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Abstract: 

Since the discovery of electrical activity of the brain electroencephalographic recordings 

(EEG) constitute one of the most popular techniques of brain research. However, EEG-

signals are highly non-stationary and one should expect that averages of the cross-

correlation coefficient, which may take positive and negative values with equal probability, 

(almost) vanish when estimated over long data segments. Instead, we found that the 

average zero-lag cross-correlation matrix estimated with a running window over the whole 

night of sleep EEGs, or of resting state during eyes-open and eyes-closed condition of 

healthy subjects shows a characteristic correlation pattern containing pronounced non-

zero values. A similar correlation structure has already been encountered in scalp EEG-

signals containing focal onset seizures. Therefore, we conclude that this structure is 

independent of the physiological state.  Because of its pronounced similarity across 

subjects, we believe that it depicts a generic feature of the brain dynamics. Namely, we 

interpret this pattern as a manifestation of a dynamical ground state of the brain activity, 

necessary to preserve an efficient operational mode, or, expressed in terms of dynamical 

system theory, we interpret it as a “shadow” of the evolution on (or close to) an attractor 

in phase space. Non-stationary dynamical aspects of higher cerebral processes should 

manifest in deviations from this stable pattern. We confirm this hypothesis via a 

correlation analysis of EEG recordings of 10 healthy subjects during night sleep, 20 

recordings of 9 epilepsy patients and 42 recordings of 21 healthy subjects in resting state 

during eyes-open and eyes-closed condition. In particular we show that the estimation of 

deviations from the stationary correlation structures provides a more significant 

differentiation of physiological states and more homogeneous results across subjects.  
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INTRODUCTION 

Zero-lag synchronization and desynchronization of neural activity is considered as a crucial 

communication mechanism of the central nervous system (Singer 1996, 1999; Engel and 

Singer, 2001; Varela et al., 2001; Fries, 2005). Such synchronization patterns may occur on 

various spatial scales, beginning from the integrated activity of several neuronal micro-

circuits up to the correlated dynamics of different cortical regions. The scalp EEG provides 

access to two spatial scales with excellent temporal resolution: the recording region of a 

single electrode and the largest spatial scale given by the coverage of the full set of scalp 

electrodes. While in the first case synchronization manifests in the amplitude and shape of 

EEG-oscillations of each individual EEG trace, the synchronization of the second scale, 

defining the functional network, is only accessible via the application of appropriate 

synchronization measures between multiple EEG traces. 

On the other hand, cerebral electrical activity is highly non-stationary because of the 

permanent influence of alternating external stimuli and a continuous feedback from 

internal control mechanisms under ever changing conditions. Together with the high noise 

level of scalp recordings, this makes the quantitative analysis of EEGs a nontrivial task and 

large fluctuations of the results obtained for different recordings, in particular when 

measured for different subjects, is not an exception but rather common. For instance, 

even for clinically well defined epileptic seizures one observes an ample panorama of 

apparently contradictory results (Bartolomei et al., 2002, 2004; Wendling et al., 2003; 

Guye et al., 2006; Schindler et al., 2006, 2008; Müller et al., 2011). Contradictory reports of 

increasing or decreasing spatial interrelations during epileptic seizures may originate from 

different implantation schemes of intra-cranial recordings, different EEG-references, data 

preprocessing or the usage of different interrelation measures and underlines the large 

diversity and pronounced dynamical changes of the interrelation pattern during such 

events. In particular, there are pronounced qualitative changes of the functional network 

during epileptic seizures (see e.g. Schindler et al., 2008).  

Resting state with open and closed eyes is markedly different in its power spectra (Barry et 

al., 2007) and BOLD dynamics (Zou et al., 2015). However, the difference of eyes open and 
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eyes closed conditions during rest is not only given by changes of the e.g. Alpha-power 

(Kaur et al., 2017) but additionally, measures derived from graph theory indicate marked 

topological changes of the functional network (Tan et al., 2013). Also functional magnetic 

resonance imaging studies (fMRI) analyzing eyes-closed and eyes-open conditions reveal 

dynamical changes, expressed by the evolution of different correlation clusters (Allen et 

al., 2014, 2018; Damaraju et al., 2014).  

Therefore, observations of temporal stable interrelation structures and uniform behavior 

across a group of subjects like in the case of the default mode network are evidently 

important. Most of those findings have been reported for fMRI-studies (Buckner et al., 

2008; Fox et al., 2005; Greicius, 2008; Greicius et al., 2003; Honey et al., 2009; Jann et al., 

2010; Nyberg et al., 1996; Raichle 2006; Raichle and Mintun, 2006; Raichle et al., 2001; 

Shulman et al.,1997), a technique with a limited ability to capture dynamical features due 

to its poor temporal resolution, and only few indications are published on the basis of EEG 

recordings.  

In an early study (Corsi-Cabrera et al., 1997) the EEG have been recorded in a group of 9 

young women in 11 sessions distributed over a period of one month in order to assess the 

within-subject and within-group stability of EEG correlations. The authors detected 

temporarily stable correlations of the EEG activity among electrodes, without significant 

differences between subjects. This result was confirmed by a second study (Corsi-Cabrera 

et al., 2007), where correlations have been estimated for a group of 6 young females over 

a period of 9 months. Within-subject reliability was very high (r > 0.89) and the results 

were homogeneous across the subject-group. 

In He et al. (2008) a stable correlation pattern of slow cortical potentials as accessed by 

electrocorticography across wakefulness, slow wave and Rapid Eye Movement (REM) sleep 

has been shown in 5 epilepsy patients. Surprisingly, the correlation structure has been 

found to be similar to that of spontaneous fluctuations of blood oxygenation level 

dependent signals (BOLD), which suggests a direct link between measurements of blood 

oxygen consumption and electrical brain activity. Also Kramer et al. (2011) reported that 

stable network templates emerge after as little as 100 seconds. The authors claim 
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topological stability, while several graph theoretical measures show dependency on 

physiological states and frequency bands.  

In Müller et al. (2014), stable correlation structures have been observed in 20 scalp EEG 

recordings of 9 patients containing focal onset seizures. The authors show explicitly that 

this observation is not due to volume conduction, but reflect genuine interrelations stable 

in time. This skeleton of large scale interrelations, produced by permanent oscillatory 

neural background activity, assures simultaneously an efficient coordination of local 

functional networks as well as large scale integration and provides an adequate framework 

capable to coordinate bottom up as well as top down processes. 

While the above mentioned early results have been obtained under comparable 

physiological conditions, the recent results have been found in epileptic brains. It is 

therefore impossible to determine if the stable interrelation pattern is a generic feature of 

the human brain, just an intrinsic expression of the pathology or the consequence of 

pharmacological treatment. Therefore, the question of the existence of a stationary 

pattern in non-pathological brains under normal but physiologically varying conditions 

persists.  

Like epileptic seizures also during wakefulness, during sleep and transitions between both 

states constitute pronounced variations of brain function with profound electro-

physiological changes and, hence, present an ideal testing ground for probing such 

hypothesis. For instance, REM-sleep is considered as a state of brain activation where EEG-

signals show low voltage fast activity including Beta and Gamma oscillations 

(Rechtschaffen and Kales, 1968; LLinás and Ribary, 1993; Achermann 2016), whereas Non-

REM sleep (NREM) is characterized by high voltage, Delta and Theta oscillations containing 

special signatures like sleep spindles and K-complexes (Rechtschaffen and Kales, 1968; 

Steriade, 1997; Steriade and McCarley, 1990). In addition to changes of the power of 

ongoing electrical activity, the temporal coupling among brain regions is modified during 

sleep stages relative to wakefulness in a state-dependent manner (Corsi-Cabrera et al., 

1987; Nielsen et al., 1990; LLinás and Ribary,1993; Guevara et al., 1995; Kaminski et 

al.,1997; Achermann and Borbely, 1998; Cantero et al 2000; Pérez-Garci et al., 2001; De 
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Gennaro et al, 2001; Corsi-Cabrera et al., 2003, Duckrow and Zaveri, 2005; Voss et al., 

2009). Additionally, we consider resting state EEG-recordings of healthy subjects while 

having eyes open and closed, two conditions with remarkable changes of the spectral 

contents of the electrical brain activity (Allen et al. 2018), i.e. with qualitatively different 

dynamical features. Hence, due to the fact that sleep recordings as well as the comparison 

of the eyes-closed and eyes-open state show pronounced changes of the morphology of 

EEG-signals, their spectral contents and the interrelation pattern of different brain regions 

makes them an appropriate testing ground for probing the existence of a stationary 

correlation structures. However, if there is a stationary pattern of functional interrelations 

among cortical areas in non-pathological conditions, it should be observable 

independently of the physiological state of a subject, while non-stationary dynamical 

aspects of interrelations should occur as deviations from the stationary pattern.  

