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Abstract

Characterizing Alzheimer’s disease (AD) at pre-clinical stages is crucial for initiating early treatment strategies.
It is widely accepted that amyloid accumulation is a primary pathological event in AD. Also, loss of connectivity
between brain regions is suspected of contributing to cognitive decline, but studies that test these associations
using either local (i.e., individual edges) or global (i.e., modularity) connectivity measures may be limited. In
this study, we utilized data acquired from 139 cognitively unimpaired participants. Sixteen gray matter (GM)
regions known to be affected by AD were selected for analysis. For each of the 16 regions, the effect of amyloid
burden, measured using Pittsburgh Compound B (PiB) positron emission tomography, on each of the 1761 brain
network connections derived from diffusion tensor imaging (DTI) connecting 162 GM regions, was investigated.
Applying our unique multiresolution statistical analysis called the Wavelet Connectivity Signature (WaCS), this
study demonstrates the relationship between amyloid burden and structural brain connectivity as assessed with
DTI. Our statistical analysis using WaCS shows that in 15 of 16 GM regions, statistically significant relationships
between amyloid burden in those regions and structural connectivity networks were observed. After applying
multiple testing correction, 10 unique structural brain connections were found to be significantly associated
with amyloid accumulation. For 7 of those 10 network connections, the decrease in their network connection
strength indexed by fractional anisotropy was, in turn, associated with lower cognitive function, providing evi-
dence that AD-related structural connectivity loss is a correlate of cognitive decline.
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Introduction

Development of amyloid pathology is a primary
pathological event and defining feature of Alzheimer’s

disease (AD), eventually leading to cognitive decline and de-
mentia (Hardy and Higgins, 1992; Jack et al., 2018). Individ-
uals with increased cortical amyloid burden as measured
in vivo with Pittsburgh Compound B (PiB) are at a higher
risk of AD (Pike et al., 2007), and show greater cognitive
decline over time. Determining the impact of amyloid on
neurodegeneration and cognitive decline is a field of active
study, given that antiamyloid therapies remain a key focus
of the AD therapeutic strategy (Liu et al., 2015).

In addition to amyloid, AD involves the development of
tau pathology, as well as neurodegeneration. Common mea-
sures of neurodegeneration include markers derived from ce-
rebrospinal fluid, as well as volumetric measures derived from
T1-weighted magnetic resonance imaging (MRI). Additional
informative information may be obtained by examining al-
terations of white matter (WM) tracts. WM abnormalities
have been detected among individuals with AD, those within
the mild cognitive impairment (MCI) group (Zhuang et al.,
2013), as well as among individuals presumed to be at risk
or in the cognitively asymptomatic stage of disease. Diffu-
sion tensor imaging (DTI) has been applied in several studies
to determine whether microstructure is altered. Fractional
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anisotropy (FA), one of the most commonly investigated
DTI measure, is commonly interpreted as a marker of axonal
degeneration, and has been shown to be lower among indi-
viduals with higher amyloid burden (Bendlin et al., 2010b;
Varentsova et al., 2014), especially in the presence of other
markers of neurodegeneration. The correlation between de-
creased FA and disease progression also suggests that FA
is a marker of disease progression (Acosta-Cabronero et al.,
2012). Brain regions altered in AD include the splenium of
the corpus callosum, superior longitudinal fasciculus, cingu-
lum (Rose et al., 2000), fornix, parahippocampal cingulum,
and uncinate fasciculus (Zhuang et al., 2013). Furthermore,
DTI measures are associated with cognitive performance
across a number of studies (Bendlin et al., 2010a; Mielke
et al., 2012), suggesting that markers of WM microstructure
will show utility for tracking decline to dementia.

Although amyloid accumulation has been associated with
greater risk for cognitive decline and lifetime risk for de-
mentia, it is not clear whether amyloid itself is the primary
cause of this decline, or may be associated with other neuro-
pathological features that underlie cognitive dysfunction.
Other features, for example, atrophy and axonal degenera-
tion, are phenotypic of dementia and may be better predictors
of cognitive status. Given these findings, several studies have
shown promise in determining the extent to which structural
connectivity changes are observed in AD (Lee et al., 2015;
Lo et al., 2010; Shao et al., 2012). Indeed, it is thought that
a greater methodological understanding of WM integrity
using a connectivity/network framework through a graph
theoretic approach could help set the stage for a better under-
standing of both healthy networks and the alterations that are
characteristic of disease (Guye et al., 2010).

