edges to assess the relevance of specific network
elements on global topology and community decomposition
(He et al., 2008).

In addition to providing descriptors of human brain net-
work organization, connectome properties may be useful
markers of interindividual variability, life span- and
experience-related changes, structure/function relationships,
and ultimately behavior. Indeed, despite consistency of core
network features across subjects (e.g., small-word organiza-
tion, rich-club backbone, the layout of large-scale communi-
ties), there is also considerable variability across individuals
(Smith et al., 2015; Tavor et al., 2016) and even within a
given subject over time (Poldrack et al., 2015). Functional
connectivity mapping has indeed demonstrated that some
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FIG. 1. Enriched connectomics. Multiscale connectomics integrate various aspects of brain properties located along a con-
tinuum between microscale (gene expression, cytoarchitecture), mesoscale (MRI-derived markers of intracortical micro-
structure and morphology), and macroscale topology (small-worldness, core-periphery, modularity, connectome
gradients). Leveraging parallel advances in high-resolution neuroimaging, detailed markers of local properties can be
used to inform structural and functional network models, and vice versa. Fusing these different levels of analyses may
shed light on fundamental principles of structure/function correspondence and unravel a more precise characterization of
healthy and diseased brain organization.
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brain regions show more consistent connectivity profiles
across individuals, while others have high variability (Muel-
ler et al., 2013). Variable regions are often found in ‘‘multi-
modal association’ cortices and, interestingly, correspond to
those having undergone marked evolutionary expansion
(Mueller et al., 2013). In the study of individual differences,
recent work predicted subject identity using connectome
“fingerprints” (Finn et al., 2015; Miranda-Dominguez
et al., 2014; Xia and He, 2017), while others have used mul-
tivariate techniques to associate connectomes with cognitive/
affective phenotypes (Smith et al., 2015; Tavor et al., 2016).
These results illustrate significant promise in connectome-
level studies to move beyond population-level inferences to
inferences about single subjects, exploiting the uniqueness
in network organization and the relationship to behavior.
Accordingly, network neuroscience approaches have begun
to address macroscopic plasticity as a result of experience
and skill learning (Bassett and Mattar, 2017; Telesford
et al., 2017). Finally, with ongoing efforts to make large-
scale data sets available (Van Essen et al., 2012), often al-
ready in preprocessed and curated form, findings in young
adults are increasingly complemented by targeted connec-
tome analyses across the life span, covering developing
(Satterthwaite et al., 2014) as well as aging cohorts (Zhou
et al., 2012).

Enriching Connectomics with Local Information

In addition to the adoption of connectomics as one of the
prevailing paradigms to study large-scale organization, there
is also promise as well as need in refining the information
from local and microstructural scales (Weiskopf et al.,
2015). By guiding and enriching the definition of nodes
and edges, the building blocks of connectomes, advances
in microscale definition may improve biological validity of
connectome models. Moreover, they lend novel opportuni-
ties in addressing interactions between microstructural and
macroscale properties and ultimately increase the explana-
tory power of connectomics to address mechanistic as well
as generative principles of brain organization.

At the scale of individual nodes, there is already consider-
able diversity in definition, a situation relating to the long-
standing debate of what exactly constitutes a meaningful
element or brain region. Postmortem anatomy has empha-
sized cytoarchitectural criteria, including lamination and cel-
lular composition, for parcellations (Amunts et al., 2007).
Alternative approaches build parcellations from in vivo mea-
sures directly. Features previously studied include ana-
tomical landmarks and sulco-gyral patterns derived from
cortical surface morphometry, and increasingly detailed
markers of tissue microstructure obtained from quantitative
MRI, including measurement of T1 relaxation times that
may reflect intracortical myelin content (Waehnert et al.,
2016). Structural markers are complemented with task-
based functional activations as well as resting-state func-
tional or structural connectivity (Eickhoff et al., 2015). Lev-
eraging the Human Connectome Project data set, a recent
study integrated spatial patterns in resting-state connectivity,
task-based activations, image intensity, and cortical thick-
ness measurements to parcellate the neocortex into 360
areas (Glasser et al., 2016). Although initial parcellations
were generated at the group level, the authors notably de-
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vised an algorithm that parcellates an individual brain in na-
tive space, sidestepping potential problems relating to spatial
normalization and between-subject averaging in a stereo-
taxic space (Braga and Buckner, 2017). Using spectral clus-
tering of diffusion tractograms, another group identified 210
cortical/subcortical parcels (Fan et al., 2016), emphasizing
that parcellations based on different input features may not
necessarily converge toward equivalent solutions. Stability
across algorithm choices and spatial scales will become in-
creasingly relevant, as will be the definition of formal criteria
to fuse methods. Recently, parcellations incorporated formal
consensus procedures to maximize consistency across mo-
dalities, subjects, and data sets (Kelly et al., 2012). The con-
tinued move toward quantitative neuroimaging and increased
access to nonimaging data in MRI-compatible reference
frames provides new possibilities for parcellation enrichment
and validation.