The first objective of this study is to investigate if a stationary pattern of functional 

connectivity exists under non-pathological conditions. This has been done by a 

quantitative comparison of average correlation matrices taken separately for different 

sleep stages and eyes-open/eyes-closed condition. Additionally, we performed a 

quantitative comparison with the results presented in (Müller et al. 2014) in order to 

provide further evidence for the independence of the observed pattern from the 

physiological brain state, even though derived from signals with severe pathological 

signatures. 

Secondly, we evaluated in which manner the distance to the hypothesized stationary 

pattern may serve as an improved quantifier of dynamical changes in comparison to an 

established scheme of analysis.  

We hypothesize that (1) if a stable pattern of functional connectivity exists, it will be 

present  independently of the physiological state and shows a high similarity to those 

interrelation structures encountered in epilepsy patients; and (2) that transient dynamical 

features of the brain activity manifest themselves as deviations from the stable pattern. 
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Material and Methods 

Experimental Design: 

In total we consider 72 recordings of 41 subjects, which are divided in 20 recordings of 9 

epilepsy patients, 10 sleep recordings of 10 healthy subjects and 42 recordings of 21 

healthy subjects in resting state during eyes-open and eyes-closed condition. Data have 

been recorded in four different labs, using different EEG-equipment and data pre-

processing routines. 

Sleep Data 

10 right handed neurologically healthy subjects recorded in the Sleep Laboratory of the 

Faculty of Psychology of the National Autonomous University of Mexico participated in this 

study, after giving written informed consent. Table 1 provides information about the 

participants and the percentage they stayed in each sleep stage. 

Before the study all subjects had a structured clinical interview and kept a 15-day sleep 

log. Only those with regular sleeping habits and no symptoms of sleep disorders, history of 

medical, psychiatric or neurological disorders, drug or medication were included. The 

protocol was approved by the Ethical Committee of the Faculty of Medicine of the 

National Autonomous University of Mexico and followed the ethical standards of the 

Declaration of Helsinki (1964). 

All subjects slept two nights at the laboratory, the first for adaptation to recording 

procedures and the second for EEG analysis. Standard Polysomnography (PSG) and 

included a standard scalp EEG were recorded at Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, T5, 

T6, P3, P4, O1, O2, Fz, Cz and Pz of the 10-20 International System (Lesser, 1986) 

referenced to A1 with a Grass 8-20 polygraph with filters set at 0.1 and 70 Hz for EEG, at 

10 and 70 for EMG and 0.3 and 70 Hz for EOG. All night PSG data were digitized and stored 

with 1024 Hz sampling rate and using a 12-bit A-D converter of the GRASS-GAMMA 

acquisition program. 
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Wakefulness and Sleep stages were identified by standard procedures using 30-second 

epochs (Rechtschaffen and Kales, 1968). Percentages were calculated over the total 

recording time of the whole night. Sleep stage percentages as shown in Table 1 correspond 

in general terms with the values expected for young adults (Williams et al., 1974). 

Epilepsy patients 

EEG data were recorded from nine patients (five men, four women, age range 21–45 

years) suffering from pharmacoresistant temporal lobe epilepsy. Subjects have been under 

presurgical evaluation at the Department of Neurology of the Inselspital of the University 

of Bern. The ethics committee of the Kanton of Bern approved this retrospective study. 

Further, all patients gave written informed consent that their EEG data might be used for 

research and teaching purposes. 

For the EEG recordings standard 10–20 montage positions (Lesser, 1986) were used. After 

passing an anti-aliasing filter with a cutoff frequency of 70 Hz and an attenuation of 

24dB/oct, the EEG signals were sampled at 200 Hz (seizure 1–12) and 256 Hz (seizure 13–

20) using the earlobe reference. A/D conversion had a resolution of 16 bit. EEG seizure 

onset and seizure offset were visually determined by an experienced 

electroencephalographer (K.S.) in bipolar montage. Table 2 provides information about 

patients and seizure durations. 

Further information about the EEG recordings from epilepsy patients can be found in 

(Müller 2014). 

Healthy subjects in resting state during eyes-open and eyes-closed condition 

The EEG recordings during resting state were provided from two different laboratories and 

contain in total 21 subjects (see Table 3).  In all cases subjects were in resting state for two 

minutes with closed eyes and open eyes, respectively. When eyes open they were 

instructed to look at a mark in the center of a computer screen. All the subjects gave 

written informed consent. 
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11 elderly healthy subjects (five men, six women, age range 67-94 years) has been 

measured in the Laboratory of the Clinical Neurophysiology of the Institute National of 

Medical Science and Nutrition Salvador Zubirán INCMNSZ. By using the 10-20 International 

System (Lesser, 1986) standard scalp EEG at Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, T5, T6, 

P3, P4, O1, O2, Fz, Cz and Pz referenced to earlobe with filter set at 0.1-70 Hz and the 

signal were sampled at 200 Hz. 

The other 20 EEGs data in resting state (closed eyes and open eyes) of healthy subjects 

(seven women, three men, age range 23 -38 years) were recorded in the Laboratory of 

Psychophysiology of Cognitive and Emotional Processes of the Institute of Neuroscience of 

the University of Guadalajara, Mexico by using an Electro-Cap with the same 19 electrodes 

positions of the 10-20 International Systems as mentioned above. The signals were 

referenced to earlobe with filter set at 0.1-70 Hz and sampled at 200 Hz and using 

Neuronic acquisition program. 

EEG data of all recordings (sleep data, resting state as well as recordings from epilepsy 

patients) were transformed to median reference (Müller et al. 2011, 2014). All EEG signals 

were filtered to obtain a broad band ranging between 0.5 and 25 Hz in order to diminish 

the influence of muscle artifacts by using a fourth order Butterworth filter. Fp1, Fp2, O1 

and O2 were excluded from the analysis because usually these electrodes are most 

contaminated by blink and eye movements, and muscular artifacts respectively. 

Statistical Analysis:  

Nowadays there exists a broad palette of different interrelation measures in order to 

construct the functional brain network (Boccaletti et al. 2006), usually divided in linear and 

nonlinear estimators (Galka 2000; Kantz and Schreiber 2004; Pereda et al., 2005). Due to 

the fact that single neurons, the elementary building blocks of the brain, show pronounced 

nonlinear dynamical properties (Keener and Sneyd,1998) one might expect that nonlinear 

estimators are better suited for the extraction of relevant features from empirical time 

series. However, for interrelation properties it was proven that even for the favorable 

situation of low-dimensional stationary nonlinear systems the performance of linear cross-
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correlations is highly competitive with several commonly used nonlinear measures 

stemming from different areas like information theory, phase-space reconstruction or 

synchronization measures (Kreuz et al., 2007, Mormann et al., 2005). Also in  Ansari-Asl et 

al. (2006) it was demonstrated that numerically robust but simple linear measures may 

perform better than sophisticated algorithms, which aim to extract linear as well as 

nonlinear interrelations. Based on these findings we mainly focus in the present study on 

the estimation of zero-lag cross-correlations. Maximum lag correlations are computed 

additionally to provide evidence that the observed effects are not trivial artifacts of 

volume conduction. 