Thus, the goal of this study was to determine the asso-
ciation between amyloid and structural brain connectivity
networks in a cohort of cognitively unimpaired individuals
who vary on amyloid burden (Clark et al., 2016; Sprecher
et al., 2015). A multiresolution analysis method called Wave-
let Connectivity Signature (WaCS), which has previously
been shown to be sensitive to small signal differences (Kim
et al., 2015), was used in our study. In contrast to prior ap-
proaches, this framework enables the detection of associations
at the level of both (1) brain networks and (2) regionally. Sec-
ondarily, we determined the directionality of the associations
to infer whether amyloid burden was positively or negatively
associated with the structural connections. Finally, we deter-
mined the extent to which WM tracts affected by amyloid bur-
den were associated with cognitive function as measured by
the Mini Mental State Examination (MMSE).

Materials and Methods

Participants

Participant data were acquired from the Wisconsin Registry
for Alzheimer’s Prevention (Johnson et al., 2017), a cohort of
middle-aged adults who are followed longitudinally, and many
of whom underwent multiple sessions of MRI as part of linked
studies. The subset of participants included in this analysis
comprised cognitively unimpaired adults, specifically 97
men and 42 women with a mean age of 60.23 years (standard
deviation 5.99) as shown in Table 1. A subset of the cohort (97
of 139) was positive for parental history of Alzheimer’s de-
mentia (Sager et al., 2005). For the cross-sectional analysis

reported in this article, DTI and PiB positron emission tomog-
raphy (PET) images were used.

DTI acquisition

DTI data were acquired using a spin-echo single-shot echo
planar imaging pulse sequence (40 encoding directions with
b = 1300 s/mm2) and eight nondiffusion weighted (b = 0)
reference images on two identical MRI systems: General
Electric 3.0 Tesla Discovery MR750 with eight channel
head coils and parallel imaging (ASSET). The images were
acquired at isotropic 2.5 mm3 resolution using continuous
2.5 mm thick axial slices, field of view 24 cm with repetition
time = 8000 ms, echo time = 67.8 ms, and matrix size = 96 · 96.

Brain connectivity networks construction from DTI

The population average of all the individual DTI data was
estimated using Diffusion Tensor Imaging Toolkit (DTI-TK)
(Adluru et al., 2012; Zhang et al., 2007). The lower and upper
thresholds of the seed mask obtained by binarizing the
trace map of the population template were 0.01 and 100, re-
spectively, which are commonly used in DTI-TK (Zhang
et al., 2006). We used the track command in Camino
(Cook et al., 2006) with the following parameters: curvature
angle threshold of 45� and the curvature length threshold of
10 mm. Tractography was performed on the population aver-
age using deterministic streamline tractography and boot-
strapping 20 times (i.e., 20 tracts were generated per seed
voxel) to make sure the WM pathways between the nodes
were consistent. Note that this step was only to define the
mask of the tracts connecting the region of interests (ROIs).
We then take the mean FA values along the tracts, so that
our calculations are stable and not influenced by the boot-
strapping method. For each pair of the 162 gray matter
(GM) regions from Illinois Institute of Technology (IIT)
template (Varentsova et al., 2014) after excluding two re-
gions with unknown labels, tracts passing through both of
those regions were filtered out and binarized into an edge
mask. For each edge, representing the WM tract connecting
its corresponding pair of regions, the spatially normalized
FA in its mask was computed as the edge weight to compen-
sate for the varying ROI sizes with the conmat tool in
Camino. This procedure results in a brain connectivity net-
work interpreted as a graph of 162 nodes (GM ROIs) and un-
directed edges (WM tracts) represented in a 162 by 162
symmetric adjacency matrix for each subject. More details
are also presented in a previous study (Kim et al., 2015).

Table 1. Wisconsin Registry for Alzheimer’s

Prevention Demographics

Demographics Total Men Women

Number of subjects 139 97 42
Gender (M/F) 97/42 97/0 0/42
Age, years,

(mean/SD)
60.23/5.99 61.71/6.15 62.28/5.89

Family history
(+/�)

97/42 68/29 29/13

APOE (+/�) 56/83 35/62 21/21
MMSE (mean/SD) 29.33/1.04 29.39/0.98 29.18/1.17

APOE, apolipoprotein E; MMSE, Mini Mental State Examination.
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PET imaging and processing

[C-11] PiB PET scans acquired from participants were
used to reconstruct the PET data using a filtered back-
projection algorithm direct Fourier transform (DIFT) with
random event correction, attenuation of annihilation radia-
tion, dead time, scanner normalization, and scatter radiation.
They were then realigned and coregistered in SPM8 and
transformed into voxel-wise distribution volume ratio
(DVR) maps using the time activity curve of the cerebel-
lum GM as the reference region. Further details on the pro-
cessing were described previously ( Johnson et al., 2014).
To derive region-wise PiB DVR measures, 16 (8 bilateral)
of the 116 Automated Anatomical Labeling atlas regions
(Tzourio-Mazoyer et al., 2002) that are implicated as impor-
tant in AD (Clark et al., 2016) based on the global amyloid
burden (Sprecher et al., 2015) were used and are shown in
Figure 1.