As for the nodes, the characterization of network edges has
benefited from developments in MRI acquisition and model-
ing. Moving beyond early studies that were predominantly
based on binary graphs, analytics is increasingly incorporat-
ing edge weighting when calculating network degrees, clus-
tering, and efficiency (Rubinov and Sporns, 2010). Structural
connectome studies based on diffusion MRI tractography
have, for example, initially weighted edge strength through
streamline counts, connectivity probabilities, and diffusion
tensor metrics such as fractional anisotropy. In recent
years, a microstructure-informed connectomic framework
has become increasingly adopted, through which weights
are derived from quantitative MRI markers of myelin, axon
diameter (Assaf et al., 2013), and g-ratios (Mancini et al.,
2017). In contrast to binary edge definitions or a weighting
based on algorithm-dependent parameters, such as the num-
ber of streamlines, incorporating microstructural parameters
into connectomics may provide more direct measures of con-
duction velocity (Mancini et al., 2017). Furthermore, the use
of more sophisticated diffusion models resolving crossing fi-
bers may reduce the number of false positive/negative con-
nections, ultimately resulting in a better map of white
matter connectivity (Jbabdi et al., 2015; Maier-Hein et al.,
2017). Finally, enhancing the definition of structural connec-
tions will be of vital use in building predictive models of
structure/function relationships (Daducci et al., 2016) and
also in determining appropriate measures of functional con-
nectivity itself (Buckner et al., 2013).

In addition to leveraging increasingly detailed data on in-
dividual nodes and edges based on advanced neuroimaging
technique, there have been emerging efforts to enrich analyses
with neurobiological information that is not neuroimaging de-
rived. Examples include the Allen Institute transcriptional
gene atlas (Hawrylycz et al., 2012; Sunkin et al., 2013), re-
cently cross-referenced against morphological (Whitaker
et al., 2016), functional connectivity (Krienen et al., 2016),
and structural connectivity data (Romme et al., 2017).
Other studies have related in vivo connectomics with atlas-
based information on regional cytoarchitecture (Hilgetag
et al., 2016) or chemoarchitecture (Turk et al., 2016). Inter-
estingly, regions with similar microscale properties seem to
preferentially interconnect, supporting homophily as an im-
portant generative principle of brain network formation (Bet-
zel and Bassett, 2017; Betzel et al., 2016). By guiding and
enriching the definition of nodes and edges, such multiscale
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advances may improve the biological validity of connectome
representations and further increase the explanatory power of
connectomics.

The Interplay of Local and Distributed Disturbances
in Brain Disorders

In addition to its promise in typifying healthy brain organiza-
tion, emerging work supports the potential of microstructure-
enriched connectomics in the study of prevalent brain disorders.
Three broad classes of disorders where local- and network-
level anomalies interact in intricate ways are stroke, autism,
and drug-resistant epilepsies. Stroke was chosen as an exam-
ple of an acquired focal lesion that may lead to widespread
network perturbations. Autism spectrum disorders (ASD)
were selected as neurodevelopmental conditions primarily
associated with connectome miswiring, but generally with-
out consistently localizable substrate (i.e., lesional finding
or brain abnormality typically detectable on an MRI).
Finally, drug-resistant epilepsies often show a complex in-
terplay between a focal lesion and widespread network
anomalies, likely due to interacting developmental- and
disease-related processes.