In all practical circumstances cross-correlations are estimated over finite data segments, 

whose length is adjusted in order to balance between stationarity requirements and 

statistical accuracy. For a multivariate data set of EEG channels the zero-lag cross-

correlation matrix is estimated by: 

= ∑ .                                                      (1) 

Here denotes the number of samples of the data segment and , = 1, … , are electrode 

numbers. In formula (1) the data is normalized to zero mean and unit variance, such that 

the correlation coefficient takes values between±1. All diagonal elements are equal to one 

because each signal is perfectly correlated with itself. Furthermore, the matrix is real 

symmetric and, being a quadratic form, positive semi-definite. By using a running window 

approach the correlation matrix may be estimated in a time dependent fashion. 

Equation (1) can be understood as an average over the product of real values. If the two 

sets , are independent random variables, the correlation coefficient is precisely 

zero in theory. However, as the sum in Eq. (1) is taken over a finite range, numerical 

estimates are distributed symmetrically around zero (Mueller 2011). Furthermore, the 

shorter the data segments, the larger the probability that non-zero estimates take values 

notably different from zero. In fact the situation is even worse. The magnitude of non-zero 

estimates depends not only on the length of the data window but also on the spectral 

content of the data, which may change drastically during the time course of an EEG-
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recording (Müller 2011). The larger the contribution of slow frequency components of a 

signal, the larger is the amount of random correlations (Rummel et al., 2010). This 

phenomenon, caused by the fact that cross-correlations are estimated over finite data 

segments (and in many practical applications over quite short segments in order to 

improve time resolution), is called “random correlation” (Plerou et al., 1999; Laloux et al. 

1999).  

In Marín-García et al. (2013) a method is proposed, which aims to obtain reliable estimates 

for genuine correlations with a well defined significance level, based on the use of 

appropriate surrogate data. It turned out that the so called Significant Average Correlation 

Matrix (SAC) performs best in terms accuracy of the results, the sensitivity to detect 

correlations and the robustness against noise, in comparison to several other proposals. 

The matrix elements of the SAC-matrix are defined as: 

                                              = ∑ .                                                  (2) 

The sum is just the average over matrix elements of the cross-correlation matrix estimated 

over data windows, each of length , while represents the result of a non-parametric 

significance test. To this end a set of Shift-Surrogates (Nettoff et al. 2002) is created from 

the original data segment. Then each segment is divided in data windows, and, like in 

the case of the original data, for each window the zero-lag cross-correlation matrix is 

estimated. Thereafter, we applied for each matrix element separately the Mann-Whitney-

Wilcoxon rank test in order to estimate the probability that correlation coefficients derived 

from the original data and the surrogates belong to distributions with the same median 

values. Including a Bonferroni correction for multiple testing at a 1% significance 

level, was set to one if < . ∗ . Otherwise was set to zero.  

In order to probe the hypothesis, of the existence of a pronounced correlation pattern that 

is stable in time like in Müller et al. (2014) and, universal in the sense of a high similarity 

across subjects, we studied similarity between average genuine correlation matrices. In 

the case of the sleep data, we used 30 seconds segments that coincided with the so called 

sleep epochs used by experienced electroencephalographers (M.C. and I.Y.R) for sleep 
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scoring. These were divided into = 3 non-overlaping data windows in order evaluate 

formula (2). We estimate the average matrices separately for each sleep stage. In case of 

recordings from epilepsy patients and resting state EEG during eyes-open and eyes-closed 

condition we used segments of length 10 seconds, which are divided in = 10non-

overlapping data windows of length = 1 . Due to the filtering, the short windows 

contained 3 and ½ cycles of the slowest retained waves in all cases.  

Note, the large length of a segment is due to the fact that in the present contribution 

exclusively broad band signals are considered. For the analysis of e.g. Alpha-activity much 

shorter segments of about 1 – 2 seconds are already appropriate. 

In order to quantify the statistical similarity of two average correlation 

matrices⟨ ⟩and⟨ ⟩we first ordered their non-diagonal elements in one 

dimensional vectors  and by the “vech” operation. These objects are called matrix 

vectors in the sequel. After normalizing these vectors to zero mean and unit variance we 

estimated the pairwise correlation between them via formula (1). Furthermore, we applied 

the nonparametric Mann-Whitney-Wilcoxon-rank test, which estimates the probability 

that the median off-diagonal matrix element of the two SAC matrices are different (a non-

parametric test whether the median of the correlation coefficients is different). This test 

has the advantage that no assumption about the underlying probability distributions of the 

samples is done, but the discrimination power is in general reduced when compared with 

parametric test statistics. Thus, estimated p-values in this paper can be considered as 

upper limits.  

Note, the Pearson-coefficient estimated for different SAC-matrices quantify structural 

similarity between these matrices but due to normalization it is insensitive for differences 

in the magnitude by which a certain correlation pattern is expressed. In order to test 

statistical equivalence also for the overall strength of the stationary pattern we applied 

additionally, the Mann-Whitney-Wilcoxon-rank test. 

If no significant differences between averaged SAC-matrices estimated separately for 

different physiological stages can be found, we concluded that the average over the whole 
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recordings is justified. The result of this overall average is termed “stationary pattern” in 

the sequel and will be denoted by ⟨ ⟩. The stationary pattern of the peri-ictal 

recordings of epilepsy patients has already been evaluated in a similar fashion (Müller et 

al. 2014). 

In order to probe stability in time and further to test the hypothesis that dynamical 

features are imprinted in deviations from⟨ ⟩we focus in the second part of this work on 

the time evolution of genuine cross-correlations, and likewise differences to the stationary 

correlation structure, by employing a running window approach.  

We estimated the SAC-matrix using a running window approach along the whole 

recordings, with a step-width of 30 seconds for sleep data and 10 seconds epilepsy data 

and recordings of eyes-open and eyes-closed condition during rest. For each window we 

then computed the correlation between the SAC-matrix and the stationary 

pattern⟨ ⟩.In order to summarize the results concerning the temporal stability of the 

stationary pattern of all subjects we provided medians and the 95% confidence interval of 

the Pearson correlations estimated separately for each sleep stage, eyes-open and eyes-

closed condition or respectively, separately for the pre-ictal, ictal and post-ictal interval. 

Small confidence intervals are then indicators for a high temporal stability of ⟨ ⟩across 

all subjects.  

Finally, to probe our second hypothesis we determined in which manner deviations from 

the stationary pattern were capable to distinguish different physiological states and 

compared the results to a classical strategy, namely cross-correlation values itself. For this 

purpose, we calculated the average of the absolute value of the non-diagonal elements of 

the SAC-matrices  

                                            ⟨| |⟩ = ∑                                            (3) 

obtained for a particular sleep stage, for the eyes-open and eyes closed condition or 

respectively the different phases of the peri-ictal transition, across all subjects. Thereafter 
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we computed from this set of real numbers the median and the 95% confidence interval 

separately for each physiological state.  

Finally we also considered deviations from the average matrix (2) 

                                           = − ⟨ ⟩                                                    (4) 

Note, in order to evaluate characteristic deviations of a particular physiological stage, this 

difference matrix can be used in (3) instead of . 

Model Calculations: 

In order to substantiate the interpretation of the observed phenomena, which we provde 

in the discussion section, we performed additionally some model calculations of explicit 

non-stationary dynamical systems. In a first step we estimated the correlation matrix of 

two strongly coupled Rössler systems, were each of the variables of the six dimensional 

phase space were erratically perturbed by independent Gaussian white noise. Because the 

random perturbations have been frequently applied (every 250 time steps) the system is 

almost permanently located on a transient around the attractor and is thus non-stationary 

by definition. Then we estimated the average of the six-dimensional correlation matrix and 

compared the outcome with the equivalent non-perturbed system. 

In the second case we deformed the attractor (actually we consider a mixed system) 

showing that in this case the correlation matrix strongly depend on such deformations. 

