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Abstract

Community structure, or ‘‘modularity,’’ is a fundamentally important aspect in the organization of structural and
functional brain networks, but their identification with community detection methods is confounded by noisy or
missing connections. Although several methods have been used to account for missing data, the performance of
these methods has not been compared quantitatively so far. In this study, we compared four different approaches
to account for missing connections when identifying modules in binary and weighted networks using both Louvain
and Infomap community detection algorithms. The four methods are ‘‘zeros,’’ ‘‘row-column mean,’’ ‘‘common
neighbors,’’ and ‘‘consensus clustering.’’ Using Lancichinetti–Fortunato–Radicchi benchmark-simulated binary
and weighted networks, we find that ‘‘zeros,’’ ‘‘row-column mean,’’ and ‘‘common neighbors’’ approaches per-
form well with both Louvain and Infomap, whereas ‘‘consensus clustering’’ performs well with Louvain but not
Infomap. A similar pattern of results was observed with empirical networks from stereotactical electroencephalog-
raphy data, except that ‘‘consensus clustering’’ outperforms other approaches on weighted networks with Louvain.
Based on these results, we recommend any of the four methods when using Louvain on binary networks, whereas
‘‘consensus clustering’’ is superior with Louvain clustering of weighted networks. When using Infomap, ‘‘zeros’’
or ‘‘common neighbors’’ should be used for both binary and weighted networks. These findings provide a basis to
accounting for noisy or missing connections when identifying modules in brain networks.

Keywords: brain connectivity; brain networks; community detection; connectomics; incomplete networks;
missing data

Introduction

The topological organization of interregional human
brain networks can reveal how different parts of the brain

interact to produce cognition and behavior (van den Heuvel and
Sporns, 2013). Several studies have mapped structural connec-
tions between regions using diffusion magnetic resonance im-
aging (MRI; Catani and de Schotten, 2012; Schmahmann and
Pandya, 2009) and functional connections using electroenceph-
alography (EEG)/magnetoencephalography (MEG; de Haan
et al., 2009; Stam et al., 2008), and functional magnetic reso-
nance imaging (fMRI; Buckner and Vincent, 2007; Salvador
et al., 2005). The resulting brain networks are typically charac-
terized with mathematical tools and concepts from graph theory
(Bullmore and Sporns, 2009) in many of these studies.

In particular, a number of studies have used community
detection methods from graph theory to identify modules,

that is, sets of densely interconnected nodes, in interregional
human structural (Hagmann et al., 2008), and functional net-
works (Chavez et al., 2010; Nicolini and Bifone, 2016;
Power et al., 2011).

Modules constitute organizational units of the network
(Sporns and Betzel, 2016) and may have distinct functional
roles (Wig, 2017). Modules identified in structural brain net-
works of both humans (Hagmann et al., 2008) and animals
(Bota et al., 2015; Harriger et al., 2012; Wang et al., 2012)
follow known functional subdivisions in the brain, that is,
modules comprise regions that are known to be functionally
related from previous lesion and imaging studies. Also the
modules identified in functional brain networks obtained
from fMRI resting-state data (Power et al., 2011) correspond
to functional systems of the brain previously identified by
other techniques such as independent component analysis
(Beckmann et al., 2005; Damoiseaux et al., 2006).
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However, structural and functional networks obtained
with noninvasive methodologies contain a number of con-
nections that are noisy, difficult to estimate, or are signifi-
cantly biased by various factors. In MEG/EEG, the low
signal-to-noise ratio and field spread/volume conduction
pose problems in identifying functional connections, espe-
cially between nearby brain regions (Hillebrand et al.,
2012; Palva and Palva, 2012; Palva et al., 2018). Also in
fMRI, short-range correlations between voxels are artificially
high due to effects of local vasculature, preprocessing, and
motion artifacts (Power et al., 2011). Similarly, with diffusion
MRI, some structural connections cannot be accurately iden-
tified due to technical factors (e.g., subject motion and phys-
iological noise) or algorithmic confounds caused by crossing
fibers (Dell’Acqua et al., 2007; Thomas et al., 2014).

Moreover, interregional functional networks derived from
invasive human electrophysiological techniques such as ster-
eotactical EEG (SEEG) and electrocorticography (ECoG) in-
herently yield only a sparse sampling of brain areas (Arnulfo
et al., 2015a; Zhang et al., 2010). Hence, both noninvasive
(MEG, EEG, fMRI, and diffusion MRI) and invasive
(SEEG and ECoG) connectomes are invariably derived
from data with incomplete coverage and thus a number of
missing connections between brain regions.

Modules are often identified using various community de-
tection methods. Community detection methods such as Lou-
vain (Blondel et al., 2008) and Infomap (Rosvall and
Bergstrom, 2008) can, however, be confounded when the
network contains noisy connections as in MEG/EEG, diffu-
sion MRI, or fMRI, or missing connections as in SEEG or
ECoG. For example, when signal between neighboring vox-
els in fMRI are artificially correlated, modules identified
from voxel-wise functional networks would be biased toward
comprising spatially contiguous voxels.

One way of accounting for noisy connections has been to
set all these connections to 0 before identifying modules
(Power et al., 2011). However, this makes strong assump-
tions about the underlying connections, which could itself
bias the identification of modules, especially when the pro-
portion of noisy connections is high. Although this is the
only method to our knowledge that has been employed to
identify modules in noisy or incomplete brain networks, a
number of general ‘‘link prediction’’ methods from network
science have been used to replace noisy or missing connec-
tions to generate complete networks (Lü and Zhou, 2011).

One of the most widely used link prediction methods is
the ‘‘common neighbors’’ approach, which inserts connec-
tions between nodes that are similar to each other, where
similarity is quantified by correspondence of local neighbor-
hoods (Goldberg and Roth, 2003). Other similarity-based
link prediction methods such as the Local Path Index (Lü
et al., 2009) use quasi-local topological information to quan-
tify similarity between pairs of nodes, whereas yet others
such as SimRank ( Jeh and Widom, 2002) use global topolog-
ical organization to quantify similarity.

