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Abstract

There is a growing interest in using so-called dynamic functional connectivity, as the conventional static brain
connectivity models are being questioned. Brain network analyses yield complex network data that are difficult
to analyze and interpret. To deal with the complex structures, decomposition/factorization techniques that sim-
plify the data are often used. For dynamic network analyses, data simplification is of even greater importance, as
dynamic connectivity analyses result in a time series of complex networks. A new challenge that must be faced
when using these decomposition/factorization techniques is how to interpret the resulting connectivity patterns.
Connectivity patterns resulting from decomposition analyses are often visualized as networks in brain space, in
the same way that pairwise correlation networks are visualized. This elevates the risk of conflating connections
between nodes that represent correlations between nodes’ time series with connections between nodes that result
from decomposition analyses. Moreover, dynamic connectivity data may be represented with three-dimensional
or four-dimensional (4D) tensors and decomposition results require unique interpretations. Thus, the primary
goal of this article is to (1) address the issues that must be considered when interpreting the connectivity patterns
from decomposition techniques and (2) show how the data structure and decomposition method interact to affect
this interpretation. The outcome of our analyses is summarized as follows. (1) The edge strength in decomposi-
tion connectivity patterns represents complex relationships not pairwise interactions between the nodes. (2) The
structure of the data significantly alters the connectivity patterns, for example, 4D data result in connectivity pat-
terns with higher regional connections. (3) Orthogonal decomposition methods outperform in feature reduction
applications, whereas nonorthogonal decomposition methods are better for mechanistic interpretation.
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Introduction

The brain inherently possesses a complex network or-
ganization and brain network analyses have become a

major methodology in neuroimaging (Bullmore and Sporns,
2009). Brain network analyses model brain regions as net-
work nodes and relationships between regions as network
edges. Traditionally, the relationship between the time series
for each and every node pair is identified using some form of
correlation analysis. This results in a single, static network
for each person where the connections (edges) between

nodes indicate the strength of the correlation between the
nodes’ time series. More recently, the idea of static network
representation of the brain is being questioned and researchers
are studying dynamic changes in functional brain networks
(Chang and Glover, 2010; Chen et al., 2016; Handwerker
et al., 2012). Although this is an issue of intensive research,
it is beyond the scope of this article to resolve the debate
over static versus dynamic brain networks. Instead, we rec-
ognize the growing literature using dynamic connectivity
methods and our main focus is to address the challenges
for analysis and interpretation of dynamic complex brain
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networks (Hutchison et al., 2013). Readers interested in static
versus dynamic connectivity issues are referred to Hand-
werker and colleagues (2012), Hindriks and colleagues (2016),
Hutchison and colleagues (2013), and Preti and colleagues
(2016).

Various methodologies have been exploited to estimate
dynamic connectivity such as sliding window correlations
(Allen et al., 2014; Handwerker et al., 2012), time/frequency
coherence analysis (Chang and Glover, 2010), and paramet-
ric volatility models (Lindquist et al., 2014). Regardless of
the technique, dynamic connectivity estimation extends
brain network representation along time. Thus, rather than
having one static functional brain network for the entire
scan period, each participant will have many functional
brain networks that capture the dynamic evolution of con-
nectivity across time. As static brain networks are tradi-
tionally represented by a single matrix structure, dynamic
connectivity can be represented with a series of matrices
that form a three-dimensional (3D) array, also known as
3D tensor. Collecting dynamic brain networks for many indi-
vidual participants in a study adds a fourth dimension and
yields a four-dimensional (4D) tensor. Moreover, each con-
nectivity matrix at each time and for each participant is sym-
metric, and the unique entries of each matrix can also be
‘‘unfolded’’ into a vector, shaping the data back into three
dimensions.

The 3D or 4D tensors resulting from a dynamic connectiv-
ity analysis can become quite large depending on the number
of dynamic networks created. The dynamic data are often
100 times larger than the static data. Multivariate data de-
composition approaches have recently gained popularity
(Leonardi et al., 2013; Tobia et al., 2017) to reduce and sim-
plify dynamic brain network data. The primary objective of
the decomposition techniques applied to dynamic functional
brain networks is to identify the main components underly-
ing the data, such that all the components together can opti-
mally reconstruct the original dynamic network time series.
This is ideally achieved in a manner such that the data size
is reduced substantially compared with the original 3D or
4D data.

When applying decomposition methods to dynamic func-
tional brain networks, the result is a set of components, each
including a spatial factor, a time factor, and a participant fac-
tor. The spatial factor is a vector of weights that indicate the
strength of the relationship between pairs of nodes. It is often
reformatted into an N · N matrix, with N = number of net-
work nodes. This spatial factor can also be mapped back
into brain space to visualize the anatomical location of
nodes. The time factor is a time series presenting the tempo-
ral fluctuations of the corresponding spatial factor. The par-
ticipant factor is an array of scores, with scores representing
the strength of each participant’s contribution to the corre-
sponding spatial and time factors. The participant scores
from any given component can be used in statistical analysis
for between-group comparisons (Leonardi et al., 2013;
Mokhtari et al., 2018b; Tobia et al., 2017). In the remainder
of this article, we refer to the spatial factor reformatted into a
matrix as the spatial matrix, and the spatial factor projected
into brain space as the spatial map. This is in contrast to
the terms ‘‘connectivity matrix’’ and ‘‘connectivity map’’
that we reserve for describing the original functional brain
networks.

In this study, among the existing approaches for multidi-
mensional data decomposition, we mainly focus on Tucker
decomposition (also known as higher order singular value
decomposition [SVD] or multilinear SVD) (De Lathauwer
et al., 2000) and canonical polyadic (CP) decomposition
(also known as parallel factorization) (Bro, 1997; Harshman
and Lundy, 1994).

There are two key benefits of data decomposition tech-
niques such as those investigated here. First, they reduce
the large variable set (a series of whole-brain networks) to
a much smaller set of components. This simplifies any fur-
ther analyses as much less data are needed to represent the
functional networks from a given participant or even a pop-
ulation of participants. Second, the resulting components
capture complex relationships between the network nodes
that may not be readily observable in the original network
time series (Leonardi et al., 2013; Richiardi et al., 2013).
However, interpreting the components resulting from these
multivariate data-driven approaches remains an ongoing
challenge.