Multiresolution wavelet descriptor on brain connectivity

Analogous to the well-known Fourier transform for filter-
ing the signal frequencies, the wavelet transform has often
been used to capture multiresolution characteristics of the
data at different scales or resolutions. In the literature, the
wavelet transform has been adapted to graphs using spectral
graph theory (Hammond et al., 2011), and, therefore, can
also be used to process the graph structure of the connectivity
network from DTI that does not live in Euclidean space as
described previously (Kim et al., 2015). In a graph sense,
the connectivity network consists of nodes representing
ROIs and edges representing the connected ROIs with edge
weights denoting the tract strengths. To use the wavelet
transform on the edges of the connectivity network graph,
we first need to transform the graphs into their corresponding
line graphs on which the wavelet transform will be per-
formed. Next, we briefly describe each step of the wavelet
descriptor derivation from line graph to wavelet transform
as it pertains to this study.

Line graph formulation. A graph G = V , E, Wf g contains a
set of nodes/vertices V, a set of edges E where each edge eij is
the edge between ith and jth vertices, and each edge eij has a
corresponding weight wij in W. In other words, G can be con-
sidered as a typical graph with undirected weighted edges.
The connectivity network is first provided in this graph con-

struction. Throughout the section, we explicitly call the nodes
and edges of a graph (also referred to as traditional graph or
original graph) as ‘‘graph nodes’’ and ‘‘graph edges,’’ respec-
tively. Similarly, we call the nodes and edges of a line graph
as ‘‘line graph nodes’’ and ‘‘line graph edges,’’ respectively.

Then, the graph G is converted to its dual form called
the line graph by ‘‘exchanging’’ the roles of nodes and
edges: (1) the line graph nodes VL encode the graph edges
and (2) the line graph edges EL connect the line graph
nodes that are derived from the graph nodes. For instance,
two graph edges eij and ejk connected to a graph node vj be-
come two connected line graph nodes. Formally, we define a
line graph GL = VL, EL, WLf g, where VL, EL, and WL are the
line graph vertices, line graph edges, and line graph edge
weights, respectively. The line graph vertices VL are directly
derived from the graph edges E, and the line graph edges EL

are constructed between two line graph vertices if their graph
edges are connected to a common graph node. This can be
systematically constructed by considering all possible line
graph edges and setting each line graph edge weight bwij in
WL to be either 1 or 0 depending on the existence of the com-
mon graph vertices as follows: bwij = 1 if the graph edges
ei and ej are connected to a common graph node v (Harary,
1967). Otherwise, bwij = 0. Thus, the entire line graph struc-
ture is encoded in an edge-adjacency matrix where each
entry of this matrix that is of size VLj j by VLj j describes the
connection between the line graph nodes, that is, 1 if the con-
nection exists, 0 otherwise.

From the analysis perspective, it is worth noting that the
number of line graph nodes VLj j is equal to the number of
its graph edges Ej j. Furthermore, the graphs with equivalent
structures transform into their line graphs with equivalent
structures, and vice versa. Thus, when we construct the brain
connectivity networks of the subjects, we ensure that all the net-
works have the same graph structures (i.e., the same number of
nodes and equivalent set of edges connecting the same nodes)
so their corresponding line graph structures are also equivalent.
There is an exception that a triangle shape (i.e., three edges and
three nodes) and a ‘‘Y’’ shape (three edges connected by a sin-
gle node) in graph result in the same line graph construction,
but one can keep track of this situation explicitly to ensure
the correct reconstruction of the original graph.

The importance of the line graph construction comes from
the fact that we need to apply the wavelet transform on the
edges (i.e., connectivities) to derive the multiresolution

FIG. 1. Overlays of 16 PiB DVR ROIs on the FA template. DVR, distribution volume ratio; FA, fractional anisotropy; ROI,
region of interest. Color images are available online.
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signals while the wavelet transform traditionally operates on
the nodes of a graph. Without modifying the wavelet trans-
formation at all, we can perform the transformation on the
connectivity graph edges by applying the wavelet transform
on the line graph nodes after the line graph transformation.
Then, we reconstruct the original graph G from the line
graph with wavelet representations on the line graph nodes.
Rather than reformulating the wavelet transform to operate
on edges, constructing the dual form (i.e., line graph) of a
given graph that preserves the structure and applying the
wavelet transform while preserving its graph theoretic prop-
erties are a more plausible approach.