Conversely, model-based link prediction methods fit a
specific generative network model to the original network
and use the estimated model parameters to generate complete
networks. Examples are methods based on stochastic rela-
tional models (Yu et al., 2006), hierarchical structure models
(Clauset et al., 2008), or stochastic block models (Airoldi
et al., 2008; Dorelan et al., 2005). Therefore, a range of meth-

ods exist to replace noisy or missing connections in incom-
plete networks, but there has not yet been a systematic
comparison of these methods or their ability to facilitate
the accurate identification of modules in brain networks.

In this article, we compared the performance of four pos-
sible methods to account for noisy or missing values when
identifying modules in brain networks. The four methods
represent distinct approaches to filling noisy or missing con-
nections to yield complete networks. The first method is to
set noisy or missing values to 0, whereas the second method
is to replace each of these connections by the mean of the re-
spective row and column elements. A third method is to re-
place each noisy or missing connection by its proportion of
common neighbors (Goldberg and Roth, 2003), whereas a
fourth method uses consensus clustering approaches (Lanci-
chinetti and Fortunato, 2012) to identify modules.

We compared the performance of these methods on in-
complete versions of binary and weighted Lancichinetti–
Fortunato–Radicchi (LFR) benchmark simulated networks
(Lancichinetti et al., 2008), with both Louvain and Infomap
community detection algorithms. We also compared the
performance of these methods with Louvain and Infomap,
on binary and weighted versions of an incomplete group-
level functional connectome obtained from SEEG data of
64 individuals.

We show on simulated networks that each of the four meth-
ods can be used with the Louvain community detection algo-
rithm to identify modules with high accuracy, despite a
substantial percentage of missing connections. When used
with Infomap, however, the ‘‘zeros,’’ ‘‘row-column mean,’’
and ‘‘common neighbors’’ approaches perform well, whereas
the ‘‘consensus clustering’’ approach identifies modules less
accurately when a substantial percentage of connections are
missing. Furthermore, we demonstrate on empirical SEEG net-
works that the ‘‘consensus clustering’’ approach outperforms
the other methods when using Louvain with weighted net-
works, whereas the ‘‘zeros’’ or ‘‘common neighbors’’ methods
perform well when Infomap is used to identify modules.

In the following sections, we describe comparisons of
these four approaches to identify modules in brain networks
with missing connections. However, the methods compared
can be applied in an identical manner to brain networks
with noisy connections, and the results obtained are equally
relevant to identifying modules in brain networks with noisy
connections.

Materials and Methods

Description of methods to account for missing connections

We compared four methods to identify modules in incom-
plete brain networks:

1. Zeros: In this method, each missing value is replaced
by 0 before identifying modules in the network. This
was done for both binary and weighted networks.

2. Row-column mean: In this method, each missing value is
replaced by mean of a vector containing all valid row and
column elements of that missing value. This generates
complete networks while making minimal assumptions
about underlying connections. For binary networks, the
element is set to 1 if the vector mean is ‡0.5, otherwise
it is set to 0. For weighted networks, the connection
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weight is set to the vector mean. The complete matrix is
entered into the method for identifying modules.

3. Common neighbors: In this method, each missing value
is replaced by the proportion of neighbors that are com-
mon to both nodes between which the missing value ex-
ists. This method represents a well-known approach to
link prediction in complex networks (Goldberg and
Roth, 2003; Lü and Zhou, 2011), and notably, it corre-
sponds to a known principle of brain network organiza-
tion (Vértes et al., 2012). The measure is also called
the Jaccard coefficient ( Jaccard, 1912). For binary net-
works, the element is set to 1 when the proportion is
‡0.5, otherwise it is set to 0. For weighted networks,
the connection weight is set to the proportion of common
neighbors. When either node has no connections, the ma-
trix element is set to 0. The complete matrix is entered
into the method for identifying modules.

4. Consensus clustering: In this method, missing values are
replaced by randomly selecting existing values from the
network (with replacement). This process is repeated
100 times to generate an ensemble of complete net-
works. Modules are identified on each of these complete
networks and the partitions of nodes into modules for
each of these networks are then combined using a con-
sensus clustering approach. Although consensus cluster-
ing (Lancichinetti and Fortunato, 2012) has been used to
identify modules in networks, we use it here for the first
time to identify modules in incomplete brain networks.

To combine the 100 individual partitions into a consensus
partition, each partition is represented as a binary square ma-
trix, where each element is set to 1 or 0 depending, respec-
tively, on whether those pairs of nodes are in the same
module or not. This makes the partitions comparable with
each other, since the arbitrary numbering of modules is elim-
inated in the representation. The ensemble of matrices is then
averaged (along the dimension of the repetitions) to obtain a
consensus matrix with values close to 1 when the respective
pair of nodes frequently co-occurred in the same module
across the ensemble and values close to 0 when the respec-
tive pair of nodes rarely co-occurred in the same module
across the ensemble.

For binary networks, all values ‡0.5 in this consensus ma-
trix or network are set to 1, whereas all other values are set to
0. For weighted networks, the consensus matrix with values
from 0 to 1 is used. The binary or weighted network is en-
tered into the method for identifying modules.

Community detection methods used. We compared the
performance of the mentioned four methods to identify modules
in incomplete brain networks, with two community detection al-
gorithms Louvain and Infomap, which have been widely used in
brain imaging studies (Betzel et al., 2016; Meunier et al., 2009;
Nicolini et al., 2017; Power et al., 2011). The ‘‘gamma’’ param-
eter for Louvain method, which influences the number of
modules obtained, was set to 1. We used the implementation
of the Louvain method available in the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010).

For Infomap, network density, that is, the number of con-
nections as a percentage of the total possible number of con-
nections, influences the number of modules. This can cause
problems after the first stage of ‘‘consensus clustering,’’

which yields a densely connected consensus matrix. In
such cases, only values in the top 10 percentile of the consen-
sus matrix were retained, hence network density was set to
10%. We used the implementation of the Infomap method
from the Map Equation website (www.mapequation.org).