The main goal of this article is to provide guidance on how
to interpret the spatial matrices and spatial maps that result
from these data decomposition approaches. As part of this
goal, we examine how the decomposition method and data
structure interact to affect the ultimate interpretation of re-
sults. It is our hope that a detailed discussion of these issues
will help prevent oversimplification or inaccurate interpreta-
tions and will provide an interpretational framework for fu-
ture studies. Our main conclusions from this article are as
follows. (1) The spatial matrix and spatial map from an indi-
vidual component should not be confused with a connectivity
matrix or connectivity map from the original data, even
though they are often visualized in a similar way. (2) Each
spatial matrix or map represents a multivariate pattern of re-
lationships between network nodes, and individual nodes or
edges should not be interpreted in isolation. (3) Decompos-
ing connectivity data formatted into a 4D tensor imposes
more structure on the spatial factor of each component, com-
pared with the decomposition of data formatted into a 3D
tensor. (4) Interpreting the components of CP decomposition
is more straightforward than interpreting those of Tucker de-
composition. However, the Tucker model is often more ef-
fective when classification analyses are to be performed
(such as group differentiation).

Materials and Methods

Data sets

In this study, we used both simulated networks and real
functional brain networks to examine the implications of
data structure and decomposition approaches. Each data set
is briefly described in the following.

Simulated data

Images changing intensity over time. To achieve a
straightforward yet informative insight into the results from
the decomposition methods, the initial simulation was a se-
ries of images that contained intensity changes over time.
For these data, we had two images with a same size of
64 · 64 (pixels), as shown in Figure 1. For both images, the
intensity of the entire image changed over time periodically
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with a cosine function with the length T = 1000 time points.
The intensity of the first image changed two times faster than
the second image. We reshaped each image to a single-
intensity vector and then multiplied the resulting vector by
the corresponding fluctuation time series to make a matrix
(equivalently two-way tensor) of size I · T , where I repre-
sents total number of the image pixels, that is, 4096. Finally,
we summed up the two matrices to create a combined image.
These relatively simple example data were used to visually
depict the components extracted from a time series of matri-
ces using data decomposition methods.

Simulated networks. The simulated data were built using
the idea of spatiotemporal separability model (Erhardt et al.,
2012). A process is known to be spatiotemporal separable if
it can be factorized into the product of spatial factors and
temporal factors. The model of spatiotemporal separability
has been widely used in functional magnetic resonance imag-
ing (fMRI) connectivity studies, and comparable spatio-
temporal networks have been observed using different
methods, for example, independent component analysis
(Calhoun et al., 2009) and general linear models (Whitfield-
Gabrieli et al., 2009).

In brain studies, the connectivity between two separate re-
gions is commonly quantified as the temporal correlation be-
tween those regions’ activity time series (Bullmore and
Sporns, 2009). Thus, a simple way to incorporate connectiv-
ity between two nodes is to assume those nodes fluctuate
very similarly over time, equivalently, their fluctuation fre-
quency should be very similar. Using this idea in association
with the spatiotemporal separability model, we simulated a
network, including eight nodes with the nodes {1, 2, 3},
{4, 5}, and {6, 7, 8}, showing similar temporal fluctuations
(the nodal time series depicted in Table 1). This resulted in

a simulated network with three connected sets of nodes.
The length of time series was 1000 time points. The time se-
ries of nodes {1, 2, 3} and {4, 5} fluctuated with a cosine
function in the first half of the time period, and then shifted
to random noise in the second half of the period. In contrast,
the time series of nodes {6, 7, 8} was random noise and then
a cosine harmonic in the first and second halves of the time
period, respectively. The oscillations in these simulated data
were in the low-frequency range, that is, *[0.01, 0.1] Hz, to
be consistent with the signals found in real resting-state
fMRI data (rs-fMRI) (Cordes et al., 2001).

A ‘‘population’’ of networks were simulated with M = 30,
to generate a data set that resembles a population of partici-
pants in a typical fMRI study. To be consistent with the terms
used for the real fMRI data, we refer to simulated data sam-
ples as participants in the remainder of the article. The con-
nectivity of nodes {1, 2, 3} and {4, 5} varied linearly across
the participants, and the connectivity between nodes {6, 7, 8}
varied with a rectangular function across participants. For the
remaining connections, the correlation varied according to a
random normal noise (N 0, 0:05ð Þ) across participants. The
variation pattern across the participants is represented in
Table 1.

Real fMRI data. We analyzed rs-fMRI data collected as
part of a randomized lifestyle weight loss intervention
study (Marsh et al., 2013). The participants were randomly
assigned to a lifestyle weight loss intervention, including
(1) diet only, (2) diet+aerobic exercise, and (3) diet+resis-
tance exercise. The length of interventions was 18 months.
The data set included 52 obese/overweight older adults
(mean age: 67.62, body mass index ‡28 kg/m2 but <42 kg/
m2, female: 39, male: 13), all signed an informed consent/
HIPAA authorization form. The institutional review board

FIG. 1. The two images (a); and their
corresponding intensity fluctuation time se-
ries (b). Color images are available online.
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approved the study. rs-fMRI data were collected from all
participants while they viewed a fixation cross. For greater
details regarding these data, please refer to Marsh and col-
leagues (2013) and Rejeski and colleagues (2017).

We performed standard fMRI preprocessing to trans-
form a functional atlas of 268 brain regions (Shen et al.,
2013) to each participant’s native space. We then used
the resulting images to extract the average fMRI time se-
ries for each brain region in each participant. This resulted
in a time series set with 268 regions and 147 time points
for each participant. For greater details regarding prepro-
cessing methodologies, refer to Mokhtari and colleagues
(2018b).

It should be noted that as our analyses in this study are for
demonstration purpose, not hypothesis testing, we randomly
chose 20 of those participants for analyses in this article.
However, to support our discussions, we also performed a
few supplementary hypothesis testing analyses using these
data, which are explained in detail in the Supplementary
Data.

Dynamic connectivity quantification

There are various approaches to estimate dynamic brain
connectivity, mostly resulting in a 3D array/tensor for each in-
dividual participant. Traditionally, brain connectivity network
is represented as an affinity matrix (or equivalently a 2D ten-
sor). For example, for a brain network between N regions, the
connectivity matrix C is of size N · N, in which the entry cij

represents the strength of connections between regions i and

j. For the vast majority of functional networks, this matrix is
symmetric as cij = cji. For a dynamic analysis, there are multi-
ple connectivity matrices generated across time. Such matri-
ces could be stacked over time, resulting in a 3D tensor.