Wavelet connectivity signature. The advantage of the
wavelet transform is that, unlike the sine wave function of
Fourier bases, they have finite support because they are de-
rived from the mother wavelet functions that are specifically
constructed to have such properties. More formally, we de-
fine ws, a to be a wavelet function with scale s and translation
a. Ultimately, a wavelet transform is an approach to repre-
sent the original signal as a combination of ws, a with various
s and a. In other words, once the wavelets are chosen, given a
signal f, the transformation process finds a coefficient
Wf s, að Þ for each wavelet ws, a as follows:

Wf s, að Þ = f , ws, a:

For the set of chosen wavelets, the set of wavelet coeffi-
cients forms an alternative representation of original signal
with respect to the chosen wavelets. The key advantage of
this wavelet coefficient representation is the following: the
scales of the wavelets represent various ‘‘distances’’ or reso-
lutions, then their respective wavelet coefficients provide the
multiresolution representation of the original signal.
Throughout this study, the standard piecewise spline func-
tion provided by the Spectral Graph Wavelets Toolbox
(Hammond et al., 2011) was used that possesses desirable lo-
calization property.

Now, recall that the signal f comes from the edges of the
graphs that was transformed into the signal on the nodes of
their line graphs. Thus, for each node n, the wavelet coeffi-
cients at S = s0, s1, . . . , s Sj j � 1

� �
scales are computed:

Wf s, nð Þ representing the coefficients at scale s. The line
graph is then inverted back to its original graph to finally ob-
tain the multiresolution descriptor Wf s, eð Þ of the edge e of the
original graph. This descriptor is called WaCS of the edge in
the original graph, which is formally defined as follows:

WaCSf eð Þ= Wf s, eð Þ j s2S
� �

,

where f is the original signal, e is the edge of the original
graph, and s is a scale from the set of scales S. In this
study, Sj j = 3 different scales were selected in a data-driven
manner following the previous WaCS study (Kim et al.,
2015). Thus, at the end of the processing pipeline, a multire-
solution representation of the brain connectivity network is
obtained where each edge of the graph now encodes a set
of Sj j WaCS values. Further details of the process are pre-
sented in a previous study (Kim et al., 2015).

Experimental setup

WaCS transformation. The FA map of each subject was
used to construct the connectivity network between the 162

GM ROIs (IIT atlas) as a 162 by 162 adjacency matrix rep-
resentation of the graph where the entry at the ith row and the
jth row indicates the connectivity strength of the ith ROI and
the jth ROI. Then, we selected the connectivities/edges that
have nonzero values across all the subjects. This ensured
that although the subjects may have different connectivity
structures (i.e., different sets of edges), the final connectiv-
ity structure (the IIT GM nodes and 1761 common edges)
is standardized across the subjects. Then, the line graphs
were constructed that are also identical in that the line
graph nodes and edges are correspondent across all the sub-
jects. Next, for each line graph, the WaCS was derived using
the mother wavelet and the scales already described. Then,
the line graph was transformed back to the original graph
structure where each edge then encoded the multiscale
WaCS descriptor. As a result, each subject had a total of
1761 unique edges where each edge contained WaCS de-
scriptor at three different scales.

Relationship between amyloid burden and connectivi-
ty. The effects of PiB DVR of 16 GM ROIs on brain con-
nectivity network while controlling for age and gender
were investigated. In other words, with respect to each of
the 16 PiB ROIs, its PiB DVR effect on each of the 1761
unique connections was examined using the following lin-
ear model

Connectivity = b0þb1ageþ b2sexþ b3PiB DVR: (1)

Its significance was tested under three statistical analysis
setups corresponding to three different representations of
Connectivity.

(1) Original connectivity strength. Univariate general lin-
ear model (GLM) was used to observe the effects of
each PiB DVR measure as the predicting variable on
the original connectivity strengths measured in mean
FA as the predicted variables.

(2) Each scale of WaCS. Univariate GLM was used to
observe the effects of each PiB DVR measure as
the predicting variable on each of the three scale
WaCS values individually. Thus, there are three
separate analyses corresponding to three different
scales.

(3) All three scales of WaCS. Multivariate general linear
model (MGLM) was used to observe effects of each
PiB DVR measure as the predicting variable on all
three scales of WaCS descriptor simultaneously.

In all the three setups, age and gender effects were con-
trolled as nuisance variables. The F-stats and the correspond-
ing p value were used to test the significance of the effects of
PiB DVR. The significance level was set at a = 0:05 that was
controlled for the family-wise error rate (FWER) using the
Bonferroni correction for multiple comparison. Using statis-
tically significant edges, the corresponding network ROIs
connected by those edges and their related PiB DVR ROIs
were identified. Since the WaCS descriptors were derived
from the connectivity strengths using the average FA in the
tracts connecting the ROIs, the direction of the relationship
(b3 interpreted as slope) between the FA and PiB DVR
was also examined to see whether their magnitudes are pos-
itively or negatively correlated to each other.

AMYLOID PATHOLOGY AND BRAIN CONNECTIVITY IN PRE-CLINICAL AD 165



Relationship between connectivity and cognition. For the
edges that were found to be statistically significant based on
their relationship with amyloid burden, the associations be-
tween their FA values to a cognitive function measured as
MMSE were examined. Specifically, the linear model con-
trolling for age and gender,

MMSE = b0þ b1ageþ b2sexþ b3FA , (2)

was tested on each of the significant edge to examine whether
the FA is positively (b3 > 0) or negatively (b3 < 0) related to
MMSE (memory function). Positive b3 implies that MMSE
increases as FA increases and vice versa.