The parameter settings for each of the four methods, when
used in combination with Louvain and Infomap algorithms,
are tabulated (Table 1).

MATLAB code for each of the four methods to account for
missing connections in binary and weighted networks, with
both Louvain and Infomap algorithms, has been made available
at (https://github.com/nitinwilliams/eeg_meg_analysis/tree/
master/missingvalues_toolbox).

Simulations on LFR benchmark networks

To assess performance of the four different methods, we
generated LFR benchmark networks (Lancichinetti et al.,
2008) that have been used to compare different community
detection algorithms (Lancichinetti and Fortunato, 2009b).
These networks mimic real-world networks since their de-
gree distribution and distribution of module sizes follow
power law distributions.

We used open source code (https://sites.google.com/site/
andrealancichinetti/files) to generate LFR binary and weigh-
ted undirected networks with 74 nodes, representing brain

Table 1. Parameter Settings for Each of Four

Methods to Account for Missing Connections

Zeros

Row-
column
mean

Common
neighbors

Consensus
clustering

Louvain
Binary

Gamma 1 1 1 1
Threshold N/A 0.5 0.5 0.5
Replicates N/A N/A N/A 100

Weighted
Gamma 1 1 1 1
Replicates N/A N/A N/A 100

Infomap
Binary

Network density 10% 10% 10% 10%
Threshold N/A 0.5 0.5 0.5
Replicates N/A N/A N/A 100

Weighted
Network density 10% 10% 10% 10%
Replicates N/A N/A N/A 100

Parameter settings for each of four methods as applied with Lou-
vain and Infomap algorithms to both binary and weighted networks.
The ‘‘gamma’’ value is the resolution parameter that influences the
number of modules with Louvain, whereas ‘‘network density’’
plays the corresponding function with Infomap. The ‘‘threshold’’
value is used for binary networks with both Louvain and
Infomap. Connections below the ‘‘threshold’’ value are set to 0,
whereas those above the ‘‘threshold’’ are set to 1. The ‘‘replicates’’
parameter is used only with ‘‘consensus clustering,’’ and indicates
the number of randomly filled versions of the original network,
from which consensus modules are identified. The network density
of 10% was imposed on the consensus matrix during ‘‘consensus
clustering’’ for both simulated and empirical networks. However,
network density of 10% for the original input networks for each of
the four methods was imposed only on the empirical networks.

N/A, not applicable.
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regions from a single hemisphere as per Destrieux brain par-
cellation (Destrieux et al., 2010). The settings to generate the
binary networks were such that mean degree was 10, maxi-
mum degree was 20, whereas minimum and maximum com-
munity sizes were set to 6 and 12, respectively. To mimic
values found in real-world networks, we chose 2 and 1 as the
power law exponents for degree distribution and distribution
of communities, respectively (Lancichinetti et al., 2008).

With these parameters, we generated networks at mixing
factors from 0.05 to 0.4 (intervals of 0.05)—mixing factor in-
dicates the distinctness of modules from each other and is a
parameter that can be set in generating LFR networks. Low
values for mixing factors produce networks with highly distinct
modules. A single network was generated for each level of
mixing factor such that eight LFR benchmark networks were
obtained and the ground truth community structure for each
of these networks was also recorded. We followed an identical
procedure to generate weighted networks, except that strengths
of within module and between module connections were sam-
pled from normal distributions with mean 0.7 and 0.3, respec-
tively, each distribution with standard deviation (SD) of 0.1.
All connection strengths were constrained to be positive.

From each of these binary and weighted networks, we cre-
ated ensembles of incomplete networks by randomly replac-
ing a proportion of existing values by NaN (not-a-number),
to indicate invalid entries. Specifically, we created 100 in-
complete networks each, at 9 levels of ‘‘proportion of miss-
ing values’’ ranging from 0.1 to 0.9 (intervals of 0.1).
Proportion of missing values of 0.9 meant that 90% of exist-
ing values were replaced by NaN values. This was done for
each of the original eight networks (each with different mix-
ing factors). Thus, 100 incomplete versions of each of the 8
binary and weighted networks were created at 9 levels of
‘‘proportion of missing values.’’

To each of these networks, we applied both Louvain and
Infomap algorithms to identify modules, using each of the
four ways of accounting for missing connections. For each of
the networks, the identified modules were compared with the
ground truth modules using a measure of partition similarity:

PS =
Æl1, l2æ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æl1, l1æÆl2, l2æ

p ,

where Ælm, lnæ = +
i, j

C
mð Þ

i, j C
nð Þ

i, j ,

which gives values between 0 and 1 (1 being identical parti-
tions). To assess performance of the methods to account for
missing values, we inspected mean partition similarity across
100 incomplete networks (compared with ground truth parti-
tions), for each combination of ‘‘mixing factor’’ and ‘‘propor-
tion of missing values.’’

In addition to comparing similarity between estimated and
ground truth modules across the four methods, we also com-
pared computation times of these approaches. Louvain algo-
rithm was run on Intel (R) Xeon (R) X5680 processor, with
speed 3.33 GHz. Infomap algorithm was run on Intel (R)
Xeon (R) E560 processor, with speed 2.40 GHz.

To assess performance and computation time for larger
networks, we also compared the four methods on single ex-
amples of 103 node LFR binary and weighted networks,
across the range of mixing factors, for proportions of miss-
ing values of 0.3, 0.5, and 0.7. The parameters to generate

these networks were the same as for the original 74 node
networks, except that mean degree, maximum degree, and
minimum and maximum community sizes were linearly
scaled to the 103 node setting, with values of 135, 270,
81, and 162, respectively.