In this work, we used sliding window correlation analysis
(Handwerker et al., 2012; Kiviniemi et al., 2011) to quantify
dynamic connectivity (Fig. 2). For this technique, the fMRI
time series was divided to T overlapping splits, for each of
which a pairwise correlation matrix was created. The result-
ing matrices were stacked to create a 3D connectivity tensor
of size N · N · T . The sign of edges was preserved as recom-
mended by previous studies (Rubinov and Sporns, 2010,
2011). For performing groupwise data decomposition, the
participants’ 3D connectivity tensors were again stacked to
create a 4D tensor of size N · N · T · M, where M is the num-
ber of individual participants.

According to the article published by Leonardi and Van De
Ville (2015), to exclude spurious fluctuations caused by intrin-
sic statistical properties of individual node time series from slid-
ing window correlation measures, the length of window should
be higher than 1=fmin, where fmin is the lowest fluctuation fre-
quency present in the time series. Thus, for simulated time se-
ries, we set the window length to L = 101 sec (here fmin = 0:01
Hz as noted in Table 1). This length also allowed excluding
spurious fluctuations in the correlation values yielded by the
random noise, as checked following the computations. The
resulting connectivity tensor was of size 8 · 8 · 901 · 30
(nodes · nodes · time windows · samples). For real fMRI
data using a sliding window of length L = 57TR sec (here
fmin = 0:009 Hz and TR = 2 sec), a connectivity tensor was

Table 1. Simulated Network Specifications

Sets of connected
nodes Time series Sample mode variations

1, 2, 3f g
S1 tð Þ = cos 2p · 0:0100tð Þ 1 < t < 500

n1 501 < t < 1000

�

S2 tð Þ = cos 2p · 0:01002tð Þ 1 < t < 500

n2 501 < t < 1000

�

S3 tð Þ = � cos 2p · 0:01001tð Þ 1 < t < 500

n3 501 < t < 1000

�

P1 nð Þ1=30n
1 � n � 30

4, 5f g S4 tð Þ = � cos 2p · 0:03004tð Þ 1 < t < 500

n4 501 < t < 1000

�

S5 tð Þ = cos 2p · 0:03005tð Þ 1 < t < 500

n5 501 < t < 1000

�
P2 nð Þ = P1 nð Þ

6, 7, 8f g S6 tð Þ = n6 1 < t < 500

cos 2p · 0:07001tð Þ 501 < t < 1000

�

S7 tð Þ = n7 1 < t < 500

cos 2p · 0:07003tð Þ 501 < t < 1000

�

S8 tð Þ = n8 1 < t < 500

cos 2p · 0:07002tð Þ 501 < t < 1000

�

P3 nð Þ =
1=3 1 � n � 10

2:5=3 11 � n � 20

1=3 21 � n � 30

8<
:

The sets of connected nodes are given in the first column, nodal time series are specified in the second column, and variation
patterns across participants for connectivities within the corresponding set of nodes (n is the index of participants) are in the third col-
umn. Each node fluctuates with a cosine harmonic in a half of the time series and a random normal noise (noted by ni ~N 0, 0:05ð Þ
where i 2 1, 2, . . . , 8f g) in the other half of the time series, tis the index of time. Note that connected nodes fluctuate with a similar
frequency.
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created for each participant Simulated Network Specifica-
tions. As mentioned above, for performing groupwise data
decomposition, the participants’ connectivity tensors were
stacked to create a 4D tensor of size 268 · 268 · 91 · 20 (re-
gions · regions · time windows · participants).

Tensor decomposition methods

The primary goal of the data decomposition methods is to
identify a simpler representation of complex data in the form
of main components that explain a major portion of data var-
iance (equivalently data content). In tensor decomposition
methods, each component involves a separate factor for
each dimension of the tensor data. The schematic of tensor
decomposition for a generic 3D tensor is represented in Fig-
ure 3. Tensor decomposition models preserve the information
embedded in the structured tensors by computing the factors
of each dimension separately, and a core tensor that represents
the strength of interactions/associations between the factors of
different dimensions. For the toy example shown in Figure 3,
U 1ð Þ, U 2ð Þ, and U 3ð Þ are factor matrices, such that each column
on these matrices represents a factor of the corresponding di-
mension. The entry gijk of the core tensor, on the intersection
of the i-th horizontal plane, j-th vertical plane, and k-th frontal
plane represents the strength of the component comprising the
i-th factor of the first dimension, j-th factor of the second di-
mension, and k-th factor of the third dimension. For interested
readers, a basic scheme of mathematical formulations is
explained in the Supplementary Data and Supplementary
Fig. S1. However, to follow the remaining sections of this ar-
ticle, knowledge of the model’s mathematical theory is not
necessary.

Tucker decomposition. Tucker decomposition is a gener-
alization of the regular matrix-based SVD where the factor
matrices are orthogonal (De Lathauwer et al., 2000). In
other words, each factor matrix represents a set of orthogo-
nal, therefore linearly independent, factors. Unlike the regu-
lar matrix-based SVD, which constrains the core matrix to be
diagonal and positive, all the entries of the core tensor diag-
onal and off-diagonal can be nonzero and either positive or
negative. Note that for a diagonal matrix, only diagonal entries
can be nonzero. In fact, for most tensor decomposition meth-
ods, both orthogonality and diagonality constraints may not be
satisfied simultaneously (De Silva and Lim, 2008).

As mentioned above, the core tensor entries determine the
strength of interactions between factors of different dimen-
sions. Thus, for Tucker decomposition, any combination of
factors of different dimensions could potentially represent an
interaction, with the possible number of combinations being
R1:R2:R3 for the example shown in Figure 3. Although apply-
ing no constraint to the core tensor is associated with an easier
decomposition solution, it yields significant challenges, due to
a high number of factor interactions that must be analyzed and
interpreted. See the Results section (Fig. 7) for clarification.

CP decomposition. CP constrains the entries of core ten-
sor to be zero, except the superdiagonal entries, where
r1 = r2 = r3, but does not include the orthogonality constraint.
Thus, for CP decomposition, there is the same number of fac-
tors in each dimension (e.g., R1 = R2 = R3 = R in the example
shown in Fig. 3). In the case of a connectivity tensor, superdia-
gonality implies that each factor in the spatial dimension is as-
sociated with only one factor in time dimension and one factor
in participant dimension. Thus, only R interactions between

FIG. 2. Dynamic connec-
tivity tensor creation proce-
dure using sliding window
technique, for which a win-
dow of fixed length is used to
divide the fMRI time series to
T overlapped splits. For each
split, a connectivity matrix is
then constructed using pair-
wise Pearson correlation
analysis, by concatenating
the resulting matrices along
the time, a 3D connectivity
tensor of size N · N · T is
created for each participant.
fMRI, functional magnetic
resonance imaging. Color
images are available online.
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the factors of different dimensions exist. The components gen-
erated by the CP model are not orthogonal and could be line-
arly dependent.