Results

Throughout the presentation of the results, connections,
connectivities, and edges are used interchangeably. Note that
the PiB ROIs are indexed by numbers consistently through-
out Table 2 and Figure 2, and the connections are indexed
by alphabetical letters consistently throughout Table 3,
Figures 4 and 5.

Effects of amyloid burden on structural brain connectivity

In Figure 2, � log10 scaled p values (sorted from low to
high) are shown where each plot presents the associations

Table 2. Association Between Amyloid Burden and Brain Connectivity

PiB ROI (index) Edge ROI 1 (index) Edge ROI 2 (index) p dir cog

Angular_L (1) Right-Accumbens-area (58) Left-Caudate (11) 0.001 1 1
Angular_R (2) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1

ctx_lh_G_pariet_inf-Angular (11125) ctx_lh_G_occipital_sup (11120) 0.012 1 1
ctx_lh_G_and_S_cingul-Mid-Post

(11108)
ctx_lh_G_and_S_cingul-Mid-Ant

(11107)
0.047 �1 �1

ctx_lh_G_temp_sup-Plan_polar
(11135)

ctx_lh_G_oc-temp_med-Parahip
(11123)

0.049 �1 1

Cingulum_Ant_L (3) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1
Right-Amygdala (54) Right-Caudate (50) 0.048 �1 �1

Cingulum_Ant_R (4) Right-Accumbens-area (58) Left-Caudate (11) 0.004 1 1
Right-Amygdala (54) Right-Caudate (50) 0.049 �1 �1

Cingulum_Post_L (5) ctx_lh_Pole_temporal (11144) ctx_lh_G_and_S_occipital_inf
(11102)

0.046 �1 1

Frontal_Med_Orb_L (7) Right-Accumbens-area (58) Left-Caudate (11) 0.003 1 1
ctx_lh_S_calcarine (11145) ctx_lh_G_oc-temp_med-Lingual

(11122)
0.010 1 1

Right-Amygdala (54) Right-Caudate (50) 0.017 �1 �1
Frontal_Med_Orb_R (8) Right-Accumbens-area (58) Left-Caudate (11) 0.001 1 1

Right-Amygdala (54) Right-Caudate (50) 0.011 �1 �1
ctx_lh_S_calcarine (11145) ctx_lh_G_oc-temp_med-Lingual

(11122)
0.021 1 1

Precuneus_L (9) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1
Precuneus_R (10) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1
SupraMarginal_L (11) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1
SupraMarginal_R (12) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1

ctx_lh_G_pariet_inf-Angular (11125) ctx_lh_G_occipital_sup (11120) <0.001 1 �1
ctx_rh_S_circular_insula_sup (12150) ctx_rh_G_orbital (12124) <0.001 �1 �1
Right-Amygdala (54) Right-Caudate (50) 0.018 �1 �1
Left-Hippocampus (17) Left-Putamen (12) 0.028 �1 1

Temporal_Mid_L (13) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1
Right-Amygdala (54) Right-Caudate (50) 0.009 �1 �1

Temporal_Mid_R (14) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1
ctx_lh_G_pariet_inf-Angular (11125) ctx_lh_G_occipital_sup (11120) <0.001 1 �1
ctx_rh_S_circular_insula_sup (12150) ctx_rh_G_orbital (12124) <0.001 �1 �1
Left-Hippocampus (17) Left-Putamen (12) 0.019 �1 1

Temporal_Sup_L (15) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1
Right-Amygdala (54) Right-Caudate (50) <0.001 �1 �1
ctx_lh_S_calcarine (11145) ctx_lh_G_oc-temp_med-Lingual

(11122)
0.022 1 1

ctx_rh_S_calcarine (12145) ctx_rh_G_oc-temp_med-Parahip
(12123)

0.023 1 1

Temporal_Sup_R (16) Right-Accumbens-area (58) Left-Caudate (11) <0.001 1 1
ctx_rh_S_circular_insula_sup (12150) ctx_rh_G_orbital (12124) <0.001 �1 �1
ctx_lh_G_pariet_inf-Angular (11125) ctx_lh_G_occipital_sup (11120) <0.001 1 �1
Left-Hippocampus (17) Left-Putamen (12) 0.003 �1 1
Right-Amygdala (54) Right-Caudate (50) 0.013 �1 �1

ctx, cortex; G, gyrus; inf, inferior; lat, lateral; lh, left hemisphere; med, medial; oc, occipital; rh, right hemisphere; ROI, region of interest;
S, sulcal; sup, superior; temp, temporal.
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between the brain connectivity connections and their corre-
sponding PiB ROIs. The edges corresponding to the line
above the Bonferroni threshold (dashed red line in Fig. 2)
in the plot of each PiB ROI were statistically significant
with respect to that of PiB ROI.