Investigations on group-level functional connectome
from SEEG resting-state data

Data acquisition and preprocessing. We recorded 10
minutes eyes-closed resting-state SEEG data at 1 kHz,
from 64 individuals affected by drug-resistant focal epilepsy
and undergoing presurgical clinical assessment. For each in-
dividual, 17 – 3 (mean – SD) SEEG shafts were inserted into
the brain, with anatomical positions varying by surgical re-
quirements (Cardinale et al., 2013). The study was approved
by ethics committee of the Niguarda ‘‘Ca’ Granda’’ Hospital,
Milan, and done as per World Medical Association Declara-
tion of Helsinki—Ethical Principles for Medical Research
Involving Human Subjects.

After rereferencing each gray matter contact to its nearest
white matter contact (Arnulfo et al., 2015a), data were finite
impulse response filtered into 18 frequency bands from 3 to
320 Hz, out of which only activity from the alpha frequency
band of 8–12 Hz (center frequency = 10 Hz) was analyzed for
this study. Before calculating functional connectivity, we
discarded 500 ms wide windows containing interictal epilep-
tic events, that is, when at least 10% of contacts demon-
strated abnormal concurrent sharp peaks in more than half
the 18 frequency bands.

Connectome estimation. For each individual, functional
connectivity between contacts was measured by the phase
locking value (PLV; Lachaux et al., 1999):

PLV =
1

N
+
N

n=1

ej h1 nð Þ�h2 nð Þð Þ
����

����,

where h1 nð Þ and h2 nð Þ are instantaneous phases from a pair
of contacts at sample n, with N being the total number of
samples. To estimate the alpha-band group-level electro-
physiological functional connectome, we first selected a par-
cellation scheme for dividing the brain into a number of
regions. The scheme we used was the Destrieux atlas com-
posed of 148 parcels or brain regions (Destrieux et al.,
2010), that is, 74 regions per hemisphere.

To determine functional connectivity between a pair of
brain regions, we took the average PLV over all subjects,
for all contact pairs that traversed that pair of brain regions.
Localization of each contact with respect to brain regions is
explained in Arnulfo et al. (2015b). Only the group-level net-
work of right-hemispheric connections was used for this
study. This network had 80% coverage, that is, 20% of con-
nections had missing values.

The strength of estimated functional connections lay be-
tween 0 and 1. To remove those functional connections
likely due to noise, we retained only the top 10 percentile
of estimated functional connections, setting all others to 0.
To obtain the group-level binary undirected network, all
retained connections were set to 1. The corresponding
weighted network was obtained by retaining strength of
those connections with strengths in top 10 percentile (rather
than setting them to 1). Thus, the network densities of the
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binary and weighted networks were both 10%, although al-
ternative values of network density were also explored (see
Results section).

Owing to potentially confounding influence, a few contact
pairs were excluded from the connectome estimation: those
that shared the same white matter reference, those that
were <20 mm apart, those tagged as epileptic, and those
including subcortical regions.

Assessing reliability with which regions are assigned to
modules. To determine the reliability with which regions
are assigned to modules, we generated a set of 100 boot-
strapped functional connectomes. Each bootstrapped func-
tional connectome was estimated by averaging PLVs
between relevant contact pairs for a cohort generated by
resampling with replacement, of the original 64 individu-
als. Generating the bootstrapped functional connectomes
effectively induces random perturbations to the original
data set, whose effect on the original modular structure
is used to assess the reliability/confidence with which a
brain region can be assigned to its module.

We identified modules for each of the bootstrapped func-
tional connectomes, in the same way as was done for the orig-
inal network. Then, for each brain region, we generated a
vector indicating the set of regions in its same module (indi-
cated by 1) and those regions in other modules (indicated by
0). This vector was compared with the corresponding vector
from the modular structure of the original functional connec-
tome. In particular, we estimated the sum of the number of re-
gions that were correctly located in the same module and the
number of regions that were correctly located in other modules
(compared with the original modular structure), as a function
of the total number of regions (excluding own region).

This was done for each of the 100 bootstrapped functional
connectomes and gave a measure between 0 and 1, of the
similarity of the modular structure between the original
and bootstrapped network, for that region. Values close to
1 across the 100 bootstrapped networks indicated that the as-
signment of the region to its module in the original network
was reliable. The null distribution to test the statistical signif-
icance of this reliability measure was generated for each re-
gion, for each bootstrapped network, by estimating the same
measure when the vector indicating the modular structure of
a region is randomly resampled or permuted (without re-
placement). This was done 100 times to get a distribution
of null reliability values, for each region, for each bootstrap-
ped network.

The module affiliation of a region was then considered to
be reliable with respect to a given bootstrapped network, if
the ‘‘reliability’’ of the region was higher than the 95 percen-
tile value of null distribution of ‘‘reliability’’ of the region
where the percentile value was estimated along the dimen-
sion of the 100 permutations. Such a test was done for
each region, for each of the bootstrapped networks. Results
from these tests could be used to calculate mean and SD of
‘‘percentage of stable regions,’’ for each of the four ap-
proaches to dealing with missing connections, which was
used to compare the different methods of accounting for
missing connections.

To determine whether the ‘‘percentage of stable regions’’
was statistically significant, we first estimated the mean num-
ber of false positives to be expected across the 100 permuta-

tions by comparing the original vector of 100 null reliability
values with the 95 percentile threshold. This was done for
each region, for each bootstrapped network. Then we esti-
mated the mean percentage of stable regions that would be
expected by chance, across the 100 bootstrapped networks.
The original ‘‘percentage of stable regions’’ was considered
to be statistically significant if higher than the percentage of
stable regions that would be expected by chance.

Results

In this study, we compared different ways of accounting
for missing connections when identifying modules in incom-
plete brain networks. To this end, we compared the ap-
proaches on incomplete versions of benchmark simulated
binary and weighted networks (Fig. 1). We also compared
the four approaches on binary and weighted versions of an
incomplete group-level functional connectome obtained
from alpha band (8–12 Hz) activity of SEEG resting-state
data from 64 individuals. Comparisons on both the simulated
and empirical networks were done with Louvain and Info-
map community detection.

Each of four methods performs well with Louvain
clustering up to substantial percentages
of missing connections.