Analysis of dynamic functional connectivity tensors

The connectivity tensors may be analyzed in two different
ways: (1) they can be reshaped or (2) the whole 4D tensor
structure may be directly used in the decomposition models.
For instance, prior studies (Leonardi et al., 2013; Mokhtari
et al., 2018a) have reshaped the group dynamic connectivity
tensor to matrix form, and performed principal component
analysis (PCA) on the resulting matrix. In this study, as
our primary focus is on tensor-based methods, we investi-
gated different ways of using dynamic connectivity data in
tensor decomposition models. For example, due to symme-
try, one may only use either upper or lower triangular part
of the matrices from each time window. These data can be
reshaped into an individual vector, and the resulting vectors
across time and participants can then be stacked together to
create a 3D tensor of size N N� 1ð Þ=2 · T · M (connections ·
time windows · participants). In this study, the first dimen-
sion represents connectivity between node pairs, the second
dimension represents time, and the third dimension repre-
sents participants. When directly using the entire 4D struc-
ture of group connectivity tensor in the decomposition
algorithm, the first and second dimensions both represent
brain regions, the third dimension represents time, and the
fourth dimension represents individual participants.

We performed decomposition on 3D and 4D tensors to ex-
amine the effects on interpretation of results. Figure 4a and c
shows a schematic representation of 3D and 4D tensor de-
compositions for dynamic functional connectivity data.
The main difference between analyses on 3D and 4D data
is that for the 3D data, each connection between a pair of
regions (network edge) represents a variable/feature in the
first dimension, while for the 4D data each region represents
a variable/feature in the first and second dimensions. We
used the ground truth supplied by the simulated network to
investigate how these two approaches may result in different
components and interpretations.

It is worth mentioning that standardizing (e.g., convert-
ing correlation values to z-scores) is often used as a prepro-
cessing step in data decomposition, as some variables may
present significantly different scales (Abdi and Williams,
2010; Harshman and Lundy, 1984; Wold et al., 1987).
However, in this study, we did not convert the correlation
values to z-scores because of the following: (1) mean-centering
removes the offset/baseline component of the data, which is
revealed as the first component of decomposition (Leonardi
et al., 2013). However, in this study, we were interested in
identifying the baseline network state. (2) The correlation
values are bounded by�1 and +1 with approximately normal
distributions. (3) Standardizing intensifies the challenge of
spatial map interpretation, as every interpretation of the
nodes and edges appearing in a spatial map should be stated
in terms of data mean and standard deviation (Leonardi et al.,
2013).

FIG. 3. Tensor decomposi-
tion for a generic 3D tensor C
of size D1 · D2 · D3 that de-
composes the tensor to a core
tensor G of size R1 · R · R3

and a factor matrix in each
dimension, that is, U pð Þ

of size Dp · Rp, where
p2 1, 2, 3f g is the dimen-
sion index (a). Each column
of a matrix represents a factor
in the corresponding dimen-
sion. Thus, the values of

R1, R2, R3f g determine how
well the decomposition com-
ponents may approximate the
original tensor C, and may be
increased to achieve the pre-
defined approximation
threshold level. The decom-
position method can be
reformatted in the form of
row (b), which shows that
each component of the de-
composition emerges as the
interaction (outer product)
between the factors of differ-
ent dimensions. The same
notions provided here can be
generalized to n-dimensional
tensors where n>3. 3D,
three dimensional. Color
images are available online.
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FIG. 4. The connectivity tensors of a group of individual participants are converted to a 3D tensor. Tensor decomposition is
used to the resulting 3D tensor. As shown in the figure, the variables are connectivity, time points, and individual participants
in the first to third dimensions, respectively (a). The spatial matrix associated with the first factor in the connectivity dimen-
sion is created. The same process can be used in the remaining factors to build all spatial matrices (b). The 4D tensor structure
of the group dynamic functional connectivity data is maintained and 4D decomposition is used. The variables are region,
region, time points, and individual participants in the first to fourth dimensions, respectively (c). The spatial matrix associated
with the first factor in the region dimensions is created. The same process can be used to create all spatial matrices (d). Recall
that as correlation matrices are symmetric, practically, U 1ð Þ@U 2ð Þ. 4D, four dimensional. Color images are available online.
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Generating spatial maps in brain space. For the 3D anal-
ysis, to visualize the results in matrix or brain space, each
resulting factor of the first dimension was symmetrically em-
bedded in both upper and lower triangular entries of a zero
matrix of size N · N. Each node was then mapped back to
its respective location in brain space. Figure 4b shows a sche-
matic representation of building spatial matrices for 3D anal-
ysis that were then transformed to brain space to generate the
spatial maps.

Comparable visualizations were also generated for the 4D an-
alyses. As mentioned earlier, the factors of the first and second
dimensions both represent the connectivity variation patterns
across regions due to symmetry. We exploited these factors to
transform the data into matrix form as Ir1r2

= U 1ð Þ
r1
� U 2ð Þ

r2
,

where Ir1r2
2RN · N represents the matrix made by factors

r12 1, . . . , R1f g and r22 1, . . . , R2f g from the dimensions 1
and 2, respectively, and ‘‘�’’ is the symbol of ‘‘outer product’’
operation, again for CP decomposition r1 = r2. The resulting
spatial matrix was of size N · N, and the entry Ir1r2

i, jð Þ is com-
puted as Ir1r2

i, jð Þ = U 1ð Þ
r1

ið ÞU 2ð Þ
r2

jð Þ. Figure 4d represents a sche-
matic representation of building spatial matrices for the 4D
analysis. These spatial matrices can be transformed into brain
space to generate the spatial maps.

Implementation. Both Tucker and CP decomposition ap-
proaches were used to identify the components underlying
different modes of data. Furthermore, these approaches
were run on both 3D and 4D tensors. Thus, overall, we per-
formed four different analyses on the simulated and real
fMRI data. The N-way Toolbox for MATLAB was used to
perform these analyses (Andersson and Bro, 2000).