The baseline setup of testing for the effects on the FA
edge weights was not able to reveal statistically significant
edges using any of the 16 PiB DVR measures, which can
be seen as having no dashed black lines above the FWER
lines (dashed red lines) in Figure 2. The individual scales
of WaCS (GLM1, GLM2, and GLM3 in Fig. 2) failed to
show any significant edges. The multivariate analysis using
MGLM considering all the three scales of WaCS (MGLM
in Fig. 2) revealed a total of 39 connectivity-to-PiB associa-
tion pairs showing statistically significant association be-
tween PiB and WaCS throughout the 15 of 16 PiB DVR
ROIs. The complete set of the PiB ROIs and their signifi-

cantly related connections are shown in Table 2, where
each row block corresponds to a PiB ROI (column 1) and
its associated edges connecting GM ROI pairs (columns 2–
3) with the Bonferroni corrected p values (column 4). The
fiber bundle representations (reconstructed using tractogra-
phy) of these significantly affected connections are shown
in Figure 3.

Directionality of the effects of amyloid burden
on connectivity

For each of the detected edges, the directionality of the as-
sociations between its connectivity strength indexed by FA
and the corresponding PiB DVR was inferred from the
slope b3 of PiB DVR in Equation (1) such that the direc-
tion is 1 if they are positively correlated (both increase or
both decrease) and the direction is �1 if they are inversely

FIG. 2. Sorted negative log-scaled p values of the top 70 connections in multiresolution WaCS with respect to 16 PiB DVR
ROIs. The connections above the Bonferroni correction threshold (red dashed) are statistically significant. The indices of the
PiB ROIs follow Table 1. WaCS, wavelet connectivity signature. Color images are available online.
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correlated (FA increases while PiB DVR decreases and vice
versa) as shown in Table 2 under ‘‘dir’’ (column 5). Among
the 39 connections shown in Table 2, there were 10 unique
connections linking the GM ROI pairs. Thus, those edges
were identified and grouped as shown in Table 3 (as opposed

to Table 2, which is grouped by PiB ROIs), where each row
block corresponds to one of the 10 unique edges. In Figure 4,
the edges (pipes linked by squares) and their associated PiB
ROIs (spheres) are shown with blue and red edges indicating
positive and negative directions, respectively.

FIG. 3. Fiber tracts of the 10 unique connections without their corresponding node ROIs. Color images are available online.

Table 3. Significant Brain Connections and Their Associated Amyloid Regions

Idx Edge ROI 1 (index) Edge ROI 2 (index) cog PiB ROI

(a) Accumbens_Area_R (58) Caudate_L (11) 1 Angular_L
Angular_R
Cingulum_Ant_L
Cingulum_Ant_R
Frontal_Med_Orb_L
Frontal_Med_Orb_R
Precuneus_L
Precuneus_R
SupraMarginal_L
SupraMarginal_R
Temporal_Mid_L
Temporal_Mid_R
Temporal_Sup_L
Temporal_Sup_R

(b) Amygdala_R (54) Caudate_R (50) �1 Cingulum_Ant_L
Cingulum_Ant_R
Frontal_Med_Orb_L
Frontal_Med_Orb_R
SupraMarginal_R
Temporal_Mid_L
Temporal_Sup_L
Temporal_Sup_R

(c) Pariet_Inf_Angular_G_L (11125) Occipital_Sup_G_L (11120) �1 Angular_R
SupraMarginal_R
Temporal_Mid_R
Temporal_Sup_R

(d) Hippocampus_L (17) Putamen_L (12) 1 SupraMarginal_R
Temporal_Mid_R
Temporal_Sup_R

(e) Calcarine_S_L (11145) Oc_Temp_Med_Lingual_G_L (11122) 1 Frontal_Med_Orb_L
Frontal_Med_Orb_R
Temporal_Sup_L

(f) Circular_Insula_Sup_S_R (12150) Orbital_G_R (12124) �1 SupraMarginal_R
Temporal_Mid_R
Temporal_Sup_R

(g) Pole_Temporal_L (11144) Occipital_Inf_G_S_L (11102) 1 Cingulum_Post_L
(h) Cingul_Mid_Post_G_S_L (11108) Cingul_Mid_Ant_G_S_L (11107) 1 Angular_R
(i) Temp_Sup_Plan_Polar_G_L (11135) Oc_Temp_Med_Parahip_G_L (11123) 1 Angular_R
(j) Calcarine_S_R (12145) Oc_Temp_Med_Parahip_G_R (12123) 1 Temporal_Sup_L
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FIG. 4. Ten significant edges and their corresponding PiB DVR ROIs (spheres) where blue and red edges indicate positive
and negative directions, respectively. The edge labels correspond to those in Table 3. Color images are available online.
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Relationship between the affected edges and MMSE

We found that 7 of those 10 pathology-affected edges had
positive correlations between their connectivity strengths
indexed by FA and MMSE. As shown in Table 2, a positive
correlation is indicated by ‘‘1’’and an inverse correlation is
indicated by ‘‘�1.’’ The corresponding linear fits (separated
by gender and controlled for age) along with the FA and
MMSE scatter plots are shown in Figure 5.