When the Louvain method was used to identify modules,
all four ways of accounting for missing values perform well
at a range of mixing factors (indicating distinctness of mod-
ules) and proportions of missing values, for both binary and
weighted networks (Fig. 2). As expected, performance of all
methods is high at low mixing factors and low proportions of
missing values and comparatively low at high mixing factors
and high proportions of missing values. This pattern of re-
sults is similar for each of the four approaches.

Across the different methods, the ‘‘ground truth’’ modules
are identified accurately (mean partition similarity *0.8 and
more) when up to 50% of connections were missing, across
the range of mixing factors studied. Since the weights of the
weighted networks contain information aiding the identifica-
tion of modules, their mean partition similarities are margin-
ally higher than those of corresponding binary networks
(Fig. 2).

As expected, the mean partition similarities are closely
linked to the accuracy with which the correct number of mod-
ules was returned by the Louvain algorithm (Supplementary
Fig. S1). At higher percentages of missing connections, the
‘‘zeros,’’ ‘‘row-column mean,’’ and ‘‘common neighbors’’ ap-
proaches perform better than ‘‘consensus clustering,’’ for both
binary and weighted networks (Fig. 2).

The ‘‘consensus clustering’’ method had higher compu-
tation time than ‘‘zeros’’ and ‘‘row-column mean’’ methods
and computation time similar to the ‘‘common neighbors’’
method (Supplementary Fig. S2), for both binary and
weighted networks. Computation times with either of the
four methods rarely exceed 3 seconds.

For the large binary and weighted networks, each of the
four methods performed well at each of the mixing factors
studied, at a range of percentages of missing values (Supple-
mentary Fig. S3). This was a pattern identical to that obtained
with the original 74 node networks. However, on the large
networks of 103 nodes, we found that computation times
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for ‘‘common neighbors’’ approach were much higher than
those of ‘‘zeros,’’ ‘‘row-column mean,’’ and ‘‘consensus clus-
tering’’ (Supplementary Fig. S3), even exceeding 600 seconds
for high proportions of missing values, for weighted networks.

Computation times for ‘‘row-column mean’’ method also
exceed those of ‘‘consensus clustering’’ for high proportions
of missing values, for binary and weighted networks. The likely
reason for dramatically higher computation times for ‘‘common
neighbors’’ and ‘‘row-column mean’’ for large networks com-
pared with smaller networks is the element-wise nature of filling
missing values for these methods, whereas missing values are
filled simultaneously with ‘‘zeros’’ and ‘‘consensus clustering.’’

The ‘‘zeros,’’ ‘‘row-column mean,’’ and ‘‘common
neighbors’’ method perform well with Infomap
up to substantial percentages of missing connections

When the Infomap method was used to identify modules
on both binary and weighted networks, the performance of
the ‘‘zeros,’’ ‘‘row-column mean,’’ and ‘‘common neigh-
bors’’ methods was similar to that when used with the Lou-
vain algorithm (Fig. 3). Just as when used with Louvain,
these methods gave accurate module identification (mean
partition similarity *0.8 and more), when up to 50% of con-
nections were missing, across the range of mixing factors
studied. However, the ‘‘consensus clustering’’ method did
not perform as well with the Infomap method, on either bi-
nary or weighted networks. Specifically, ‘‘consensus cluster-
ing’’ performs moderately up to 50% missing connections

(mean partition similarity *0.4 and more), and performance
suffers for higher percentages of missing connections.

Performance of ‘‘row-column mean’’ with weighted net-
works also suffers for high percentages of missing connec-
tions. With the Infomap method also, the mean partition
similarities were closely linked to the accuracy with which
the correct number of modules was returned (Supplementary
Fig. S1). The ‘‘consensus clustering’’ method also takes
much longer than other approaches on these original 74
node networks (Supplementary Fig. S4). For example, ‘‘con-
sensus clustering’’ takes close to 10 seconds on binary
networks, whereas the next slowest method ‘‘common neigh-
bors’’ takes *1 second.

On the large networks also, the accuracy of identifying
modules with ‘‘consensus clustering’’ is lower than that for
the other methods, for higher mixing factors and high per-
centages of missing connections. Just as with the 74-node
networks, ‘‘row-column mean’’ method performs poorly
for weighted networks at high percentage of missing connec-
tions (Supplementary Fig. S5). Computation times with
‘‘consensus clustering’’ are higher than those with the
other methods, approaching 400 seconds for both binary
and weighted networks. In turn, ‘‘common neighbors’’
method takes longer than ‘‘zeros’’ and ‘‘row-column
mean’’ on binary and weighted networks. This pattern of re-
sults is identical to those observed with the smaller networks.

It should be noted, however, that the relative difference in
computation times between ‘‘consensus clustering’’ and the
next slowest method, ‘‘common neighbors’’ is lower for

FIG. 1. LFR benchmark networks used to compare methods to identify modules in incomplete brain networks. Example
LFR benchmark networks with distinct (top row) and nondistinct (bottom row) modules are sorted after community detection
to reveal modular structure. LFR, Lancichinetti–Fortunato–Radicchi. Color images are available online.
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FIG. 2. Each of four methods performs well when used with Louvain clustering up to substantial percentages of missing
connections. For both binary and weighted networks, each of the four methods (zeros, row-column mean, common neighbors,
and consensus clustering) performs effectively up to 50% missing connections (mean partition similarity *0.8 and more), for
range of mixing factors studied. At higher percentages of missing connections, the ‘‘zeros,’’ ‘‘row-column mean,’’ and ‘‘com-
mon neighbors’’ approaches perform better than ‘‘consensus clustering,’’ for both binary and weighted networks. Line plots
in bottom half of figure show mean and confidence intervals (–2 standard errors of mean) of similarity between identified and
‘‘ground truth’’ modules. Although lower bound of the line plots has been set to 0.4, note that the lower bound for the ‘‘sim-
ilarity of modules’’ metric used is 0. Color images are available online.
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FIG. 3. The ‘‘zeros,’’ ‘‘row-column mean,’’ and ‘‘common neighbors’’ methods perform well with Infomap up to substan-
tial percentages of missing connections. For both binary and weighted networks, the ‘‘zeros,’’ ‘‘row-column mean,’’ and
‘‘common neighbors’’ methods perform effectively up to 50% missing connections (mean partition similarity *0.8 and
more), for range of mixing factors studied. By contrast, ‘‘consensus clustering’’ performs moderately up to 50% missing con-
nections (mean partition similarity *0.4 and more), and performance suffers for higher percentages of missing connections.
Performance of ‘‘row-column mean’’ with weighted networks also suffers for high percentage of missing connections. Line
plots in bottom half of figure show mean and confidence intervals (–2 standard errors of mean) of similarity between iden-
tified and ‘‘ground truth’’ modules. Although lower bound of the line plots has been set to 0.3, note that the lower bound for
the ‘‘similarity of modules’’ metric used is 0. Color images are available online.
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large networks than for ‘‘small networks.’’ For example, for
small binary networks for high proportion of missing values,
‘‘consensus clustering’’ is *10 times slower than ‘‘common
neighbors,’’ whereas for large binary networks, this factor is
close to 2. The corresponding ratio comparing ‘‘consensus
clustering’’ and ‘‘row-column mean’’ decreases from *50
for small networks to just 8 for large networks.