Different strategies have been proposed in the literature to
determine the number of components that best represent the
data, such as checking model fitness (or residual) and core
consistency diagnostic measures (Bro and Kiers, 2003), or
using cross-validation to assure that comparable components
are identified across different permutations of available sam-
ple (Bro, 1997). In this study, for simulated data, we chose
the number of components based on our knowledge of the
data ground truth. For the real fMRI data, where there is
lack of prior knowledge about the dynamic connectivity
components, we tested model fitness to estimate the number
of components. Model fitness score was quantified as the
ratio of variance explained by the data reconstructed using
the components to the total variance of the original data
(Andersson and Bro, 2000). In this work, we used a threshold
of 80% for model fitness to determine the number of compo-
nents. As mentioned earlier, CP structure requires the same
number of factors in all dimensions. In this study, for Tucker
decomposition, we also chose the same number of factors, as
it could potentially result in smaller off-diagonal core tensor
entries (Chen and Saad, 2009); thus, potentially lower num-
bers of significant interactions between the factors of differ-
ent dimensions would exist, leading to decreased efforts
required for computations and interpretations.

Results

Image intensity fluctuations

Figure 5 shows the decomposition results for the intensity-
modulated images using CP in two separate runs. The

FIG. 5. (a) The original
images (size: 64 · 64 pixels)
together with their intensity
fluctuation time series
(length: T = 1000). The in-
tensities of these images were
summed over time yielding a
tensor of size 64 · 64 · 1000,
(b) the components resulted
from CP decomposition, (c)
and the components resulted
from CP decomposition con-
strained to have non-negative
factor matrices. CP, canoni-
cal polyadic. Color images
are available online.
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number of components was set to two for both runs, as two
different images fluctuating with two different temporal pat-
terns were fused to make these data. In the first run, the gen-
eral CP model was used and yielded 100% fitness but failed
to identify the original images with their temporal fluctua-
tions. Rather, we identified a combination of intensity im-
ages as the spatial factors and a combination of the
original time series as the temporal factors. This was due
to a nonuniqueness of solution (Bro, 1997; Harshman and
Lundy, 1994). For the second run, based on our domain
knowledge of intensity images (that are non-negative), we
constrained the factor matrices to be non-negative. Interest-
ingly, non-negative tensor decomposition identified the orig-
inal images, while showing 100% fitness. This implies that
prior knowledge is critical when checking the validity of
resulting components. However, as a proper knowledge
base of brain dynamic connectivity has not been formed
(Hutchison et al., 2013), this could be a significant challenge
for dynamic brain network studies.

Simulated dynamic networks

Figure 6 represents dynamic connectivity (correlation
value) time series estimated using a window of length 100
time points. These data represent a 3D tensor of size 8 ·
8 · 901. As evident in the figures, there were three sets of con-
nected nodes that exhibit varying connectivity over time, that is,

the pairwise connections between nodes in three different sets
{1, 2, 3}, {4, 5}, and {6, 7, 8}. Nodes 1 and 2 were initially highly
positively correlated with each other and were both negatively
correlated with node 3. The dynamic change in the latter half
of the time series (shift from cosine signals to random noise)
resulted in a loss of these relationships. Nodes 4 and 5 were neg-
atively correlated in the first half of the time series and uncorre-
lated in the second half of the time series. Nodes 6, 7, and 8 were
initially not correlated and then all became positively correlated
in the latter part of the time series. There were only weak (ran-
dom) associations between the nodes that belong to different
clusters.

For the 3D analysis, only the upper triangular part of cor-
relation data was used. Figure 6 indicates that there were two
sets of nodes, {1, 2,., 5} and {6, 7, 8}, in the upper triangu-
lar part that showed similar fluctuations over time and partic-
ipants. This is evident by the similar correlation time courses
in Figure 6. It should be noted that the similarity in the cor-
relation dynamics does not indicate that the nodes’ time
courses were all correlated. For example, edges between
nodes {2, 3} and nodes {4, 5} show similar dynamics over
time. However, node 3 was correlated with node 2, but not
nodes 4 or 5. Based on this a priori knowledge, the number
of components, R, for the CP decomposition was set to 2.
We observed that two components explained over 99% of
data variance. Similarly, for Tucker decomposition, using
R1, R2, R3½ � = 2, 2, 2½ �, a similar level of data variance was

FIG. 6. Dynamic functional connectivity time series estimated using sliding window correlation method for a single sim-
ulated participant. Each cell in the figure shows the time course of the correlation (r-value) between the time series for the
given node pair whose labels are noted on the top and left rows. For each cell, time is on the x-axis and Pearson’s correlation is
on the y-axis. Note that, for example, node 1 and node 2 (cell [1, 2] and cell [2, 1]) were strongly positively correlated for the
first portion of the time series. This correlation dropped toward zero (0) in the latter half of the time series. The cells with
beige shading had time series changes that were due to random noise rather than meaningful node correlations. The corre-
lation of each node with itself was set to zero for the whole time series and is not depicted in this figure. Color images are
available online.
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captured. The spatial matrices and their corresponding time
and participant factors are shown in Figure 7. To facilitate
comparison between different components’ strength, the
core tensor entry corresponding to each component is
noted on the top, while the factors’ norm in all dimensions
was set to 1. Note that for the CP method, there were only
two interactions between the factors of different dimensions,
due to the superdiagonality constraint. The first component
contained the first factors in each of the connectivity, time se-
ries, and participant weight dimensions, and the second com-
ponent contained the second factors.

Due to applying no constraint to the core tensor in Tucker
decomposition, setting R1, R2, R3½ � = 2, 2, 2½ � yielded eight

potential interactions between the different dimensions.
Note that core tensor entries (g) represent various combina-
tions of factors such that, for example, the components la-
beled with g111and g112 (in Fig. 7b) share spatial and time
factors, but not participant factors, while the components la-
beled with g111 and g221 share a same participant factor but
not spatial and time factors. For these simulated data, the
entries g111, g221, g222, g112f g of the core tensor captured
the majority of the variance (*95%), suggesting that the
current data could be efficiently reduced to their correspond-
ing components.