Stroke

Ischemic stroke is a leading cause of adult disability, with
as many as 40% of stroke survivors classified as chronically
disabled, being dependent on others for activities of daily liv-
ing (Krueger et al., 2015). In addition to functional impair-
ments, costs related to poststroke rehabilitation and
treatment of morbidity and mortality further contribute to
its economic burden worldwide (Mittmann et al., 2012;
Rosamond et al., 2008).

Current models of stroke recovery based on functional and
structural connectivity analyses continue to explain more and
more of the variance in motor and cognitive recovery
(Krueger et al., 2015; Stinear et al., 2012). Nonetheless,
these have not been fully translated into clinical practice,
that is, stroke survivors are not yet stratified into different
subpopulations based on their residual network profile, and
rehabilitation interventions continue to use a ‘‘one-size-fits-
all”” approach (Ward, 2017). A key impediment to the devel-
opment of effective, individualized treatment may lie in the
lack of a clear understanding of the dynamic interactions be-
tween local/regional circuit properties and macroscale func-
tional reconfiguration that actively promote regeneration and
recovery both at the lesion site and in remote areas after
stroke. Previous studies have suggested that investigation
of the underlying response that mediates the spread of pa-
thology after an infarct is likely to yield a better understand-
ing of the mechanisms that drive brain reorganization after
an infarct (Carrera and Tononi, 2014; Rossini et al., 2003).
This concept dates back to 1914 when Constantin von Mon-
akow coined the term ‘‘diaschisis,”” referring to a transient
metabolic or functional dysfunction in areas that are remote
to the primary site of injury (von Monakow, 1914). Although
diaschisis is a well-established phenomenon after stroke, net-
work analyses have become instrumental to further extend
this concept. Resting-state fMRI experiments in patients
with heterogeneous lesions, for instance, have shown that
brain anomalies often extend beyond the primary lesion
site but remain nevertheless constrained and predictable
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from connectivity patterns (Nomura et al., 2010). Likewise,
computational models have shown that focal lesions have
widespread dynamical consequences on system-wide inte-
grative processes (Lariviere et al., 2018), which are influ-
enced, to some extent, by the topological characteristics of
the areas harboring the lesion (Honey and Sporns, 2008).

The connectivity between brain regions depends on axonal
projections within white matter, a compartment highly sus-
ceptible to ischemic injury (Matute et al., 2013). Indeed,
the white matter is less vascularized than gray matter (Fisher,
2011) and its anaerobic resistance declines with aging
(Hamner et al., 2011). Furthermore, neuronal loss leads to
Wallerian degeneration of axonal projections and contributes
to disconnections of spared cortical areas, thus producing ad-
ditional clinical deficits (Jones et al., 2013; Kuhn et al.,
1989; Thomalla et al., 2005). The degree of disconnection
is not always appreciable on MRI and brain damage is
often underestimated, leading to less accurate models of
poststroke impairments and potential for recovery.

Considering that a structural lesion resulting from a stroke
may disturb the balance between local and large-scale con-
nectivity, the concept of diaschisis can now be understood
with respect to three categories: focal diaschisis (local
changes in metabolism and neural activity), connectional
diaschisis (changes between nodes of a same network), and
connectome diaschisis (changes affecting the structural or
functional connectome, including disconnections and reorgani-
zations of subnetworks) (Carrera and Tononi, 2014). While the
former often contributes predominantly to clinical deficits ob-
served after subcortical lesions (e.g., thalamic strokes), net-
work alterations seen in ‘“‘connectional’’ and ‘‘connectomal’
diaschisis appear to relate more consistently to clinical findings
when lesions affect cortical areas.