Here time series are derived as a mixture of the strongly coupled Rössler system and a 

system of two anti-correlated Lorenz oscillators. The mixture has been varied gradually 

along the time course such that at the first time step the recording consisted of the pure 

Rössler systems and at the last time step the anti-correlated Lorenz systems remain. In this 

way we permanently deform the invariant set of the whole system. 

A detailed description of the differential equations, chosen parameters as well as the 

numerical results can be found in the supplementary material. 
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Results: 

To illustrate certain details of our analysis we present results of one healthy subject during 

sleep (subject 9 of Table 1) before we provide summary figures merging the results of all 

recordings. We start with the search of a pronounced temporarily stable correlation 

structure. 

Existence of a Pronounced Stationary Correlation Pattern: 

In a first step we searched for stationary correlation pattern. Based on the findings 

published in Müller et al. (2014), such pattern is supposed to be independent of the 

physiological state, viz. a particular sleep stage. In Figure 1 we show mean correlation 

matrices from the recording of subject 9, where averages have been taken over all 30 

second segments of the whole night, but separately for each sleep stage. A similar figure of 

a young and an old adult with eyes open and eyes closed is presented in the 

supplementary material (Fig.S1). 

In close similarity with findings derived from scalp EEG recordings of epilepsy patients 

(Müller et al. 2014) we here observe a pronounced correlation structure in all sleep stages 

(as well as for eyes-open and eyes-closed condition), in spite of the marked 

electrophysiological and neurophysiological differences between REM, non-REM and the 

awake state. Like in (Müller et al. 2014), positive correlations are more prominent for 

connections within the same hemisphere, while diagonal contra-lateral electrode pairs 

tend to be anti-correlated. Considering furthermore the high noise level of scalp EEGs and 

the non-stationarity of the brain activity the appearance of high magnitude average cross-

correlations is a counter intuitive result. 

The intriguing similarity of the pronounced correlation patterns shown in Figure 1 leads to 

the question whether an average over the whole recording without distinguishing sleep 

stages is justified. In order to substantiate such procedure we estimated for all subjects the 

correlation between all pairs of the average correlation matrices obtained separately for 

the sleep stages. We found that average SAC-matrices of different sleep stages are indeed 

highly correlated with Pearson coefficients above 0.9. Furthermore, we compared 
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quantitatively the equivalence of the median off diagonal matrix elements by using the 

Mann-Whitney-Wilcoxon-rank test, without finding significant differences. In 

consequence, we found that in spite of drastic physiological differences, marked 

morphological changes of the EEG-recordings between sleep stages as well as alternations 

of the functional network, we observed a similar pronounced average correlation pattern. 

The same is true for the comparison of the eyes-open and eyes-closed condition. Pearson 

coefficients encountered surprisingly high estimates. Consequently, we conclude according 

to these findings that the average over the whole recording, termed as “stationary 

pattern” in the sequel, is justified. Corresponding results and a detailed discussion can be 

found in the supplementary material (see Figure S2 and S3 in the Supplementary Material). 

Stability over time and temporal fluctuations: 

In the next step we study the temporal stability of the correlation coefficients in order to 

further probe for the stationarity of the average correlation pattern. For this purpose, we 

estimated the correlation between the stationary pattern and SAC-matrices estimated 

with a running window approach and visualized the time course of all 105 matrix elements 

of the SAC-matrix. Results for subject 9 are provided in Figure 2. 

In Figure 2 we observe that the correlation between the SAC-matrix and the stationary 

pattern is almost always above 0.85, which constitutes an extremely high value. Only at 

the beginning of the recording one notices a gradual increase of correlations up to values 

of about 0.95. After this initial phase the correlation appears to be quite stable and even 

outliers (for example during short waking stages between minute 250 and 300) never drop 

below 0.6, which still implies a pronounced similarity. Furthermore, such minimal values 

are encountered only for short moments and appear as sharp spikes in Figure 2. Beside of 

such short episodes the correlation of the time depended SAC matrix with the stationary 

pattern is considerably high and fluctuates around 0.9.  

The visual inspection of the time course of the SAC-matrix elements (upper panel of Figure 

2) confirms these results. Despite pronounced changes of the spectral composition as well 

as significant topological alternations of the functional network during sleep cycles (Corsi-
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Cabrera et al., 1987; Nielsen et al., 1990; LLinás and Ribary,1993; Guevara et al., 1995; 

Kaminski et al.,1997; Achermann and Borbely, 1998; Cantero et al 2000; Pérez-Garci et al., 

2001; De Gennaro et al, 2001; Corsi-Cabrera et al., 2003, Duckrow and Zaveri, 2005; Voss 

et al., 2009, Gast et al. 2014) the majority of the matrix elements never change its sign and 

fluctuations around some non-zero constant value seem negligible. Matrix elements with a 

low average magnitude show noteworthy fluctuations, while the overall impression of 

Figure 2 resembles a remarkably stable correlation pattern. Even transitions between 

sleep stages are hardly visible.  

Note, this observation does not imply a lack of interesting dynamical features imprinted in 

the EEG-signals and we do not challenge the highly non-stationary character of such 

recordings. On the contrary, we believe, that the extraction of such non-stationary 

features provide important and novel progresses for the understanding of the brain 

dynamics. On this ground the observation of a stable scaffold of functional connectivity is 

even more surprising. 

The results obtained for all subjects (Figure 3) corroborate these observations. For all sleep 

stages the medians are about 0.85 and fluctuations are remarkably small. Only for the 

waking state (and partly for the transitional stage 1) one observes a considerable amount 

of fluctuations. However, the median of the correlation coefficient during waking state is 

about 0.87 and the lower value of the 95% confidence interval of the cross-correlations is 

still larger than 0.5. Furthermore one observes that the fluctuations during sleep stages 

are not generated by a large discrepancy between subjects. Median values estimated for 

each subjects separately are almost always above 0.9. Only a few subjects and only during 

sleep stages 3 and 4 encounter values between 0.85 and 0.9 and also the comparably large 

fluctuations during the awake state can not be explained by variations across subjects, 

given that, beside of the exception of two subjects, all medians are clearly above 0.85. 

However, 90% confidence intervals are considerably larger for the wake state than for all 

sleep stages. 

Based on these results one may conclude that there exists a kind of rigid skeleton of 

oscillatory interrelations between brain regions covering the whole scalp. This spatially 
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extended but stable structure could be advantageous for an efficient communication 

between different, probably distant brain sites. On one hand it might coordinate global 

dynamical features of widely interconnected neuronal populations and additionally it may 

admit that local deformations of this structure quickly propagate in order to cover larger 

spatial scales. Hence, such a skeleton could balance between segregation of local activity 

and global information integration (Singer 1999; Tononi et al. 1998, Tononi 2004, 2010). 

Consequently, this picture suggests that transient dynamical features should manifest 

themselves via deviations from this structure. Accordingly, one should expect that the 

waking state, with a major variety of different kind of activity, is characterized by larger 

fluctuations around the stationary pattern as shown in Figure 3. 

Subject specific or generic feature 

It remains the question whether the pronounced stationary correlation pattern represents 

individual signatures of the brain dynamics of a single person, like a stationary dynamical 

fingerprint of neural activity, or, whether it is a generic phenomenon, which reflects 

general principles of brain functioning. In order to answer this question we compare in 

Figure 4 the stationary pattern obtained for each EEG recording, viz. Sleep and resting 

state EEGs as well as the epilepsy recordings. 

