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Abstract

Graph theory has been extensively applied to investigate complex brain networks in current neuroscience research.
Many metrics derived from graph theory, such as local and global efficiencies, are based on the path length be-
tween nodes. These approaches are commonly used in analyses of brain networks assessed by resting-state func-
tional magnetic resonance imaging, although relying on the strong assumption that information flow throughout the
network is restricted to the shortest paths. In this study, we propose the utilization of commute time as a tool to
investigate regional centrality on the functional connectome. Our initial hypothesis was that an alternative ap-
proach that considers alternative routes (such as commute time) could provide further information into the orga-
nization of functional networks. However, our empirical findings on the ADHD-200 database suggest that at the
group level, the commute time and shortest path are highly correlated. In contrast, at the subject level, we discov-
ered that commute time is much less susceptible to head motion artifacts when compared with metrics based on
shortest paths. Given the overall similarity between the measures, we argue that commute time might be advan-

tageous particularly for connectomic studies in populations where motion artifacts are a major issue.

Keywords: ADHD; connectivity; connectome; fMRI; graph-theory

Introduction

D ESCRIBING THE BRAIN functional architecture accurately
is one of the most important challenges in current neu-
roscience research (Bullmore and Sporns, 2009; Poldrack
and Farah, 2015). This problem is currently formulated
based on the prevailing connectomic perspective (Sporns,
2011). When applied to functional magnetic resonance imag-
ing (fMRI) data, the functional connectome concept usually
refers to unrestricted resting-state paradigms rather than to
classic task-based experiments (Van Den Heuvel and Pol,
2010). Mounting evidence supports the idea that the highly re-
producible, intrinsic, functional connectivity (i.e., statistical
dependence between local signals measured during resting
state) patterns give rise to large-scale networks (Bullmore
and Sporns, 2009) whose dynamical organization in turn in-
stantiates complex behaviors and cognition (Bressler and
Menon, 2010; Misi¢ and Sporns, 2016; Sporns et al., 2004).
Moreover, the organization of brain structural and functional
networks is highly similar, even when different types of mea-
surements are used (Bullmore and Sporns, 2009; Honey et al.,
2007).

Graph theory is a suitable and powerful mathematical
framework to characterize the organization of both structural

and functional brain networks. Generically, this theoretical
approach offers useful and interpretable metrics to describe
and summarize the properties of complex networks (Bull-
more and Sporns, 2009). Of particular interest to connec-
tomic research, such metrics might be useful to assess the
brain’s fundamental properties of functional segregation
and integration (Sporns et al., 2004). For this purpose,
graph theory-based metrics relying on shortest paths be-
tween nodes (e.g., local and global efficiencies) have been
usually applied (Archard and Bullmore, 2006; Archard
et al., 2007; Bassett et al., 2012; Damoiseaux et al., 2008;
Wang et al., 2010).

However, the assumption that communication between
distinct neural modules is restricted to the shortest paths
has been recently challenged (Goiii et al., 2013, 2014).
Indeed, this is quite a strong assumption, making the descrip-
tion of network properties incomplete. Considering alter-
natives through less efficient routes might provide further
insights into the organization of brain networks. Random
walk and diffusion-based models are the principal alternative
approaches to shortest path-based metrics. For instance,
Goiii and colleagues (2014) have found that the relationships
between structural network and spontaneous functional con-
nectivity are suggestive of diffusion, spreading, or greedy
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routing dynamics (Abdelnour et al., 2014; Goii et al., 2013;
O’Dea et al., 2013; van den Heuvel et al., 2012).

In this study, we sought to evaluate the commute time
metric, a random walk-based graph descriptor, to detect dy-
namical changes in the functional connectome due to devel-
opment. To the best of our knowledge, no works to date have
directly explored the alternative concept of commute time
to investigate resting-state fMRI (rs-fMRI)-derived func-
tional networks. In a related field, Dimitriadis and associates
(2012) explored the notion of commute time to analyze func-
tional connectivity changes with event-related dynamics in
electroencephalograph. Mean commute time was also ap-
plied by Meyer and Stephens (2008) and Shen and Meyer
(2008), but as a way to parameterize brain states that were
in turn used to decode natural and complex stimuli from
fMRI signals. Notably, the interpretation of these measures
is well established in a general context: the path length metrics
were demonstrated to be inversely proportional to the net-
work’s efficiency (Latora and Marchiori, 2001, 2003), while
commute time is readily interpretable as the inverse of the ro-
bustness to edge or node failures (Ellens et al., 2011).