Strikingly, investigations of multiscale, multimodal, or
cross-network interactions in stroke research have so far
been largely neglected. Influences of the microstructural
state of the corticospinal tract on large-scale anomalies and
motor performance have only been investigated sporadically
(Borich et al., 2014; Carter et al., 2010; Schulz et al., 2015;
Wu et al., 2015). One study, for instance, reported that inter-
hemispheric functional connectivity significantly related to
motor impairment only in patients with intact corticospinal
tract, whereas those with greater damage did not show an as-
sociation (Carter et al., 2012). While the interplay between
structure and function at specific time points during stroke
recovery has not yet been systematically studied, understand-
ing cross-network interactions may be critical to move reha-
bilitation research forward. In fact, data based on microscale
properties and macroscale organization may provide a ratio-
nale for patient stratification in addition to providing a neuro-
biological basis for rehabilitation interventions that target the
optimal circuits for effective, individually tailored treat-
ments. More specifically, network modeling could provide
important information about the impact of focal lesions on
overall network profiles. These models may extend standard
connectomic frameworks, which generally focus on edge as-
sociations between two regions, by also incorporating indi-
rect routes of information spread through a third region. In
other words, information spread can be modeled as a cascad-
ing process through multiple paths and walks. A recent study
leveraged these models based on structural connectome in-
formation in stroke, and demonstrated gains in predicting
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INTEGRATING REGIONAL, CONNECTIVITY AND DYNAMIC INFORMATION IN STROKE
A CONNECTOME DYNAMICS
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FIG. 2. Dynamic network modeling in stroke (Del Gaizo et al., 2017). (A) The poststroke lesion overlaid in blue. The su-
perior temporal gyrus is seeded (red). Based on the weight of structural connectivity between the superior temporal gyrus and
the whole-brain connectome, there is a spreading cascade of network involvement (step-wise progression shown by arrows).
The dynamic model is an individual map of network activation with the color bar illustrating the normalized number of steps
taken to reach each region. (B) Brain regions (left) and connections (right) color coded according to their weighted influence
on the connectivity model used to predict severity of aphasia (assessed using WAB-AQ). Findings suggest that ensemble
models, which combined information on regional damage, connectome link weights, and connectivity dynamics, can better
predict aphasia severity (WAB-AQ) compared with unimodal approaches. The histograms illustrate how often the ensemble
method was superior to the unimodal approaches. The x-axes in the histograms denote the difference between the Pearson
correlation coefficient obtained from the ensemble method minus the one obtained from the unimodal approach: regional
damage (‘“‘regions’’) and connectome links (*‘connections’’). A value of >0 indicates a higher Pearson correlation coefficient
in the ensemble method. WAB-AQ, Western Aphasia Battery aphasia quotient.

the degree of language impairments in individual patients
[Fig. 2; Del Gaizo et al. (2017)]. Importantly, while many
connections are lost in strokes, indirect pathways may still
exist and may represent viable neurobiological targets to pro-
mote recovery.

Autism

ASD is among the most common developmental condi-
tions, affecting currently around 1 in 70 children. With an
onset in early childhood, autism spectrum conditions mani-
fest with rather heterogeneous behavioral symptoms, but
generally, deficits in communication and social cognition,
often with repetitive behaviors/interests as well as sensory
anomalies. While frequently assessed with neuroimaging,
the literature has so far provided a rather complex pattern
of alterations when comparing cohorts with autism with con-

trols, dampening optimism that a single and consistent brain
pattern can be identified.

At the level of brain structure, cortical thickness and
voxel-based morphometric findings have indeed suggested
both increases in gray matter, often in frontal and temporal
regions (Ecker et al., 2013a; Valk et al., 2015; van Rooij
et al., 2017), and also decreases (Wallace et al., 2010), null
results (Haar et al., 2014), or mixed patterns (Ecker et al.,
2012). Findings seem to vary with age of the cohorts studied,
with increases in thickness being more consistently found in
group-level analysis of children than in adults (Valk et al.,
2015), suggesting an interaction between the disease and de-
velopmental trajectories (Raznahan et al., 2010; Smith et al.,
2016). Earlier observations using MRI volumetry have indi-
cated aberrant brain growth in early age and altered maturation
in late childhood and adolescence (Courchesne et al., 2003).
Likewise, histological reports have pointed to anomalies in