Before comparing the four methods on SEEG binary and
weighted networks, we inspected the ‘‘percentage of stable
regions’’ for a range of ‘‘gamma’’ parameter values (for Lou-
vain) and a range of ‘‘network density’’ values (for Infomap).
This was the percentage of regions for which modules could
be identified reliably. The range of ‘‘gamma’’ values ex-
plored was {0.6, 0.8, 1, 1.2, and 1.4} and the range of ‘‘net-
work density’’ values explored was {1%, 5%, 10%, 15%, and
20%}. The ‘‘gamma’’ and ‘‘network density’’ parameters,
respectively, influence the number of modules identified
with Louvain and Infomap.

We found evidence for multiscale modular organization,
since statistically significant percentages of stable regions
were identified for a range of gamma values (for Louvain)
and network density values (for Infomap), for each of the
four methods (Supplementary Fig. S6). Specifically, for Lou-
vain, all the ‘‘gamma’’ values explored produced statistically
significant percentage of stable regions ( p < 0.05) for each of
the four methods for both binary and weighted networks.

For Infomap, all the ‘‘network density’’ values explored
produced statistically significant percentage of stable regions
( p < 0.05) for binary networks, and for ‘‘zeros,’’ ‘‘common
neighbors,’’ and ‘‘consensus clustering’’ on weighted net-
works. For ‘‘row-column mean’’ on weighted networks,
only network densities of 10%, 5%, and 1% produced statis-
tically significant percentage of stable regions. Of the many
valid choices for parameter values, we chose gamma = 1
(for Louvain) and network density = 10% (for Infomap).

Each of four methods performs similarly with Louvain
on SEEG binary networks, whereas ‘‘consensus
clustering’’ performs best on SEEG weighted networks

We identified modules on SEEG networks, and also visu-
alized the modules on inflated brain representations (Fig. 4).

For SEEG binary networks, percentages of regions for which
modules can be reliably identified are similar for each of the
methods, that is, 48.3% (zeros), 47.3% (row-column mean),
49% (common neighbors), and 46.3% (consensus clustering;
Fig. 5). For weighted networks, the ‘‘consensus clustering’’
approach (67.9%) outperforms the ‘‘zeros’’ (51.9%), ‘‘row-
column mean,’’ (51.2%) and ‘‘common neighbors’’ methods
(50.4%). Only the ‘‘consensus clustering’’ method identifies
a module comprising regions in the frontal lobe for both bi-
nary and weighted networks, in addition to the posterior pa-
rietal, superior temporal, and sensorimotor module identified
by the ‘‘zeros,’’ ‘‘row-column mean,’’ and ‘‘common neigh-
bors’’ methods (Fig. 5).

Each of these modules comprises regions that are known
to be functionally related, and might, respectively, reflect
functional systems responsible for reasoning and plan-
ning, sensory associative processing, auditory processing,
and sensorimotor processing, respectively (Gazzaniga
et al., 2002; Semrud-Clikeman and Ellison, 2009). Mod-
ules comprising spatially contiguous regions have also
been found in other studies of human structural (Hagmann
et al., 2008) and functional brain networks (Mehrkanoon
et al., 2014; Zhigalov et al., 2017), as well as structural net-
works in animals (Hilgetag et al., 2000; Goulas et al., 2015).

Consensus clustering can be used with Louvain to identify
modules for moderate but not high percentages
of missing connections

With the consensus clustering approach, modules can be
identified reliably for a substantial number of regions for binary
and weighted networks, when up to 30% of connections are
missing (Fig. 6). This holds both when connections are deleted
at random from the original SEEG connectome, or in ascending
order of number of samples used to estimate the strength of
functional connections, that is, connections for which lower
number of samples was used for estimation were deleted first.

When 50% of connections are missing, modules can be
identified reliably for only a few regions, although a higher
number for weighted than for binary networks. This holds
for both random and selective deletion of connections, al-
though regions in the frontal and superior temporal regions

FIG. 4. Group-level SEEG functional connectome used to compare methods to identify modules in incomplete brain net-
works. Group-level SEEG functional connectome derived from activity in the alpha frequency band (8–12 Hz) is sorted after
community detection, and modules are visualized on inflated brain representations. FC, functional connectivity; SEEG, ster-
eotactical electroencephalography. Color images are available online.
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become merged into a single module for random deletion but
not for selective deletion.

‘‘Zeros’’ and ‘‘common neighbors’’ methods perform best
with Infomap across SEEG binary and weighted networks

When used with Infomap, highest percentages of regions
whose modules can be reliably identified occur for ‘‘zeros’’
and ‘‘common neighbors,’’ for both binary (49% and
48.5%, respectively) and weighted networks (52.6% and

53%, respectively; Fig. 7). For both binary (34.5%)
and weighted networks (35.9%), ‘‘consensus clustering’’
performs less well than ‘‘zeros’’ and ‘‘common neigh-
bors,’’ whereas ‘‘row-column mean’’ performs similarly
to these two methods for binary networks (47.9%), but
not as well for weighted networks (53%).