Discussion

AD is characterized by pathological accumulation of am-
yloid plaques and neurofibrillary tangles, a process, which
progresses over years in a presumed stereotypic manner, af-
fecting an increasing number of brain regions. How plaque
and tangle accumulation occurs is incompletely known, al-
though an emerging theory is that both beta amyloid and
tau propagate through a self-seeding process along structural
connectivity networks (Gandy, 2014; Gandy and DeKosky,
2013; Jacobs et al., 2018). Eventually, accumulation of neu-
ropathology leads to dementia, although some individuals
may harbor significant plaque and tangle pathology with rel-
atively preserved cognitive function for several years, as
shown by postmortem (Andrade-Moraes et al., 2013; Perez-
Nievas et al., 2013) and in vivo amyloid and tau PET studies
(Jansen et al., 2015). Postmortem and in vivo evidence sug-
gests that in addition to plaque and tangle burden, dementia
involves degradation of structural connectivity, including
loss of synapses and axonal degeneration.

Growing evidence indicates that brain connectivity changes,
including those identified through graph analysis of WM
tracts, can explain cognitive symptoms in AD and predict
conversion to dementia (Alexander et al., 2011; Filippi and
Agosta, 2011; Hampson et al., 2006; Li et al., 2002; Petrella
et al., 2011; Shao et al., 2012). Despite differences in con-

nectivity at the dementia and even in MCI stages (Ma
et al., 2017; Teipel et al., 2015), AD-related connectivity
changes in pre-clinical disease remain relatively poorly char-
acterized. Connectivity degradation in early disease stages
are subtle, and classical statistical tools are insufficient in
identifying weak disease-related signals with a meaningful
level of statistical confidence (Adluru et al., 2014; Racine
et al., 2014).

Based on this set of works in the literature, in this study,
we investigated the interplay between pathology and struc-
tural connectivity, as well as cognitive function among
nondemented individuals. Currently, structural connectiv-
ity analysis is dominated by two strategies. (1) The first de-
rives ‘‘global’’ measures to characterize connectivity graphs
by making use of summaries such as modularity, girth, and
diameter of the graph (Sporns et al., 2005). (2) Alternatively,
we can analyze individual fiber bundles (Hagmann et al.,
2007), where statistical tests are performed for each fiber
bundle, one by one, to assess group differences (e.g., be-
tween groups of individuals with/without amyloid pathology).
Although graph analysis is gaining increased use, both
approaches have limitations, especially when applied to a
pre-clinical cohort. When differences in connectivity pat-
terns are weak, any summary of the graph will be too global,
few connections show meaningful differences. In contrast,
we find that statistical tests performed edge-by-edge on the
graph indeed reveal potentially meaningful connections at
uncorrected levels of Type I (false positive) error thresholds,
but after multiple comparisons correction, few edges ap-
proach a sensible statistical threshold (Kim et al., 2015).

Since the relationships between neuropathology can be
subtle at early disease stages, simple statistical tests performed
on edgewise connectivity markers may be insufficient for
detecting an effect; in this study, we adopted a multire-
solutional approach for identifying these relationships. The

FIG. 5. Associations between MMSE and FA of 10 significant connections listed in Table 3 for men and women. The linear
fits are adjusted for age. MMSE, Mini Mental State Examination. Color images are available online.
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‘‘wavelets on graphs’’ approach provides an attractive solu-
tion to these problems by making the edge-wise statistical
tests far more sensitive using novel higher dimensional latent
representations (Kim et al., 2013, 2014a)—a hybrid global/
local scheme.

In this study, we found that amyloid accumulation was
associated with several altered connections. Regional amy-
loid accumulation appeared to be associated with unilater-
ally altered structural connectivity, for example, amyloid
indexed in PiB ROIs from the left hemisphere was largely
associated with altered connectivity also in the left hemi-
sphere. Although we are unable to determine causal rela-
tionships, this may suggest that amyloid has a local toxic
effect on spatially adjacent tracts. Alternatively, it may be
possible that unmeasured tau pathology could be playing
a role. A recent study indicates that among individuals
who are amyloid positive, tau pathology is associated
with WM degeneration and further spread of tau through
synaptically linked regions.