>

FIG. 3. Findings in ASD showing interactions between local- and network-level anomalies. (A) Top: Findings from a pre-
vious combined diffusion MRI tractography and MRI morphology study (Ecker et al., 2016). Length distribution of short-
and long-range white matter tract classes. Bottom: Findings indicate a significant positive relationship between AD in
short-distance tracts and the LGI across groups. (B) Multidimensional MRI clustering of autism heterogeneity, and relation
to large-scale networks (Hong et al., 2017c¢). Top: Several MRI-derived morphological features (cortical thickness, intensity
contrast, surface area, geodesic distance) were used to identify three data-driven ASD subtypes (ASD-I, -1I, -IIT), which were
subsequently compared to typically developing controls (increases/decreases in red/blue). Bottom: Functional connectivity
between regions of interest derived from a meta-analysis of previous studies related to mentalizing. Connectivity decreases
relative to controls were observed in ASD-II and ASD-III, primarily in temporal and medial frontal cortices. Findings repro-
duced with permissions. AD, axial diffusivity; ASD, autism spectrum disorder; LGI, local gyrification index.
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prenatal stages, showing the occurrence of ectopic neurons in
the white matter as well as cortical blurring, possibly reflecting
incomplete neuronal migration (Avino and Hutsler, 2010).
Recently, increased cortical blurring in autism has been con-
firmed in vivo using surface-based group-level analysis of
MRI contrast (Andrews et al., 2017; Hong et al., 2017c).
Furthermore, atypical cortical organization in autism was
suggested using multidimensional cortical profiling, show-
ing distorted surface area, curvature, and geodesic distance
(Ecker et al., 2013a,b).

Challenges in the exact localization of structural anomalies
across the spectrum could relate to a malformative process
that variably affects network nodes and their communication
patterns, ultimately contributing to the broader autism pheno-
type. In this scenario, anomalies in the formation and organi-
zation of large-scale networks may differentially contribute to
impairments in higher order cognition or sensory integration.
Accordingly, this may also be associated with some of the
inconsistencies reported in the autism-related resting-state
functional imaging literature, among which the majority
has focused on mapping connectivity anomalies. Indeed,
findings appear somewhat heterogeneous in location and
even direction, with some studies reporting scattered func-
tional connectivity increases in addition to prevailing and
most frequently reported connectivity reductions (Deen
and Pelphrey, 2012; Heinsfeld et al., 2018; Keown et al.,
2013; Uddin, 2015; Yahata et al., 2016). Inconsistent differ-
ences at the group level may propagate down to the individ-
ual subject level, and classifiers designed to dissociate ASD
from controls have provided rather variable accuracies,
often below behavioral criteria (Heinsfeld et al., 2018;
Plitt et al., 2015). Collectively, these results suggest that
the ASD phenotype might arise from broader imbalances
in functional architecture across individuals, which may
not necessarily be localizable to specific regions but rather
may reflect overarching principles of network-level organi-
zation, a finding also supported by higher variability in au-
tism functional connectivity patterns than in controls
(Nunes et al., 2018).

In addition to consolidating previous findings, for exam-
ple, by providing more biologically plausible metrics of con-
nectivity, enriched connectomics may be useful to assess the
link between local anomalies and large-scale network pertur-
bations in ASD (Fig. 3). Of interest will be to clarify the as-
sociation between changes in local cortical organization
(e.g., cortical thickness increases, cortical interface blurring,
and laminar alterations) and structural and functional con-
nectivity. Diffusion MRI group-level analyses have shown
alterations in the microstructure and architecture of deep as
well as superficial white matter tracts related to default-
mode, auditory, and visual cortices (Barnea-Goraly et al.,
2004; Fletcher et al., 2010; Sundaram et al., 2008). Analyz-
ing diffusion MRI as well as cortical morphology, a recent
study observed abnormalities in cortical folding together
with white matter microstructure, suggesting coupled effects
in both compartments (Ecker et al., 2016).