These results follow the same pattern as the simula-
tions with Infomap. Both ‘‘zeros’’ and ‘‘common neighbors’’
methods identify modules comprising mainly frontal, supe-
rior temporal, and posterior parietal regions across binary

FIG. 5. Each of four methods performs similarly with Louvain on SEEG binary networks, whereas ‘‘consensus clustering’’
performs best on SEEG weighted networks. Percentage of regions for which modules can be reliably identified is similar for
each of four methods on SEEG binary networks, whereas this percentage is higher for ‘‘consensus clustering’’ than other
methods for SEEG weighted networks. With the ‘‘row-column mean’’ method, the module assignment of no regions is re-
liably identified. Bar plots show mean and confidence intervals (–2 standard errors of mean) of percentage of regions for
which modules can be reliably identified. Inflated brain representations show spatial layout of identified modules. Only
the ‘‘consensus clustering’’ method identifies a module comprising regions in the frontal lobe for both binary and weighted
networks, in addition to the posterior parietal, superior temporal, and sensorimotor module identified by the ‘‘zeros,’’ ‘‘row-
column mean,’’ and ‘‘common neighbors’’ methods. Color images are available online.
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and weighted networks, whereas the other methods identify
only a subset of these modules.

‘‘Zeros’’ method can be used with Infomap to identify
modules for moderate but not high percentages
of missing connections

With the zeros method, modules can be identified reliably
for a number of regions for binary and weighted networks
when up to 30% of connections are missing, for both binary
and weighted networks (Fig. 8). This holds both when con-
nections are deleted at random from the original SEEG con-
nectome, or in ascending order of number of samples used to
estimate the strength of functional connections. Conversely,
when 50% of connections are missing, modules can be iden-
tified reliably for only a few regions, for both binary and
weighted networks.

Discussion

Network modules reflect the functional organization of
brain networks and community detection algorithms from
graph theory are used to identify modules. However, interre-
gional human brain connectomes usually contain noisy
connections due to signal or source mixing or missing con-
nections due to sparse spatial coverage, which may confound
the identification of modules. In this study, we compared
four methods of accounting for missing connections on
binary and weighted versions of simulated and empirical net-
works, using both Louvain and Infomap community detec-
tion algorithms.

We find using simulated networks that when used with Lou-
vain community detection methods, each of the four approaches
can effectively identify modules even when the network has up
to 50% missing connections. Similar performance is obtained

FIG. 6. Consensus clustering can be used with Louvain to identify modules for moderate but not high percentages of miss-
ing connections. Modules can be identified reliably for a substantial number of regions for binary and weighted networks,
when up to 30% of connections are missing, with the ‘‘consensus clustering’’ approach. This holds both when connections
are deleted at random from the original SEEG connectome with 20% missing connections, or in ascending order of number of
samples used to estimate the strength of functional connections. When 50% of connections are missing, modules can be iden-
tified reliably for only a few regions, especially for binary networks. This holds for both random and selective deletion of
connections. Color images are available online.
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when using Infomap with all methods except for ‘‘consensus
clustering.’’ When applying the four approaches to incomplete
empirical SEEG networks, we find that the ‘‘consensus clus-
tering’’ approach outperforms other approaches when used
with Louvain on weighted networks, whereas the ‘‘zeros’’
or ‘‘common neighbors’’ methods perform well when used
with Infomap.

Suggestions for use

Based on our results, we can make some suggestions for
which method to use, to account for missing values in dif-

ferent situations. When using Louvain to identify modules
on weighted brain networks, the ‘‘consensus clustering’’
approach should be used, particularly due to its effective
performance on SEEG weighted networks as well as rea-
sonable computation times on both small and large simu-
lated networks. Although performance of ‘‘consensus
clustering’’ dips at high percentage of missing connections
on simulated weighted networks, such a situation occurs
rarely in analyzing brain networks. For example, the inter-
regional functional networks from a previous study had
only 4.1% connections considered to be noisy (Power
et al., 2011). When Louvain is used on binary brain

FIG. 7. ‘‘Zeros’’ and ‘‘common neighbors’’ methods perform best with Infomap across SEEG binary and weighted net-
works. Percentage of regions for which modules can be reliably identified is highest for ‘‘zeros’’ and ‘‘common neighbors’’
methods across binary and weighted networks. ‘‘Consensus clustering’’ performs less well than ‘‘zeros’’ and ‘‘common
neighbors’’ for both binary and weighted networks, whereas ‘‘row-column mean’’ performs as well as these two methods
for binary networks, but worse for ‘‘weighted networks.’’ Bar plots show mean and confidence intervals (–2 standard errors
of mean) of percentage of regions for which modules can be reliably identified. Inflated brain representations show spatial
layout of identified modules. Both the ‘‘zeros’’ and ‘‘common neighbors’’ methods identify modules comprising mainly fron-
tal, superior temporal, and posterior parietal regions, respectively, across binary and weighted networks, whereas the other
methods identify only a subset of these modules. Color images are available online.
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networks, each of the methods to account for missing con-
nections yields similar results.

When Infomap is used, both simulations and investiga-
tions on SEEG networks suggest using ‘‘zeros’’ or ‘‘com-
mon neighbors’’ for both binary and weighted networks.
However, the ‘‘zeros’’ method might be preferred to ‘‘com-
mon neighbors’’ on large networks due to the high compu-
tation times observed with ‘‘common neighbors’’ on such
networks.