In the current study, we introduce commute time as an al-
ternative metric in functional connectomic research. In addi-
tion, we also compared the findings resulting from this metric
with the shortest path. Our analyses were based on rs-fMRI
data of healthy subjects from the ADHD-200 database, con-
sidering replications in seven independent samples. Our hy-
pothesis was that the commute time, in which alternative
routes are taken into account, could provide further informa-
tion into organization of brain networks. Moreover, consider-
ing that motion artifacts are one of the most challenging
obstacles in fMRI-based connectomic studies involving clin-
ical and pediatric populations, we compared both approaches
regarding their susceptibility to such artifacts.

Materials and Methods

In the following, the theoretical foundation of commute
time will be presented. Then, we provide empirical compar-
isons with the shortest path approach by using the ADHD-
200 database.

Commute time

In this section, we introduce the main graph of theoretical
concepts used to model and analyze rs-fMRI data. For further
details on the formulation applied here, see Ellens and asso-
ciates (2011) and Lyons and Peres (2016). A graph consists
of a collection of nodes (which in our case represent the
brain’s regions) and a collection of edges, each of which
joins two distinct nodes (which represent functional connec-
tivity). In many applications, it is natural to assign weights to
the edges of a graph (Bullmore and Sporns, 2009). In such
case, we say that we have a weighted graph.

Now, we define the notion of a random walk on a weighted
graph (Doyle and Snell, 1984; Lovasz, 1993). Consider a
walk as follows. At each time, we are standing on a node v
and want to select another node to move to, we do so by
choosing one node at random among the ones directly con-
nected by an edge to v. The probability of choosing a node
u is proportional to the weight of the edge uv (i.e., the prob-
ability of going from v to u is the weight of the edge uv
divided by the total weight of all edges joining v). The com-
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mute time between two nodes is the expected number of
steps to go from the first node to the second and then come
back to the first (Lovasz, 1993). One interesting aspect of
using random walks is that they tend to linger in areas of
the graph that are well connected and rarely go to poorly con-
nected areas.

The commute time may be computed as follows:

1. Let A denote the weighted adjacency matrix of G.

2. Compute the matrix L=D — A, where D is a diagonal
matrix such that the entry corresponding to node v is
the total weight of the edges joining v.

3. Compute the Moore—Penrose pseudoinverse of L. This
pseudoinverse can be computed easily by numerical
software packages (Ellens et al., 2011). Let L* denote
the pseudoinverse.

4. Compute the matrix R defined by R(u,v)=L"*(u,u)+
L*(v,v) —2L*(u,v).

5. Compute the matrix C=txR, where t is the sum of all
entries of A. The entry C(u,v) is the commute time
from u to v.

Observations. The matrix L is known as the weighted
Laplacian of G and it has been extensively studied by the
graph theory community (Klein and Randi¢, 1993; Van Mie-
ghem, 2010). We need to work with the pseudoinverse since
the matrix L is not invertible. In the approach we present, we
explore a well-known result in the graph theory community
that relates the commute time to effective resistance of the
edges (Ellens et al., 2011; Klein and Randi¢, 1993; Lyons
and Peres, 2016). Roughly speaking, one considers the
graph as an electrical circuit where each edge corresponds
to a resistor. The effective resistance values are computed
in the matrix R in step 4.

Shortest path calculation

As described in the previous subsection, the commute time
calculation is based only on weights specified by the adja-
cency matrix. Calculation of the shortest path requires the
definition of the distance between adjacent nodes. In this
study, this distance was defined by 1/|cij , where ¢;; is the
cell at row i and column j of the graph adjacency matrix.

Empirical analysis: ADHD-200 dataset and preprocessing

The rs-fMRI dataset used in this study was acquired by the
ADHD-200 Consortium (Milham et al., 2012). Data collec-
tion by the ADHD-200 Consortium was conducted with local
internal review board approval and data were fully anony-
mized in compliance with Health Insurance Portability and
Accountability Act privacy rules. We considered all healthy
subjects of the ADHD-200 competition release and replica-
tion analyses considering the seven sites of acquisition.

Data were preprocessed by The Neuro Bureau using the
Athena pipeline (www.nitrc.org/plugins/mwiki/index.php/
neurobureau:AthenaPipeline). Briefly, the pipeline con-
sists in discarding the first four scans; slice time correction;
deobliquing; motion correction; brain masking; coregistra-
tion to anatomical image; spatial resampling to 4 mm X
4 mm x4 mm,; regressing out white-matter, cerebrospinal fluid,
and motion parameters and trends; and spatial smoothing with
Gaussian kernel (full-width-at-half-maximum =6 mm). The
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average time series of 351 regions of interest (ROIs) were
extracted considering CC400 functional parcellation (Craddock
et al., 2012). For each subject, the head movement amount was
estimated by mean frame displacement (Power et al., 2012).

For each subject, the pairwise Spearman (which is more
robust to outliers than Pearson) correlation matrix among
signals of all 351 ROIs was calculated and absolute values
were considered weights of the graph adjacency matrix. To
avoid arbitrary choices, no threshold was applied to individ-
ual correlation matrices.