Epilepsy

Around 30% of epileptic patients suffer from seizures that
cannot be controlled by antiepileptic mediation and are there-
fore generally considered surgical candidates, given the estab-

LARIVIERE ET AL.

lished benefits of surgery for seizure control and quality life in
epileptic patients (Engel et al., 2012; Wiebe et al., 2001).
Neuroimaging of drug-resistant epilepsies has traditionally fo-
cused on the detection of focal lesions considering its rele-
vance in surgical planning. Indeed, the MRI detection and
subsequent resection of a lesion are currently the best predic-
tors of postsurgical seizure freedom (Bernasconi et al., 2011).
In temporal lobe epilepsy, the most prevalent syndrome, pa-
tients commonly present with mesiotemporal sclerosis, a le-
sion characterized by variable cell loss and gliosis in the
hippocampal formation and adjacent structures (Blumcke
et al., 2013; Thom et al., 2009). Frontal lobe epilepsy, another
prevalent surgically remediable syndrome, often relates to cor-
tical dysplasia, a malformation characterized by laminar and
cytological anomalies. Surface-based structural MRI features
of morphology as well as tissue contrast and intensity have
provided an increasingly detailed in vivo characterization of
these lesions and have been useful in guiding algorithms for
automated lesion detection (Hong et al., 2014). Furthermore,
these markers can capture interpatient variability and have
been statistically related to histological subtypes (Bernhardt
et al., 2015b, 2016; Hong et al., 2017b).

In addition to its utility for targeted local studies, MRI has
also been instrumental in demonstrating distributed patho-
logical networks in both syndromes [Fig. 4; Bernhardt
et al. (2015a); Gleichgerrcht et al. (2015); Richardson
(2012)]. In temporal lobe epilepsy, converging evidence
from voxel-wise and surface-based morphometry (Bernhardt
et al., 2010; Bonilha et al., 2004; Keller and Roberts, 2008;
McDonald et al., 2008), quantitative longitudinal relaxation
time mapping (Bernhardt et al., 2017), and diffusion imaging
(Concha et al., 2012; Keller et al., 2017; Liu et al., 2016) has
revealed anomalies beyond mesiotemporal regions and
temporo-limbic tracts, often extending into a broad corti-
cal/subcortical territory. In dysplasia-related frontal lobe ep-
ilepsy, cortical thickness and curvature analyses also
emphasized widespread anomalies (Hong et al., 2016), com-
plemented by diffusion MRI studies suggesting architectural
and microstructural alterations of intrahemispheric fibers as
well as the corpus callosum (Campos et al., 2015; Fonseca
Vde et al., 2012). In both syndromes, structural data are in-
creasingly complemented by resting-state fMRI studies sug-
gesting an imbalance in connectivity between several
intrinsic functional systems, predominantly temporo-limbic
and default-mode networks (Bettus et al., 2010; Doucet
et al., 2013; Maccotta et al., 2013; Morgan et al., 2011). In
addition, graph theoretical network analyses consistently de-
scribed large-scale alterations in global topology across sev-
eral modalities, emphasizing system-level compromise in
syndromes traditionally defined as focal (Bernhardt et al.,
2011; Bonilha et al., 2012; Liu et al., 2014; Wang et al.,,
2014; Yasuda et al., 2015).

To study interactions between whole-brain phenotypes and
microscopic variations of specific regions, several studies
addressed connectome anomalies in patients with postopera-
tive histopathological lesion grading. In temporal lobe epi-
lepsy, patients with marked hippocampal sclerosis have been
shown to present with perturbed resting-state functional con-
nectivity to default-mode hubs compared with those with iso-
lated gliosis (Bernhardt et al., 2016). Using subfield-level
volumetric and T2 intensity analysis of the hippocampal for-
mation as a bridge, the study furthermore correlated degrees
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of functional connectivity decreases to structural alterations,
supporting a parametric modulation of network anomalies by
degrees of structural damage (Bernhardt et al., 2016). A sepa-
rate analysis of the same group reported a similar modulation
at the level of white matter microstructure, with patients pre-
senting with severe hippocampal volume loss also showing
more marked anomalies than patients with normal hippocam-
pal volumes (Liu et al., 2016). By showing that microscopi-
cally different patterns of hippocampal pathology may result
in rather variable perturbations of macroscopic functional
and structural networks, these findings lend important evi-
dence for multiscale interactions in pathological networks.