Novel aspects

This study is the first comparison of methods to account for
missing connections, when identifying modules in noisy or in-
complete brain networks. Although other studies have investi-
gated the performance of different link prediction methods to

identify modules in incomplete networks (Yan and Gregory,
2012), this study also assessed the performance of four ap-
proaches on empirical brain networks and explored the effect
on the modular structure of both random and structured dele-
tion of links. Furthermore, this is the first time to our knowl-
edge that ways of accounting for missing connections on
weighted networks have been studied, rather than only binary
networks. A further novel aspect is that this is the first time
‘‘consensus clustering’’ has been adapted for use in identify-
ing modules in incomplete brain networks.

Agreement between results on simulated
and empirical networks

Results of comparing the four approaches between simu-
lated and empirical networks are in agreement, except that

FIG. 8. ‘‘Zeros’’ method can be used with Infomap to identify modules for moderate but not high percentages of missing
connections. Modules can be identified reliably for a number of regions for binary and weighted networks, when up to 30% of
connections are missing, with the ‘‘zeros’’ method. This holds when connections are deleted at random from the original
SEEG connectome with 20% missing connections, or in ascending order of number of samples used to estimate the strength
of functional connections. When 50% of connections are missing, modules can be identified reliably for only a few regions,
for both binary and weighted networks. This holds for both random and selective deletion of connections. Color images are
available online.
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‘‘consensus clustering’’ works as well as other approaches
for simulated weighted networks with Louvain, but better
than other approaches on empirical SEEG weighted net-
works. Although the reason for this discrepancy is unclear,
it might have to do with differences in topological properties
of the simulated and empirical networks. The LFR bench-
mark networks mimic some common topological properties
of real-world networks including brain networks, for exam-
ple, power law degree distribution. However, they do not
possess topological features that are specific to brain net-
works, which are influenced by spatial constraints and a ten-
dency for regions having similar local neighborhoods to be
connected to each other (Betzel et al., 2016).

Caveats and future work

Our conclusions on identification of modules with the four
methods are based on investigations with simulated and empir-
ical networks of 74 nodes, which correspond to one hemisphere
of the Destrieux atlas. How do these results generalize to larger
networks? We have demonstrated that the same pattern of re-
sults holds for networks of 103 nodes. Furthermore, previous
studies have shown that Louvain and Infomap give similar per-
formance on networks with 5 · 104 nodes and 105 nodes as they
do for smaller networks (Lancichinetti and Fortunato, 2009b).

Both the Louvain and Infomap algorithms are recommen-
ded for use on large networks (Yang et al., 2016), and their
ability to correctly identify communities has been demon-
strated to be similar across a wide range of network sizes, in-
cluding large networks with 2 · 104 nodes (Yang et al., 2016).
Since our results are based on identifying communities with
either Louvain or Infomap after generating complete net-
works with either of the four methods, we expect the conclu-
sions from our study to also hold for very large networks, for
example, voxel-wise fMRI networks of 106 nodes.

Our conclusions on computation times with the four meth-
ods are also based on investigations with simulated and em-
pirical networks of 74 nodes. How do these results generalize
to large networks? The differences in computation times of
the four methods arise from differences in the time taken
to generate the complete matrix, for use by either Louvain
or Infomap to identify modules. Hence, the ‘‘zeros’’ method
is quickest because all missing values can be filled simulta-
neously. Missing values for ‘‘row-column mean’’ and ‘‘com-
mon neighbors’’ are replaced element wise, which accounts
for high computation times with these methods on large net-
works. ‘‘Consensus clustering’’ generates the complete ma-
trix by performing multiple identifications of community
structure with either Louvain or Infomap and hence, this
method also has high computation times.

Previous work (Yang et al., 2016) has shown that compu-
tation times for identifying modules with Louvain increase
only slowly with network size, whereas computation times
with Infomap increase rapidly with network size. The low
increase of computation time with network size for Louvain
explains our results, specifically why ‘‘consensus cluster-
ing’’ with Louvain is relatively fast for large networks of
103 nodes, compared with computations times for ‘‘com-
mon neighbors’’ and ‘‘row-column mean,’’ whose element-
wise computations make them slow. Owing to this low rate
of increase in computation times of Louvain with increasing
network size, we expect that ‘‘common neighbors’’ and

‘‘row-column mean’’ will take much longer than ‘‘consen-
sus clustering’’ on very large networks of 106 nodes or
more, for example, voxel-wise fMRI networks. The
‘‘zeros’’ method will remain the quickest.

For the Infomap method, the rapid increase in computation
time with network size also explains our results, specifically
why ‘‘consensus clustering’’ with Infomap is slower than ‘‘com-
mon neighbors’’ and ‘‘row-column mean,’’ even for large net-
works of 103 nodes. However, the ratio between computation
times for ‘‘consensus clustering’’ and ‘‘common neighbors’’
with Infomap decreases from values close to 10 for small binary
networks to values close to 2 for large binary networks of 103

nodes. This indicates that increase in computation time of
‘‘common neighbors’’ with network size is higher than in-
crease in computation time of ‘‘consensus clustering’’ with
network size. A similar trend occurs for computation times
of ‘‘row-column mean’’ for small and large networks com-
pared with corresponding times for ‘‘consensus clustering.’’

Hence, we expect the computation times of ‘‘common neigh-
bors’’ and ‘‘row-column’’ to exceed those of ‘‘consensus cluster-
ing’’ for very large networks of 106 nodes or more, for example,
voxel-wise fMRI networks. Here also, the computational sim-
plicity of generating a complete matrix with the ‘‘zeros’’ method
will make it the quickest among the four methods.

This study investigated identifying communities in binary
and weighted undirected networks. Future work could extend
this toward determining effective ways of accounting for
missing connections, when the underlying network is di-
rected (Lancichinetti and Fortunato, 2009a).

Conclusion

Although modules can provide insight into network organi-
zation, noisy or missing connections in brain networks hamper
the identification of modules. In this article, we performed sim-
ulations on simulated and empirical networks to determine the
effectiveness of different ways of accounting for noisy or miss-
ing connections when identifying modules. We find that differ-
ent approaches work better in different situations, and make
suggestions for use based on these observations. These findings
and suggestions provide a sound basis on which future studies
can identify modules in noisy or incomplete brain networks.
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