In the following analyses, we compare the commute time
and shortest path approaches regarding identification of brain
functional hubs. We included solely the typical developing
participants from seven sites of acquisition to avoid con-
founders of ADHD. For each subject and each pair of nodes,
calculation of commute time was based on correlations at
each cell of the graph adjacency matrix, which were consid-
ered as input weights.

We first calculated the mean commute time (across con-
nections) for each brain parcel for each subject. Next, the
mean of this metric across subjects was calculated to obtain
a group-level estimate of the mean commute time for each
region. This exact same procedure was applied to the shortest
paths. Then, we compared the mean commute time and mean
shortest path across the 351 different brain parcels, focusing
on investigating the overlap and nonoverlap between the two
approaches. In this analysis, we aimed to understand the ad-
ditional and differential information obtained when using
commute time in comparison with shortest path. Finally,
since head motion artifact is one of the main issues in func-
tional connectivity analyses, we compare the susceptibility
of both methods to the impact of mean frame displacement
across scans. Thus, we calculated the single-subject-level
correlation between mean frame displacement and mean
commute time (and shortest path). Additionally, we per-
formed comparisons between the mean commute time and
the degree as a supplementary analysis. This comparison is
relevant since the degree is also a graph centrality metric fre-
quently used in connectomic analyses and previous studies.
A previous study reported that the mean commute time
was biased by the node degree (von Luxburg et al., 2014).

Results

Demographical information is presented in Table 1. On
average, children from Oregon Health & Science University
were considerably younger, while the ones from Neurolmage
were older. Besides, the amount of head motion (frame dis-
placement) was fairly similar at all the sites.

Figure 1 presents the top 10% hub brain regions in each
site, identified by ranking regions based on their mean com-
mute time. Note that most hub regions are part of the default
mode network (precuneus, posterior cingulate, and ventral
medial prefrontal cortex) or control network (dorsal anterior
cingulate). Since the hub maps based on mean shortest path
or degree approaches would be fairly identical to the map
depicted in Figure 1, they were not included.

Contrary to our expectation, the top 10% hub regions map-
ped using the commute time were almost identical to the ones
identified by shortest path length. To further clarify this find-
ing, we built Figure 2 that depicts scatter plots of the across-
subjects mean commute time and shortest path over all the

157
TABLE 1. DEMOGRAPHICAL INFORMATION
OF THE SAMPLES USED
Site of acquisition N  Males Mean age SD
Peking University 116 71 11.7 1.7
Kennedy Krieger Institute 61 34 10.3 1.3
New York Univ. 98 47 12.2 3.1
Child Study Center
University of Pittsburgh 89 46 15.1 2.9
Neurolmage 23 11 17.3 2.6
Oregon Health & Science 42 17 8.9 1.2
University
Washington University 50 27 11.3 3.6

SD, standard deviation.

351 regions (each point thus representing a brain parcel), sep-
arately by acquisition site. From a practical perspective, this
chart unequivocally demonstrates that on average (across sub-
jects), both measures are quite strongly linearly related (Pear-
son correlation coefficient >0.95 in all sites). In other words,
both metrics measure the same phenomena and this was an un-
expected finding since they are conceptually different.

Finally, Figure 3 presents box plots of the correlation, each
point representing a single subject, between head motion
(measured as the mean frame displacement) and the mean
(across all brain regions) commute time and shortest path.
Note that the shortest path approach was more affected by
head motion artifacts in all sites when compared with com-
mute time (p<0.001 in all sites) since the correlation was
different from zero.

Interestingly, the exact same findings of a linear relation-
ship and more robustness against motion artifacts also hold
in comparisons between the mean commute time and the
mean degree of each brain region (See Supplementary
Figs. S1 and S2).

Discussion

In this study, we propose that commute time is a compu-
tationally feasible (in terms of processing time) and informa-
tive tool to investigate the organization of the functional
connectome. In theory, the main advantage of this metric
when compared with commonly applied graph theory-based
metrics would be that instead of focusing solely on routes
based on shortest paths, it considers all possible routes between
two regions in a weighted manner. However, contrary to our
initial hypothesis, our empirical comparison on the ADHD-
200 database suggests that graph analyses based on the mean
commute time were, on average, very similar to the ones
based on the shortest path. Remarkably, our main finding
was that although very similar at the group level (i.e., mean
across subjects), the commute time metric was significantly
more robust against head motion at the single-subject level.