We did not find that edges linked with greater amyloid
accumulation were uniformly associated with lower FA.
Indeed, no obvious patterns in the directionality of the asso-
ciations were observed. These results are consistent with pre-
viously reported findings on the relationship between DTI
metrics and amyloid and suggest that further study of the re-
lationship between amyloid and DWI metrics is needed
(Racine et al., 2014). One possibility is to utilize more spe-
cific microstructural models such as neurite orientation dis-
persion and density imaging (Zhang et al., 2012) and
diffusion kurtosis imaging (Steven et al., 2014), which cap-
ture more of the microstructural complexity of WM. In the
analysis of cognitive function in relation to FA, we found
that of 10 unique connections, 7 slopes were positive, sug-
gesting that higher FA is typically associated with better cog-
nitive function. It is important to note, however, that the
associations between MMSE and edges affected by amyloid
were not statistically significant. We may have been under-
powered to find a relationship with cognitive function
given that this is a cognitively impaired sample.

An important outcome of this study is that WaCS was
shown to be sensitive. WaCS is derived based on a wavelet
transformation of edge signals in multiple scales. Such a
transformation embeds the original edge signal (univariate)
to a higher dimensional space (multivariate), which, in turn,
has the effect of substantially improving statistical power.
From a machine learning perspective, deriving a novel rep-
resentation in higher dimensional spaces follows re-
cent trends in deep learning, which aim to construct new
representations of the given original signals. In fact, well-
constructed representations tend to better capture the charac-
teristics of the signals than the information found in their
original domains and the information extends beyond a spe-
cific analysis. Such new representations often generalize
effectively and provide benefits to various subsequent down-
stream applications or analyses. WaCS acts similarly in that
it is based on a wavelet transform that is a relatively generic
spectral analysis technique not specific to the brain connec-
tivity analysis, and thus can be utilized for a number of
applications where improved sensitivity is needed. Convolu-
tional neural networks in deep learning algorithms are
increasingly used in a variety of settings. Convolutional lay-
ers in a deep network derive latent representations of the fea-

tures or predictors, and the weights of the convolutional
filters are learned using training data. Wavelets, as used in
this study, accomplish a similar goal, although with fixed
bases. In fact, Mallat (Bruna and Mallat, 2013; Mallat,
2016) showed a relationship between a deep convolutional
network and a cascade of wavelet expansions with nonlinear
operations in between. Simply put, WaCS can be thought of
as a latent representation of the structural connectivity at
each fiber bundle. Although the filters are not learned, the la-
tent representations are powerful and offer high sensitivity.

Wavelet-based information aggregation is also similar to
the idea of using clustering to improve statistical power as
shown in Dahl (2006) and Dahl and Newton (2007) for
microarray analysis (Newton et al., 2006). A more detailed
description is given in Kim (2017). In simulations when
the true group differences are known, we have previously
shown that wavelets-based analysis of the type shown here
compares very favorably with both hierarchical grouping
and spherical harmonics smoothing in several articles from
our group (Hwa Kim et al., 2015; Kim, 2017; Kim et al.,
2012, 2014b, 2015), and importantly, facilitating reduced
sample sizes in neuroimaging studies.

Limitations

A few limitations in WaCS analysis deserve note. As
with other typical spectral analysis techniques such as prin-
cipal component analysis, the computational effort in-
creases with respect to the size of the graph. Specifically,
the computational effort of the wavelet transform is qua-
dratic in a number of edges in the brain connectivity net-
work, which we focus on in the line graph domain.
However, this is a relatively minor drawback given that
brain networks are often sparse (i.e., valid edges are much
fewer than the possible edges), and operating on several thou-
sands of edges has become more efficient with increased pro-
cessing power. The final outcome of the statistical analysis
using WaCS could vary depending on the choice of parame-
ters (i.e., number of scales and the type of mother wavelet).
In practice, however, we observed that the improvement
was consistent in general without a rigorous parameter search-
ing. A remaining challenge is how to choose those parameters
in an unbiased way, since the parameters for wavelet trans-
form are often user defined. Also, although the WaCS method
determined significant associations between structural con-
nectivity and amyloid, analyses utilizing WaCS need to be fur-
ther queried to determine the direction of the relationships.
Optimizing WaCS to facilitate direct interpretation remains
a future goal of this work.

Conclusion

This study applied a multiresolution approach to the study
of amyloid effects on structural brain connectivity. Amyloid
burden was associated with we identified 10 out of the 1761
possible connections, a result that was observed across sev-
eral of brain regions studied. Across several of note, these
relationships were not detectable using simple measures
of connectivity such as individual edge weights. Thus, multi-
resolution analysis of structural connectivity was more effec-
tive in detecting the correlations between amyloid pathology
and structural alteration among cognitively asymptomatic in-
dividuals. Furthermore, for 7 of those 10 network connections,
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the loss in their connectivity strength was correlated with
lower score in MMSE, supporting the association between
connectivity loss and cognitive decline.
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