Recall that for the 4D analysis, all the connections to an
individual region are represented by a single variable. In

FIG. 7. Components resulting from CP decomposition of the 3D data (a); comparable outcomes resulting from 3D data
using Tucker decomposition (b). Each panel represents a component. For each component, the spatial factor converted to
the spatial matrix is shown on the left, the top-right graph (red line) shows the time factor, and the bottom-right graph
(green line) shows the participant factor. The y-axis for the line plots represents the magnitude of each factor. The x-axis
represents time and participant indices for the top and bottom graphs, respectively. The components are ordered according
to the value of the corresponding core tensor entry. Components are labeled with the core tensor entries (g), such that the
indices of g represent the corresponding factor index in the spatial, time, and participant dimensions, respectively. Color
images are available online.
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Figure 6, we see that each region has a unique sequence (the
order is important) of correlation time series. The independent
fluctuation patterns across regions imply that the rank of data
in the region dimension should be N = 8. When the number of
components, R, was set to eight in the CP model, over 99% of
data variance was captured, while it was *90% with seven
components, implying that eight was the proper choice for
these data. For the Tucker decomposition, as we had eight dif-
ferent fluctuation patterns across regions, two across time, and
two across participants, R1, R2, R3, R4½ � = 8, 8, 2, 2½ � was
used. This setting explained a similar level of data variance
as R = 8 in the CP model. The resulting components from
the 4D tensors are presented in Figure 8. For the Tucker de-
composition, there were numerous nonzero interactions be-
tween the factors of different dimensions (i.e., 256). We
sorted the core tensor entries to identify the strongest compo-
nents. The nine highest ranked components of Tucker decom-
position are shown in Figure 8.

rs-fMRI data

The components resulting from CP and Tucker decomposi-
tion analyses on the rs-fMRI data were generated for both 3D
and 4D data structures. For the 3D data, using CP decomposi-
tion, the number of components was set to R = 10 to capture
80% of data variance. The same number of components
(e.g., 10) for fMRI dynamic connectivity tensor decomposi-
tion has been used previously (Ponce-Alvarez et al., 2015;
Tobia et al., 2017). The six highest ranking components (in-
cluding spatial maps, time, and participant factors) were se-
lected for use in Figure 9a. For Tucker decomposition, we
set R1 = R2 = R3 = 10. Similar to the simulated data, there
were numerous potential interactions (i.e., 1000) between
the different modes. The six highest ranked components of
Tucker decomposition were also selected for visualization in
Figure 9b.

For 3D analysis, 80% of variance was explained with 10
components for both CP and Tucker models, while the same
number of components only captured *50% of 4D data var-
iance, implying that a higher number of components were re-
quired to represent 4D data. In this study, we used R = 20 and
[R1, R2, R3, R4] = [20, 20, 20, 20] to capture 80% of data var-
iance. The spatial maps and their corresponding time and par-
ticipant factors for the six highest ranked components of the
4D analysis were selected for Figure 10a and b. Note that
for each of the top six components shown for the Tucker
method, the time series and participant factors were identical.
The only variables that changed were the spatial maps as ev-
ident by the core tensor entries g. For CP, the spatial maps all
had unique temporal factors but tended to be dominated by in-
dividual participants. This indicates that for the 4D analysis of
this particular data set, the Tucker method provides more gen-
eralizable solutions.

Comparing Figures 9 and 10 shows that for 3D analysis
(Fig. 9), the resulting spatial maps had nodes that were
widely distributed throughout the brain space. There were
some nodes in each map that had higher strength (total of
weighted edges) as indicated by node size, but overall
node strength was relatively homogeneous. Some spatial
clustering of the high-strength nodes was evident in the spa-
tial maps of the 3D analysis (e.g., left lateral and frontal re-
gions in the component labeled with g222 in Fig. 9a), but not

to the extent seen in the 4D analysis. We also statistically
compared the 3D and 4D spatial maps, and showed that
the node strength of 3D and 4D spatial maps was generated
from two distributions with different medians ( p-value
<10� 4). For greater details, refer to Supplementary Data.

Discussion

Functional brain networks can become very complex as
the data size increases, and data decomposition methods
can be used to simplify the data. In several recent studies
(Leonardi et al., 2013; Mokhtari et al., 2018b; Tobia et al.,
2017), these methods have been used to reduce dynamic net-
works to a manageable number of components that explain a
major portion of data content/variance. Given that these
components are identified as a (linear) combination of the
original variables, one may argue that there is no guarantee
that the components are interpretable in terms of original var-
iables (Abdi and Williams, 2010; Bahrami et al., 2017; Brou-
mand et al., 2015; Hand et al., 2001; Novembre and
Stephens, 2008; Wold et al., 1987; Zou et al., 2006). Never-
theless, there is a pressing need to understand such compo-
nents if we are to better understand brain function.
Numerous recent neuroimaging studies have used different
approaches to interpret the components resulting from
these methodologies (Leonardi et al., 2013; Mahyari et al.,
2017; Mokhtari et al., 2018b; Quevenco et al., 2017; Rao,
1964; Tobia et al., 2017). The main objective of the current
study is to clarify the implications of these methods and to
directly address the issues that may arise when trying to un-
derstand the brain based on the results of decomposition
methods. Although we focused on dynamic connectivity ten-
sor decomposition, equivalent issues are relevant to the tra-
ditional static connectivity analysis using either tensor or
conventional matrix-based decompositions (e.g., SVD and
PCA) (Calhoun et al., 2014; Leonardi et al., 2013; Yu
et al., 2015). In the following, we discuss the results from
each aspect of this study in greater detail.

Image intensity fluctuations

Using the intensity image modulation data (Fig. 5), we
aimed to demonstrate that a decomposition analysis may re-
sult in an output that cannot be interpreted as simply as the
data used as the input. Specific to this work, this simple ex-
ample indicates that performing decomposition on the con-
nectivity data may result in the output components that
cannot be interpreted in the same way as one would interpret
the input correlation matrices.

Note that in the matrix (2D tensor) case, CP and Tucker
methods do not provide unique solutions (Bro, 1997; De
Lathauwer et al., 2000), and thus, one might argue that
different decomposition runs should be performed until
consistent solutions are achieved. Another option is to con-
strain the analysis using prior knowledge about the compo-
nents if such information is available. For example, based
on our prior knowledge about the intensity images, we
used non-negativity constraint in the factor matrices and
observed that a non-negative CP decomposition can re-
trieve the original images. However, in the case of connec-
tivity networks, where our understanding of dynamic brain
components is still very limited, no appropriate a priori
knowledge is available to constrain the analyses. In this
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FIG. 8. Components resulting from CP decomposition of the 4D data, including spatial matrices, and time and participant
factors (a); comparable components resulting from Tucker decomposition of the 4D data (b). The nine highest ordered com-
ponents are shown for the Tucker model. See Figure 7 legend for a description of each panel. Each component is labeled with
the core tensor entries (g) such that the first two indices of g represent the corresponding factor number in the spatial dimen-
sions, and the third and fourth indices represent the factor number in the time and participant dimensions, respectively. Color
images are available online.
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FIG. 9. 3D components showing spatial maps with the corresponding time series (magenta plot) and participant (cyan plot)
factors for CP (a) and Tucker (b) models. For each component, the ‘‘glass-brain’’ images show all nodes from an axial (top)
and coronal (bottom) perspective. The total edge strength for each node was summed to generate node size that indicates the
node strength. The thickness of each edge shows the corresponding edge strength, and the positive/negative edges are shown
in red/blue. Color images are available online.
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FIG. 10. 4D analysis components showing spatial maps with the corresponding time (magenta plot) and participant (cyan
plot) factors for (a) CP and (b) Tucker models. Color images are available online.
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case, it could be possible to perform analyses, such as ex-
amining model fitness or cross-validation, to examine the
results’ convergence toward a consistent and reasonable
set of components.