Identification of main hubs in functional networks is of
great importance to enhance our comprehension of brain hi-
erarchical organization. Insightful studies reinforced this rel-
evance both in normal and pathological conditions (Honey
and Sporns, 2008; Liu et al., 2008). As expected, in all
seven sites, the main hubs identified by using commute
time (Fig. 1) were part of the default mode and control net-
works (Fransson et al., 2011). On the other hand, an accurate
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Kennedy

NeurolMAGE

FIG. 1. Top 10% hub brain re-
gions at each site identified by
ranking the mean (across subjects)
commute time of each area. Color
images are available online.

Pittsburgh

Washington

quantification of functional connectivity between brain re-
gions is challenging since head motion artifacts have high
impact on this analysis (Power et al., 2012). Our findings
suggest that commute time provides a proper ranking of re-
gion closeness to brain networks and it is robust against
movement artifacts. The reasons for this robustness depend
on several factors, but we conjecture that commute time is
less sensitive to global changes on edge weights, that is,
when the weights of many edges are commonly affected
by head motion. In the commute time approach, information
flow over the network is modeled based on a random walk.
The edge weights define transition probabilities and thus it
is less affected by global increases/decreases in these
weights.

Regarding the results shown in Figure 3, if correlation be-
tween frame displacement and shortest path is positive, this
means that head motion artifacts lead to a decrease in overall
brain connectivity. Conversely, if correlation is negative, the
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artifacts impact as an increase in overall connectivity. Both
cases should be avoided, and findings reinforce that head mo-
tion indeed biases functional connectivity analyses when
using the shortest path (and degree). We did not directly in-
vestigate the possible reasons for different signs in this
correlation, but we speculate that it may be related to the
scanning parameters or age. Moreover, Figure 3 demon-
strates that the (median) correlation between frame displace-
ment and mean commute time is consistently close to zero.
As a consequence, single-subject-level correlations between
path length and commute time may not be as high because
the former is more affected by motion artifacts. Thus, al-
though path length and commute time approaches reported
mostly the same information, our finding is important because
often there is interest in conducting correlation analyses be-
tween single-subject data (e.g., clinical scales and demograph-
ics) and individual ROI metrics. In this setting, commute time
should be used to minimize motion confounding.
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FIG. 2. Scatter plots between mean (across subjects) commute time and shortest path. Each point corresponds to a brain

region.

In addition, head motion levels are usually dependent on
age and clinical samples. Thus, our results are of fundamen-
tal importance in functional connectomic studies carried out
in these populations. The investigation of developmental tra-
jectories of the human connectome is a topic of increasing in-
terest in the scientific community (Cao et al., 2016; Fransson
et al., 2011; Huang et al., 2015; Supekar et al., 2009).
Younger children usually present a higher level of head
motion inside the scanner when compared with older chil-
dren and adolescents, even in typical samples. On the other
hand, hyperkinesia is more frequent in males and a criterion
for the ADHD combined type. In addition, clinical popula-
tions such as patients diagnosed with Parkinson’s disease
or Tourette’s syndrome also present greater levels of move-
ment during fMRI sessions. Our findings suggest that com-
mute time might be a suitable approach to identify brain
hubs in these samples, at least for comparison purposes.

It is important to mention that considering the current state
of the literature, head motion confounds cannot be completely
ruled out as sources of error. In addition, there is considerable

heterogeneity in the age of children and adolescents as well as
in acquisition parameters between sites of the ADHD-200
dataset. Despite a loss on methodological reliability, we
think that these features reinforce the utility of commute
time measures for real-world applications. It is also important
to emphasize that our approach, unlike previous efforts using
random walk-based metrics (focused on modeling the causal
relationship between structural and functional connections),
is rather an attempt to find a better phenomenological quanti-
tative descriptor of the functional connectome organization.
One further limitation to be mentioned is the definition of
graph weights. In the current study, we considered absolute
values of functional connectivity coefficients (Spearman’s
correlation) as the weights between two nodes (brain re-
gions). However, one could argue that positive and negative
weights might not result in the same random walks over the
graph. While acknowledging that this is a relevant limitation
of our study, we remark that there is no consensus on this
issue in the current literature. Actually, this is one of the
main topics of dispute in the brain network literature, and
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FIG. 3. Box plots of the correlation between head motion (frame displacement) and mean (across regions) commute time/

shortest path metrics. Each point corresponds to a subject.

our findings can be later expanded to include alternative ran-
dom walk approaches.

Commute time provides a graph metric associated with
brain functional integration, that is, how coherent is the activ-
ity in multiple regions. Future studies on this topic involve the
development of novel analytical approaches to investigate
brain functional segregation from a random walk perspective,
also considering all possible paths and not only the shortest
ones. Another interesting open question is how to handle func-
tional connectivity coefficients that are negative when con-
ducting commute analyses. As a conclusion, we argue that
commute time, a relatively simple graph theory-derived met-
ric, might be a useful tool to investigate brain connectivity net-
works, particularly when motion artifacts are of importance.
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