In extratemporal lobe epilepsy related to cortical malfor-
mations, a recent analysis showed a graded pattern of struc-
tural and functional network rearrangements across different
lesion types, with severe alterations in patients with malfor-
mations believed to occur late during corticogenesis, while
patients with malformation due to disruptions of early prolif-
erative stages showed only modest disruptions (Hong et al.,
2017a). Overall, these findings suggest that time of insult
during corticogenesis impacts the severity of topological net-
work reconfiguration.

As a surgically amenable disorder, epilepsy provides sev-
eral opportunities to validate and inform neuroimaging and
connectome approaches, for example, to develop and validate
models for surgical outcome prediction. In temporal lobe ep-
ilepsy, several recent studies have combined machine learning
techniques of different MRI and network features, and sup-
ported prognostic yield of limbic tract-wise diffusion tensor
imaging assessment (Keller et al., 2017), extrahippocampal
gray matter surface shape analysis (Bernhardt et al., 2015b),
as well as large-scale diffusion connectomes in predicting out-
come in individual patients (Bonilha et al., 2013, 2015). While
independence of some of these features from hippocampal pa-
thology (also a recognized predictor of outcome) still needs to
be established, the literature is overall on a promising path to-
ward predictive platforms, integrating local- and network-
level information (Bonilha et al., 2013, 2015).

Conclusions

Neuroimagers and network neuroscientists live in exciting
times, where a rich catalog of powerful measures of tissue mi-
crostructure and connectivity has become accessible and inte-
grative analysis practical. Multivariate techniques, such as
canonical correlation and partial least squares, provide prom-
ising formalisms to relate one multidimensional space to
another. Accordingly, these models can capture complex rela-
tionships, including those between structural and functional
domains, between macro- and microstructural properties, as
well as those between brain and behavioral measures, with
the latter characterizing observable phenotypic variability
(Misic and Sporns, 2016). An emerging class of formalisms
to integrate information in the structural and functional domain
and between different scales is connectome-informed compu-
tational models, such as those predicting functional dynamics
and interactions from structural connectome data (Bettinardi
et al., 2017; Deco et al., 2013, 2017; Sanz Leon et al., 2013).
In more clinically driven neuroimaging research settings,
these in silico models have been used to assess network-
level consequences of focal brain lesions, promising potential
utility as prognostic tools (Alstott et al., 2009; Hutchings et al.,
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2015). Finally, the increasing dimensionality and complexity
of multimodal and multiscale approaches justify the use of su-
pervised as well as unsupervised statistical learning techniques
that can be used to identify salient features, assess feature
interdependencies, as well as to project the data into informa-
tive lower dimensional subspaces that facilitate integrative in-
vestigations (Bzdok et al., 2017).

While we have advocated for reconciling micro-, meso-,
and macroscale information into a unified framework, chal-
lenges remain in fusing different levels of analysis. Indeed,
despite continued efforts to integrate multiscale data into a
common reference frame, technical and conceptual limita-
tions remain to be addressed to improve interpretability.
On the one hand, conducting multiscale analyses at high spa-
tial resolutions (e.g., at the level of individual vertices or
voxels) poses computational challenges. On the other hand,
although aggregation of individual nodes into parcels or re-
gions of interest has become a viable alternative (Fan
et al., 2016; Glasser et al., 2016; Schaefer et al., 2017;
Tzourio-Mazoyer et al., 2002), only few specific guidelines
and formal procedures exist as to which parcellation
scheme(s) should be chosen. Another challenge imminent
to high-dimensional data and multivariate analysis tech-
niques more generally lies in the increased risk of overfitting
and false positive results, mandating the use of conservative
cross-validation and reproducibility analyses aiming to con-
trol for false positive findings and to ensure replicability.

Despite these challenges, we are nevertheless confident that
the near future brings promising new developments in enriched
connectomics, a multidisciplinary and multiscale enterprise
that will not only advance our understanding of fundamental as-
pects of healthy brain organization but also of the neurobiolog-
ical underpinnings of prevalent and often detrimental diseases.
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