3D and 4D analyses

We ran decomposition algorithms on both 3D and 4D con-
nectivity tensors to demonstrate how these data structures
could alter interpretations of the resulting components.

Simulated data. As explained earlier, in 3D data, each
connectivity is a variable in the first dimension. As evident
in Figure 7, for the 3D analysis, both CP and Tucker decom-
positions placed nodes {1, 2,., 5} in a same spatial matrix,
despite the fact that the two clusters of nodes, {1, 2, 3} and
{4, 5}, were not correlated in the original correlation data.
This suggests that dynamic connectivity of these nodes var-
ied with a similar pattern over time and participants.

In 3D spatial matrices, the groups of edges with the same
sign (either positive or negative) have a positive relationship
with each other (in the correlation data) across time and par-
ticipants. In contrast, the edges with different signs represent
opposite relationships across time or participants. For exam-
ple, as shown in Figure 7a component g111, and Figure 7b
components g111, g112, g122, and g121, edges {1, 3}, {2, 3},
and {4, 5} that have the opposite sign of edge {1, 2}, as
their corresponding dynamic correlation, exhibit opposite
fluctuations over time (Fig. 6). Comparable interpretations
have been provided by Abdi and Williams (2010), Leonardi
and colleagues (2013), and Wold and colleagues (1987).
Thus, it is important not to confuse the sign of the edges in
the spatial matrices/maps and the negative and positive cor-
relations in the original connectivity matrices/maps. Rather,
the sign of edges in the spatial matrices/maps should be inter-
preted within the context of the remaining edges in the same
matrix/map. The sign is relative to the other edges and
should be interpreted in conjunction with the time and partic-
ipant factors. No edge sign should be interpreted in isolation.
Moreover, following decomposition, the strength of each
edge in the spatial factor represents the strength of the rela-
tionship between edges across time and participants. We
performed a supplement analysis to better clarify the impli-
cations of edges’ strength, see Supplementary Data, Supple-
mentary Table S1, and Supplementary Figure S2 for greater
details.

Overall, it is essential to reiterate that edge weights in a
spatial matrix or map should not be confused with the corre-
lation values in the original functional connectivity matrix
or map. The appearance of a strong positive edge between
two nodes in a spatial matrix does not indicate that there
was a strong positive correlation between the time series
for those nodes in the connectivity matrix.

As explained in the Simulated Dynamic Networks section,
for the 4D analysis, each node is a variable in the first and
second dimensions. For example, node 1 is a variable that
is represented by the sequence of its correlation time series
(order is important), as shown in the first row of Figure 6.
Thus, 4D analysis reveals the regions with related connectiv-
ity sequences in a same network. In spatial maps, each edge’s
strength is then an indication of the strength of that relation-
ship between the corresponding nodes. The relationship oc-

curs over time or participants, for which fluctuations are
represented by the factors of time and participant dimen-
sions. Thus, unlike the 3D data, for the 4D data, the nodes
{1, 2, 3} and {4, 5} appeared in different connectivity net-
work maps. Note that due to the methodological details of
4D analysis (Fig. 4d), the diagonal entries of the correspond-
ing spatial matrices are nonzero, unlike the 3D analysis.
These values capture how the connectivity sequence of
each individual region alone contributed to the 4D data var-
iance. Thus, the diagonal weights do not indicate that there
were self-connections in the original networks.

It is evident that the same interpretations suggested for the
results from a 3D analysis may not be appropriate for results
from a 4D analysis. For example, nodes {6, 7, 8} were
all positively correlated in the original correlation data
(Fig. 6), and all the corresponding edges were always associ-
ated with a same sign in the spatial matrices in the 3D data
analyses (e.g., see Fig. 7a component g222, or Fig. 7b compo-
nents g221, g222, g212, and g211). This was not the case for the
4D analysis (e.g., see Fig. 8a component g4444 where edges be-
tween nodes 6 and 8 and nodes 7 and 8 appeared with opposite
signs). This suggests that there is not always a guarantee that
the spatial matrices/maps will be readily interpretable and di-
rectly relatable to the original variables (Novembre and Ste-
phens, 2008), especially for complex nonlinear data sets
such as brain connectivity. Overall, these findings suggest
that spatial matrices/maps should be interpreted as a whole
structure and fine-grained interpretations of individual nodes
or edges should be avoided.

In contrast to the 3D analysis for which the power of each
spatial factor was fairly uniformly distributed among the in-
volved regions, for the 4D analysis, it was observed that the
major focus was on the diagonal entries that represent how a
specific region contributed to a component. As explained in
the Simulated Dynamic Networks section, this outcome
could be due to the fact that each region in 4D analysis actu-
ally represents an independent rank of the data. In other
words, the probability of having multiple nodes with individ-
ual edges that have related correlation time series is much
higher than those nodes sharing related correlation time se-
ries across all edges. This yields a few high-strength nodes
in the 4D spatial matrix, while the other nodes are signifi-
cantly weaker. On the contrary, 3D analysis results in more
uniformly weighted nodes distributed within the spatial
matrices.

rs-fMRI data. For the real-brain network analyses, con-
siderable differences between the results of the 3D and 4D
data were evident. For the 3D analysis, the resulting spatial
maps had nodes and edges uniformly distributed throughout
the brain. For the 4D analyses, a small number of nodes had
very high strength. This was statistically confirmed using the
comparison of node strength between the spatial maps. This
observation was consistent with the earlier discussion of sim-
ulated data where it was found that the spatial matrices from
the 3D analysis included more uniformly weighted nodes.