In (Müller et al. 2014) it was already found that mean correlation matrices, estimated over 

periods of several minutes, show also a marked correlation pattern, which, as in the 

present case, seem to be independent of the physiological state of the subject. Namely, 

average matrices derived from the pre-seizure, post-seizure or the seizure period show a 

remarkable similarity (Pearson correlations are always higher than 0.6, Fig. 3 of (Müller et 

al. 2014) and also peri-ictal averages of different subjects are surprisingly similar. Pearson 

coefficients are larger than 0.5, (see Fig. 4 of (Müller et al. 2014)). Smallest values are 

obtained exclusively for the comparison with recording 20 of the epilepsy patients, which 

already has been identified as an outlier (Müller et al. 2014). Furthermore, by visual 

inspection one gains the impression that the stationary pattern obtained from this 

pathological activity shares many features with the structures observed for the sleep data.  
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The Pearson coefficient quantifies topological similarity between the average correlation 

pattern, which turns out to be considerably high for all cases (Figure 4.A). Only for the 

pairwise comparisons with the above mentioned recording 20 of the epilepsy patients and 

one recording of the young adults during resting state (OE y CE-condition) the correlation 

values drop slightly below 0.5, while in general Pearson coefficients are considerably 

above 0.6. Furthermore, a certain structure of the matrix shown in Fig. 4.A can be 

identified. First one can observe that the sleep EEG segregate in two cluster (subject 1-3 

and 4-10), where the stationary pattern are extremely similar within these clusters, given 

that the Pearson correlations take values about 0.9, while inter-cluster correlations are in 

general smaller. Furthermore, one identifies a high similarity between the second cluster 

and almost all remaining recordings, independently whether the pathological case of 

epilepsy or healthy subjects during rest are considered. The peri-ictal average of the 

seizure EEGs, on the other hand, correlate stronger with the resting state EEGs of older 

subjects than those obtained for young adults, independently where eyes are open or 

closed during rest. But most importantly one observes non-ambiguously that also resting 

state EEGs fall into two similarity clusters, which separate young and old adults. While 

almost no difference between EO and EC-condition can be noticed for both groups, 

Pearson coefficients between these groups are systematically lower, which may indicate 

that although the stationary pattern seemingly does not depend on the physiological state, 

it may evolve with the age of the subjects. 

While the Pearson coefficient is sensitive for the topological differences of the correlation 

pattern, the application of the Mann-Whitney-Wilcoxon-rank test probes similarity of the 

correlation strength. For comparison and, hence, as a kind of null-hypothesis the 

cumulative distribution of p-values for the comparison of white noise samples is drawn. 

Note, the cumulative distribution of the white noise data indicate the probability that p-

values occur solely by chance. Hence, a necessary condition for significance is that the 

smallest p-values should lie above the gray straight line. 

In Fig. 4.B we compare average correlation matrices obtained for the same condition as 

e.g. all 45 pairwise comparisons of the sleep EEGs. As a result, within the same condition 

no significant differences can be found. However, when EEGs obtained for different 
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conditions are compared, the sleep EEGs stand out (Fig. 4.C). Independently whether they 

are compared with epileptic seizures, or with the eyes closed and eyes open condition, the 

cumulative distributions are above the null hypothesis of white noise samples. However, 

for small p-values all three curves drop below the white noise model such that only a few 

comparisons encounter sufficiently small p-values (see inset of Fig. 4.C). Thus, although the 

three curves for the comparison with sleep-EEGs are notable above the null hypothesis for 

a large range of p-values, no significant differences between physiological conditions can 

be found. In addition, the results shown in Figure 4 involve multiple testing and require a 

Bonferroni correction, which lessens the critical p-value by a factor of 200 for the 

comparison of the sleep and epilepsy data. Thereby none of the obtained p-values mark 

significant differences, a result which is corroborated by the estimation of Pearson 

coefficients (Fig 4.A).  

In summary, one observes that the similarity between the stationary pattern of the sleep 

or resting state EEGs and the peri-ictal averages of epileptic seizures is high.  Furthermore, 

one notice that the resting state EEGs fall into two correlation clusters, which do not 

distinguish between eyes open and eyes closed condition but separate subjects with a 

notable age difference. Consequently, the high similarity between the average correlation 

matrices and the apparent statistical equivalence of the set of matrices lead us to the 

conclusion that the observed pattern is a generic feature and may reflect universal 

principles of the brain dynamics, which may evolve with the age of the subjects, although 

we do not provide sufficient quantitative support for this last suspect. 

Discrimination between different physiological states 

In order to test the hypothesis that non-stationary dynamical features are imprinted in the 

deviations from the stationary pattern, we compared the different sleep stages, resting 

state for open and closed eyes as well as the pre-ictal, ictal and post-ictal phase by 

estimating the Pearson coefficient of pairs of the difference matrices (4), averaged 

separately for different physiological states for each of the subjects. These results should 

be compared with those obtained for the SAC-matrix shown in Figure S.2 and S.3 of the 

supplementary material as well as those presented in Fig. 3 in (Müller et al. 2014). 
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The Pearson coefficients for the comparison of the average difference matrix obtained for 

sleep and wakefulness are shown in Fig 5. In contrast to Figure S.1 and S.2, the color scales 

of Figure 5 cover now a much more extended range and thus the differences matrices are 

distributed over a much wider range, which implies that deviations from the stationary 

pattern constitute an improved discrimination of sleep stages. Results shown in Figure 5.A 

and B fit to neurophysiological findings about sleep-wake cycles. NREM sleep stages 3 and 

4, and to a lesser degree Stage 2, are highly correlated, which is consistent with the fact 

that they belong to the same Thalamo-cortical oscillatory mode (Steriade and McCarley 

1990). Furthermore, one observes that pairs of average difference matrices may be anti-

correlated, which indicates that deviations from the average correlation pattern are 

toward opposite directions in matrix space. For example, anti-correlations are observed for 

the comparison between the three NREM sleep stages and activated states W and REM as 

expected from the different physiology of REM, W and NREM sleep (Steriade and 

McCarley, 1990). Also the mean difference matrix obtained for stage 1 is anti-correlated to 

those of stages 3 and 4. If dynamical aspects are imprinted in the deviations from the 

stationary pattern, the dynamics of anti-correlated sleep stages are qualitatively different. 

On the other hand, REM sleep and Stage 1, as well as REM sleep and W share rather 

similar features, which is consistent with the activated electro-physiologic pattern of REM 

sleep, which hinders the differentiation of W and Stage 1 sleep. Until the rapid eye 

movements and the muscle atony allows to recognize them as different brain states with 

its own physiological characteristics (Steriade and McCarley, 1990).  

It is conspicuous that stage 2 sleep is identified as qualitatively different from stages 3 and 

4 in some subjects. The same is true for the comparison between stage 1 and the awake 

state. However, these results are not unexpected given that sleep stages 1 and 2 are 

transitional stages toward stage 2 and 4 as well as REM respectively.  

The p-values derived from the Mann-Whitney-Wilcoxon rank test confirmed the results 

obtained for the Pearson coefficients (Fig. 5.A). We observed a high discriminative power 

when deviations from the stationary pattern was considered. About 60% of the results 

derived for the difference matrix encounter p-values below the 5% significance level. Even 

when a Bonferroni correction is employed about 40% of the results are still significant on a 
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5% level and about 33% when a significance level of 1% is seeked (see inset of Figure 5.A). 

At the same time p-values of the SAC-matrix are all above 5%  and only 6 of them 

encounters values below 0.1.  

The significant results for the difference matrix are primarily observed for the comparison 

of sleep stage REM with stages 3 and 4, for the comparisons of stage 1 with sleep stages 2, 

3 and 4 and also the comparisons of stages 2 and 4 provide mostly p-values below 0.05. In 

principle, striking similarities of the structure of the average difference matrices as 

displayed in Figure 5 lead also to notable high p-values for the MWW-rank test. For 

instance, the comparison of the wake state and stage 1, or the comparison of sleep stages 

3 and 4 lead also to high p-values when magnitudes of the correlations are under 

consideration.  

In the case of the EEG-recordings of the epileptic patients (Figs. 5.C and D) one observes 

largest discrepancies for the comparison of difference matrices of the pre-seizure and 

post-seizure period. All Pearson coefficients of this comparison are negative, viz. the 

average deviations from the stationary pattern are diametrically different, a clear 

indication of the effect the epileptic activity on the electrical brain dynamics even after 

seizure termination (Gast et al. 2014, Müller et al. 2011). For the direct comparison of the 

pre-seizure with the seizure period no consistent result could be derived. In some cases 

average deviations are positive, in others negative correlated, which could be due to 

different durations of immediate pre-seizure states in different recordings. For the 

comparison of the post-seizure with the seizure period Pearson coefficients are 

dominantly anti-correlated, although also in this case some estimates lead to positive 

values.  