It is currently not possible to conclude which method re-
sults in the components that are more closely aligned with
real patterns underlying real fMRI data, given a lack of a
gold standard. However, the outcomes of simulated data in-
dicate that the 3D analysis produced outcomes with greater
simplicity in interpretation, whereas the 4D analysis resulted
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in spatial matrices that were complex and intermixed. This is
also related to the method used to create spatial matrices/
maps for the 3D and 4D analyses (shown in Fig. 4b, d).
The individual factor of the first dimension of the data was
used for the 3D data, but the outer product of the two factors
in the first and second dimensions was used for the 4D data.
This results in more convoluted relationships in the 4D spatial
matrices/maps compared with those of 3D analysis. Refer to
Supplementary Figures S3 and S4 for greater clarification.

Some technical notes. We observed that the number of
connectivity components for 3D analyses was higher than the
4D analyses while capturing a comparable amount of the var-
iance. When dynamic connectivity data are represented using a
3D tensor, the first factor of each component represents a full-
rank symmetric spatial matrix with as many free parameters as
there are brain region pairs. When a 4D tensor is used, spatial
matrices/maps are generated by the outer product of the factors
in the first and second dimensions of the data. The resultant ma-
trices are rank one with only as many free parameters as there
are brain regions. This implies that components of a 4D decom-
position do not contain as much information as those of a 3D
decomposition, and so, more components are required to
achieve a similar fitness level. Refer to Supplementary
Figures S3 and S4 for greater clarification.

In addition, the 3D spatial matrices are not guaranteed to be
positive semidefinite (PSD), but they are generally full rank.
On the contrary, the 4D analysis guarantees that the spatial
matrices are PSD, but they are rank one rather than full
rank. Connectivity matrices from the original data are PSD
and generally full rank because they are symmetric matrices
for which entries are correlation values that are computed
as the inner product of a pair of vectors (which means their ei-
genvalues are non-negative). This supports the argument that
spatial matrices from 3D or 4D decompositions should not be
interpreted as, or confused with, connectivity matrices be-
cause they are not guaranteed to be both full rank and PSD.

We believe that the rank-one characteristic of spatial matrices
from the 4D data imposes specific structure to the spatial maps
shown in Figure 10. The size of each node (referred as ‘‘node
strength’’ in this study) in the visualization corresponds to the
sum of absolute values of the row (or column) of the spatial ma-
trix corresponding to that brain region. When the spatial matrix
is the outer product of two identical vectors, the relative size of
the region/node is exactly the relative size of the absolute value
of the entry in the vector. Thus, when the vector has a few large
entries, the corresponding brain regions appear as very-high-
strength nodes in the spatial map. This pattern emerges more fre-
quently in Figure 10 (for 4D) than in Figure 9 (for 3D), suggest-
ing that it is inherited from the mathematical structure of data.

CP and Tucker decompositions

For both 3D and 4D analyses of the simulated network, CP
decomposition identified the exact time and participant fac-
tors used in data simulation. To see this, compare the time fac-
tors in Figures 7a and 8a with the connectivity/correlation
time series in Figure 6, as well as participant factors with sim-
ulated data variations across participants (as noted in Table 1).
However, due to orthogonality constraint of the Tucker de-
composition, the factors of the participant dimension repre-
sent a mixed pattern of the original data variations across

participants (Figs. 7b and 8b). Note that as the two temporal
fluctuations are orthogonal in the original connectivity data
(their dot product is approximately zero), the time factors of
Tucker decomposition are identified similar to the temporal
fluctuations of the original data. Thus, we suggest that when
the goal of the study is to yield a mechanistic interpretation
of brain connectivity networks, the CP decomposition method
will likely result in more accurate interpretations than Tucker.

Our suggestion is consistent with a general rule of thumb in
data decomposition (Kolda and Bader, 2009; Papalexakis
et al., 2017) that recommends Tucker decomposition (as a
generalization of matrix SVD) for use in machine learning an-
alyses (for feature reduction purpose), as it provides orthogo-
nal/linearly independent components that could construct a
new efficient variable space. CP (as a generalization of matrix
factorization), on the contrary, has been recommended for
mechanistic studies where interpretations are essential
(Kolda and Bader, 2009; Papalexakis et al., 2017). To support
this discussion, we performed a supplement analysis and dem-
onstrated that when using dynamic brain networks to predict
success in a behavioral weight loss intervention, Tucker de-
composition significantly outperformed CP (see Supplemen-
tary Data for more information).

Limitations

A limitation of this work is that the simulated data used in
this study were quite simple and do not capture the complexity
of real-brain networks. First, we used single-frequency time se-
ries for each node, while fMRI time series show signals within
a frequency range (e.g., [0.01, 0.1]). This may cause a region/
connection or a combination of them to be observed in multiple
components. Second, weak ties are a crucial aspect of real-
world networks (Gallos et al., 2012; Granovetter, 1977) and
we did not investigate how they may affect the resulting com-
ponents. Third, the regions showing dynamic connectivity can
be modeled as coupled oscillators that could add to the com-
plexity of components, while our simulated data do not pres-
ent such behavior. Nevertheless, even using small and
simplistic simulated networks, we showed that there are
cases for which the resulting spatial matrices/maps cannot
be interpreted in the same manner as the original connectiv-
ity matrices/maps (e.g., correlation values). Future work fo-
cusing on expanding the findings of this study, using more
realistic simulated data, is needed. In addition, future studies
should investigate if rotation algorithms, for example, vari-
max or quartimax, would be able to enhance the interpretabil-
ity of brain connectivity components.

Conclusion

Data reduction techniques, such as tensor decomposition,
are becoming popular tools to simplify the data generated
by dynamic connectivity analyses. Once the data are reduced
to a smaller, more manageable number of components, a new
challenge of interpreting the components arises. This article
specifically discusses the results that come from popular ten-
sor decomposition methods. It was argued that the spatial fac-
tors and associated spatial matrices/maps from individual
components cannot be simply interpreted in the same way as
the original data, despite the fact that the original correlation
analyses and the decomposed results are conventionally visual-
ized in the same way (in matrix form on in maps transformed
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back into brain space). In general, we observed that analyses
using 3D and 4D tensor data resulted in findings that must
be interpreted differently. We found that the 3D results were
simpler to interpret. Both methods have been commonly
used in the literature and one should be aware of the method
used before interpreting the outcomes. In addition, we showed
that while CP is capable of identifying components similar to
those in the original data, Tucker decomposition may reveal a
mixed pattern of original components to satisfy orthogonality
constraint. Overall, CP may facilitate interpretations, but
Tucker may capture more complex interactions that are useful
for feature reduction purpose in machine-learning analyses.
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