For the comparison of the overall correlations strengths (Fig. 5.C) one observes 

qualitatively the same results as for the sleep recordings. Average difference matrices lead 

to more significant difference between phases than correlation matrices themselves. 

However, now the outcomes are much less significant such that almost none of the 

comparisons (of the pre- with the post-seizure state) lead to sufficiently small p-values.  
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Finally, the comparison of resting states with open and closed eyes lead to some 

interesting observations (Figs 5.E and F). First, average distance matrices allow the 

distinction between the two resting state conditions. In particular for the young adults 

Pearson correlations between the eyes open and eyes closed condition are dominantly 

negative. About 15% of the p-values derived from MWW-rank test are below the 5% 

significance level (Bonferroni corrected). For elderly adults the difference is less obvious 

and p-values are not significant, although also in this case the outcomes turn out to be 

strikingly worse when average correlation matrices are used. However, beside of the 

distinction of different physiological conditions, also deviations from the stationary pattern 

seem to be age dependent. As in the case of Figure 4, correlations between the two 

groups for either condition take notably lower values. If, as suspected above, deviations 

from the stationary pattern indicate non-stationary dynamical aspects, it could be that not 

only the stationary pattern but also transient electrical brain activity might evolve with the 

age. However, given that both groups are measured in different laboratories, these 

remarks are rather speculative and require confirmation via further studies. 

In conclusion, when analyzing deviations from the stationary pattern one obtains a more 

differentiated picture for dynamical changes of different physiological states than by 

considering cross-correlations itself. We find remarkable quantitative differences between 

the results derived for the SAC-matrix compared to those obtained by the difference 

matrix. Deviations from the stationary pattern provide a highly improved discriminative 

power for physiologically distinct brain stages. Thus, the results presented in this chapter 

further indicate that the deviation from the temporarily stable average correlation pattern 

is a more appropriate measure than correlation pattern itself.  

Non-stationary dynamical Aspects of Brain Dynamics 

In Figure 2 we draw the complete time course of all 105 cross-correlation coefficients of 

subject 9. This figure underpins the quantitative results concerning the stability in time of 

the stationary pattern. Apparently, most of the correlation coefficients are extremely 

stable and specifically do not change their signs. Transitions between sleep stages are 

hardly visible and the time course of the correlation between the SAC-matrix and the 
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stationary pattern encounters almost always high values. Thus, as average cross-

correlation result to be (almost) time independent the non-stationary dynamical features 

we further study whether non-stationary aspects of the brain dynamics is imprinted in the 

fluctuations of cross-correlations and, furthermore, which coefficients reflect such 

properties. In order to answer this question one may investigate if there is some relation 

between the mean value of the correlation coefficients and the size of their fluctuations. 

To this end, we draw in Figure 6 separately for each sleep stage the size of its 95% 

confidence interval versus the mean value of each correlation coefficient. 

One observes largest fluctuations and a tendency of lower absolute mean values during 

wakefulness (see also Fig. 3). The estimates of the widths of the 95% confidence intervals 

vary between 0.2 and 1.4 almost over the whole range of the obtained mean values. Note, 

correlation estimates are restricted within the range −1, +1 such that confidence 

intervals are by definition smaller than 2; viz. values of the 95% confidence interval larger 

than 1 indicate large fluctuations around the stationary pattern. In consequence, no clear 

dependency between average values and fluctuation strength of the cross-correlation 

coefficients can be detected for the waking state. Qualitatively the same picture is 

obtained for sleep stage 1, although now the size of the fluctuations tend to be smaller. 

This picture changes qualitatively when turning to sleep stage 2. Now one observes a clear 

tendency of the 95% confidence intervals: correlations coefficients with large dynamical 

means show smaller fluctuations and vice versa. For estimates of⟨ ⟩close to zero the 

fluctuations are always larger than 0.4. On the other hand, very large sizes of the 95% 

confidence intervals (values 1.2 or 1.4, like observed in the case of wakefulness or sleep 

stage 1), are not observed. For sleep stage 2 the confidence intervals are almost always 

smaller than 0.7.  

This behavior is even more pronounced for the distributions obtained for deep sleep, viz. 

sleep stages 3 and 4 Similar to sleep stage 2 the size of the average value of correlation 

coefficients is related to the size of its fluctuations. By trend this is also true for REM-sleep.  

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
itä

t B
er

ne
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

9/
14

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 26 of 69 
 
 
 

26 

Br
ai

n 
Co

nn
ec

tiv
ity

 
Ch

ar
ac

te
ris

tic
 F

lu
ct

ua
tio

ns
 a

ro
un

d 
St

ab
le

 A
tt

ra
ct

or
 D

yn
am

ics
 e

xt
ra

ct
ed

 fr
om

 h
ig

hl
y 

no
n-

st
at

io
na

ry
 E

le
ct

ro
en

ce
ph

al
og

ra
ph

ic 
Re

co
rd

in
gs

. (
DO

I: 
10

.1
08

9/
br

ai
n.

20
18

.0
60

9)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

Correlation coefficients with large average values tend to fluctuate less than those with 

small averages. In particular, those states with higher activation levels like wakefulness, 

REM sleep and stage 1, or that which are more susceptible to external stimulation like W 

and stage 1, or to endogenous activation and dream like mental activity during REM sleep 

show by trend higher fluctuations of their correlation coefficients. According to the picture 

drawn above, this result implies that those correlation coefficients with small average 

values are stronger involved in non-stationary dynamical aspects of the brain activity than 

large ones. 

Discussion: 

In this article we reported two unexpected observations. First, analyzing EEG recordings 

we discovered a pronounced correlation pattern of the oscillatory brain activity, which is 

stable in time. This pattern is generic in the sense that it does not depend on the 

physiological state, irrespective whether subjects are awake, during light, deep or REM 

sleep, if they are in different conditions of resting state, or if they encounter a pathological 

state like an epileptic seizure. The correlation of the temporally resolved SAC-matrix 

(estimated via a running window approach along the whole night) with the stationary 

pattern (temporal average over the whole recording), is almost always above 0.85 and 

only within short moments it drops to values of about 0.6, which still implies high 

similarity. Furthermore, this correlation pattern is generic in the sense that it shows an 

extraordinary similarity across subjects. This affinity between subjects represents a strong 

indication that this stationary pattern is due to an intrinsic design of a functional network 

organization, alike the Default Mode Network found in fMRI-studies, but here expressed 

by the much faster oscillatory electrical brain activity. 

Second, we could provide numerical evidence that non-stationary dynamical aspects of the 

electrical brain activity are more conveniently described by deviations from this stable 

pattern than by the conventionally used cross-correlations itself. The discriminative power 

of the difference matrix in comparison to the SAC-matrix is notably higher, such that 

significance levels may improve by orders of magnitude when deviations are under 

consideration (see Fig. 5.A). 
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We are confident that these observations are not due to technical details of the recording 

process, particular specifications of the recording equipment, or details of the data 

preprocessing. In total we considered 72 recordings of 41 subjects in completely different 

physiological states. Furthermore, the data was acquired by 4 different laboratories in 

Mexico and Switzerland. Also the chosen EEG reference is not responsible for the 

observations as could be proven in (Müller et al. 2014). Also volume conduction can be 

excluded as a possible explanation. Besides, it is hard to believe that volume conduction 

causes the same effect with the same magnitude in physiological completely different 

conditions and, furthermore, that volume conduction generates pronounced anti-

correlations. In (Müller et al., 2014) it was shown explicitly by estimating maximum lag 

correlations as well as the weighted phase lag index that the stationary pattern is certainly 

not due to volume conduction. We repeated such computations for the sleep recordings 

obtaining similar results (not shown in the Figures). Instead of volume conduction we 

propose another interpretation of the observed phenomena.                                                                                 

Systems which dissipate energy and interact with its environment like the brain usually do 

not exploit the whole variety of theoretically possible dynamical states. They prefer to 

move in phase space within a restricted region, the invariant set or the attractor of the 

system. 

The phase space is the set of all (theoretically) possible dynamical states that the 

corresponding system may encounter. The dimension of this space is given by the minimal 

number of variables, which are necessary and sufficient for the complete description of 

the system, viz. for the determination of all possible observables. For instance, in case of a 

simple pendulum with friction (energy dissipation) and an external force (interaction with 

its environment) the minimal number of such variables is two: e.g. the position and the 

velocity of the pendulum. Knowing these quantities at a given time one is able to calculate 

all physical observables like e.g. kinetic and potential energy or momentum. Furthermore, 

the dimension of the phase space equals the number of degrees of freedom of the system. 

The pendulum, for instance, describes a closed trajectory in a two dimensional phase 

space called limit cycle. If the external force is switched off, the friction causes that the 

attractor will be just one point in phase space, a stable fix-point, which resembles the 
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resting state of the pendulum. Evidently, more complicated systems may have a much 

higher dimensional phase space and in the case of brain dynamics this dimension should 

be an astronomically high number, given that the brain consists of a highly non-trivial 

network of about 1011dynamical units (the neurons) each of them with about 10³ to 10⁴ 

connections (synapses). 

The attractor of a system is invariant in the sense that independent from the starting point 

of the dynamics in phase space, or equivalently, independent from the kind of external 

perturbation the system suffers, the dynamics always approaches the same sub-manifold 

of the phase space (provided that the system stays within a basin of attraction).  

For the brain dynamics it is essential that the attractor is not a fix-point. Otherwise, it 

would have the permanent tendency to switch off and would require permanent energy 

supply in order to avoid the definite shut down. For the brain it is much more convenient 

that this invariant set contains all those processes, which are responsible for the 

maintenance of all vitally indispensable activities, like breathing, control of heart rhythm, 

temperature control, digestion, etc. However, neuronal circuits controlling such processes 

are located in evolutionary older brain regions and the spinal cord, the vegetative nerve 

system, whose electrical activity is not likely to be measured by a scalp recording. Instead, 

surface EEG capture mainly electrical activity of cortical neurons. 

The cortical brain activity shows electric field oscillations on all temporal and spatial scales. 

This permanent oscillatory behavior is generated by the intrinsic activity of single neurons 

and extends to the self-organized motion of large neuronal populations (Nunez 1995, 

2000). Continuously synchronized neuronal ensembles emerge, persist for a while before 

they decay, making room for the appearance of other synchronization patterns. In this 

manner synchronized oscillations of ever changing neuronal populations weave a network 

of functional relations even between distant cortical regions, such that information 

transfer and information processing is facilitated. Thus, the hierarchical arrangements of 

varieties of parallel loops of neural circuits (Buzsaki 2006) get bound and local information 

processing integrated (Nunez 2000, Tononi et al. 1998, Tononi 2004, 2010). In fact, in 

order to maintain the brain in an efficient operational mode, a finely tuned balance 
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between activation and rest should be adjusted, such that the brain dynamics approximate 

a critical state close to a second order phase transition (Beggs et al. 2003, Chialvo et al. 

2010, Hesse et al. 2014, Poil et al. 2008). This balance is expressed by power laws of the 

e.g. distribution of spatial sizes of synchronization pattern as well as the distribution of live 

times of synchronized neuronal populations (Eguiluz et al. 2005, Linkenkaer-Hansen et al. 

2001, Miller et al. 2009, Poil et al. 2008). In this regime the brain produces a maximal 

variety of different synchronization patterns, while simultaneously spatial correlation 

encounters largest length. In this sense, the attractor dynamics would be a kind of 

dynamical ground state.  

Our results show that this variety of synchronized space-time structures are not randomly 

distributed over the scalp but obey some global order principles such that a temporarily 

stable scaffold of pronounced cross-correlations emerge. In this way, a specific, task 

related synchronization pattern does not require to be created within a tissue of almost 

silent neurons. Rather, already existing space-time interrelations merely have to be 

modulated. Hence, if the enduring neural background activity can be related to the 

attractor of the brain dynamics, task related actions or activity provoked by external 

stimuli are expressed by a specific adjustment of a permanently existent oscillatory mode. 

Thus, higher order processes like cognitive functions, motor control or sensory processing 

are expressed by deviations from the attractor mode. Taking into account that we are 

almost permanently subject to external stimuli this implies that in fact the brain is almost 

permanently located on transient states, such that the system fluctuates continuously 

around the attractor in phase space. 

This picture is further supported by the brains energy expenditure. Considering that the 

human brain represents about 2% of the whole body weight its energy consumption with 

about 20% of the total energy budget is notably high (Raichle et al. 2006). However, this 

number is independent of the brain’s activity and stays rather stable. It was estimated that 

the local increase of the energy consumption related to the processing of external stimuli 

varies between 0.5% to 2% (Raichle et al,. 2006a and 2006b), a surprisingly low value. Even 

the fact that only 10% of the synapses carry information of the external world (Peters et al. 

1994) does not fully explain such small variations of the energy consumption. However, 
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the scenario described above may provide a consistent explanation. If the resting state 

activity is characterized by cortical standing waves of the electric field (Nunez 2000, Müller 

et al. 2014), generated by a continuous alternation of the number of active synapses per 

unit volume (Nunez 2000), and the response to demands of the external world merely 

consists in the modulation of this oscillating mode, one does not expect a huge increase of 

the energy consumption. Instead, it is plausible that the majority of the energy is used by 

the attractor activity itself, viz. the maintenance of the oscillatory neural background 

activity. 

If this scenario resembles a realistic picture, the attractor should imprint a characteristic 

correlation pattern on the average cross-correlation matrix as observed in this 

contribution, which should be stable in time because fluctuations around the attractor 

cancel out when averages are taken over long time intervals.  

We proved the last statement via some model calculations (see supplementary material), 

where we derived correlation matrices from different types of non-stationary dynamical 

systems. In a first case we investigate a system, which moves almost permanently on 

transients around a stable attractor. For this system it turns out that deviations from the 

attractor-mode, which manifest as deviations from the unperturbed correlation matrix, 

cancel out by the time-average, such that both correlation matrices are also quantitatively 

extremely similar (C=0.98, p-value =0.346, derived from MWW rank test). A situation 

which resembles the findings of the average of the correlation matrices derived from the 

EEG-recordings. 

For the second system we continuously deformed the attractor geometry along the time 

series. Then we compared the average correlation matrices from the first and second half 

of the derived time series obtaining striking differences between the average correlation 

patterns (C=0.26, p-value=0.038). By deforming the attractor geometry the cross-

correlation structure change qualitatively in time, a situation which definitely do not 

reflect the observations reported above.  
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Note, if in both model calculations the information about the deterministic structure is 

destroyed, e.g. via Iterative Amplitude Adjusted Fourier Transform Surrogates (Schreiber 

Schmitz, 2000), all cross correlations are destroyed and the distribution of p-values follow 

closely the null hypothesis generated by white noise. Key-point of these surrogates is, that 

amplitude distribution as well as the Power spectrum of the signals are conserved, while 

Fourier phases are substituted by random numbers, uniformly distributed between zero 

and 2 . However, if random phases are chosen such that phase differences between 

signals are maintained, deterministic features are destroyed while cross-correlations (as 

well as nonlinear interrelationships between signals) are conserved also. In this case cross-

correlations estimated from surrogate data approximate those estimated by the EEG-data.  

Hence, the first scenario is consistent with what one observes analyzing empirical real 

world data. The result of such averages leads to the observation of a pronounced, stable 

correlation pattern, which seems to be independent of the physiological state of the brain. 

Independently if one considers the sleeping brain in different sleep stages, the brain in the 

awake state, different conditions of resting state or drastic pathologic activity like an 

epileptic seizure, the topology of spatial correlations as well as the overall average 

correlations result to be extremely stable and statistically indistinguishable.  

Finally, such rigid skeleton of large scale spatial correlations may result beneficial for the 

orchestration of segregated local functional networks and could provide an efficient 

mechanism for the integration of local information processing. Waves are entities that 

implement spatial-temporal structures and large scale correlation, as observed in the 

stationary pattern, which allow a fast communication even between distant areas. This 

oscillatory mode provide a convenient framework for the generation of bottom-up and 

top-down processes, where local excitations may rapidly propagate due to large scale 

correlations provoking global modulations of the standing waves, and, on the other hand, 

local perturbations might be suppressed by a globally collective dynamics.  

Note, these findings do not imply that brain activity is a static monolithic process (as 

proven by the model calculations presented in the supplementary material) and the 

present study does not challenge the highly non-stationary character of EEG signals. But it 
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provides strong evidence for the existence of an attractor of the brain dynamics, a picture 

which is consistent with abundant literature about the energy consumption and that 

portrays the brain as a complex system close to a second order phase transition, a 

situation most favorable to maintain the brain in an efficient operational mode and 

transient dynamics provoke excursions in phase space around the attractor. 

Hence, if non-stationary dynamical aspects of the brain dynamics are imprinted in 

transient behavior in phase space, the quantification of deviations from the stationary 

correlation structure constitutes a more appropriate strategy of analysis than conventional 

concepts, providing a higher significance level of numerical estimates and a more 

consistent picture across subjects. So far, we reported solely absolute deviations of broad 

band signals, averaged over the whole scalp. However, in order to get an improved 

description of non-stationary dynamical aspects one needs to look in more detail to the 

spatial distribution of the deviations from the stationary pattern in a time resolved manner 

separately for different frequency bands. As shown in the present work, the pattern of 

deviations are qualitatively different for e.g. different sleep stages, that is, corresponding 

difference matrices are located toward different directions in matrix space, which implies 

that a qualitative different behavior should be expected for different sleep stages.  

Figure 6 documents that preferentially those matrix elements with low average values 

show dominant fluctuations and, in line with the interpretation of a transient movement 

around the attractor activity, in particular these matrix elements carry relevant 

information about the dynamics of non-stationary dynamical features like higher order 

cognitive processes or reaction to external stimuli. Although it remains to study which 

brain areas are dominantly affected by such changes and under which conditions, the 

present findings already imply that any kind of thresholding, where matrix elements with 

small cross-correlation values are principally excluded from the analysis, constitute an 

unfavorable strategy. If, as in many studies, matrix elements below e.g. 0.3 or 0.4 are 

systematically discarded, essential dynamical features might be missed in general. 

Another approach, which might offer a complementary view, follows a similar philosophy 

than the traditional Principal Component Analysis. If the EEG recordings are projected to 
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the eigenbasis of the stationary pattern, the transformed datasets do no longer contain 

the observed temporarily stable correlation pattern. Hence, nonzero elements of the SAC-

matrices constructed from signals transformed this way also indicate deviations from the 

stationary pattern.  

Conclusions:  

The stationary correlation pattern identified in the present study is consistent  with the 

attractor dynamics of the brain activity, which contains the minimal set of vitally 

indispensable activities and maintains the cerebral cortex in an efficient dynamical mode. 

In this picture, higher order processes, like e.g. cognitive acts or different physiological 

states (as e.g. different sleep stages) are conveniently expressed by deviations from the 

stationary pattern. We provided numerical evidence that in comparison to traditional 

concepts discriminations becomes higher when derivations from the stable correlation 

pattern are studied.  

The observations presented in this paper lead to a consistent picture in terms of dynamical 

system theory and could open new avenues for brain-signal-analysis, which allow to 

illuminate novel aspects of the brain dynamics. 
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TABLE 1: Information about the 10 male subjects of the sleep recordings. Shown is the age 

and the percentage of the recording each subject stayed in the unambiguously identified 

awake or a particular sleep stage.  

Subject Age % wake % NREM 

1 

% NREM 

2 

% NREM 

3 

% NREM 

4 

% REM

1 21 0.9 2.4 51.9 4.2 15.8 24.9

2 25 9.2 4.7 45.0 6.6 14.2 20.3

3 27 5.0 1.6 47.4 5.0 16.9 24.2

4 21 5.8 5.2 50.9 6.0 8.6 23.5

5 24 2.9 2.5 49.1 6.8 16.9 21.9

6 29 2.4 3.3 53.4 4.9 15.8 20.2

7 24 0.7 2.7 52.5 6.5 17.5 20.1

8 26 0.6 3.5 61.5 4.5 9.0 20.9

9 31 6.0 2.8 38.9 9.0 24.0 19.2

10 24 7.0 3.9 43.6 8.9 22.1 14.5
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Table 2: Information about sex, age and seizure duration of 20 peri-ictal recordings from 9 

epilepsy patients. 

Patient Age Sex Seizure Duration/sec.

 

1 

 

22 m 

1 96 

2 122 

3 84 

2 28 f 4 132 

5 204 

3 45 f 6 113 

7 52 

 

4 

 

23 m 

8 150 

9 120 

10 203 

5 33 m 11 56 

12 10 

 

6 

 

18 m 

13 40 

14 54 

15 119 

 

7 

 

27 f 

16 91 

17 94 

18 50 
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8 23 m 19 73 

9 21 f 20 107 
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Table 3: Information about sex, age from 21 healthy subjects in resting state 

Adults No Age Range Sex 

Female-Male 

Younger 10 26±4.4 23-38 7-3 

Elderly 11 79±7.8 67.94 6-5 
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Figures Captions 

 

Figure 1: Average correlation-matrices of subject 9 of Table 1. Each average is taken over 

all data segments belonging to a particular sleep stage.  

  

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
itä

t B
er

ne
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

9/
14

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 47 of 69 
 
 
 

47 

Br
ai

n 
Co

nn
ec

tiv
ity

 
Ch

ar
ac

te
ris

tic
 F

lu
ct

ua
tio

ns
 a

ro
un

d 
St

ab
le

 A
tt

ra
ct

or
 D

yn
am

ics
 e

xt
ra

ct
ed

 fr
om

 h
ig

hl
y 

no
n-

st
at

io
na

ry
 E

le
ct

ro
en

ce
ph

al
og

ra
ph

ic 
Re

co
rd

in
gs

. (
DO

I: 
10

.1
08

9/
br

ai
n.

20
18

.0
60

9)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

 

Figure 2: Case study of subject 9. Upper panel: Time evolution of all 105 correlation 

coefficients of the SAC matrix. Middle panel: Correlation between the time dependent 

matrix vectors formed from the SAC-matrix and the stationary pattern. Lower panel: 

Scoring of the corresponding polysomnography.  
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Figure 3: Summary statistics over all 10 subjects of Table 1. For each sleep stage two 

columns are drawn. The box plot on the left shows median value and the borders of the 

50% and 90% confidence interval of the Pearson Correlations estimated between the SAC-

matrix of a given data window and the stationary pattern. Furthermore, as a red triangle 

the average value is shown. The right column shows median (red color) and the borders of 

the 90% confidence interval (blue color) separately for the 10 healthy subjects, ordered by 

ascending median correlation. Solid lines are just or guidance of the eye. 
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Figure 4: A) Pearson coefficients for the pairwise comparison stationary pattern. 

Considered are sleep recordings (Sleep), the peri-ictal average of focal onset seizures (SZ), 

Resting state for open eyes (OE) and closed eyes (CE) for young and elderly adults. Young 

adults are the first half of the resting state recordings, elderly adults the second half. 

B) Cumulative distributions of p-values derived by the non-parametric Mann-Whitney-

Wilcoxon-rank test for the pairwise comparison of the stationary pattern of all recordings 

(blue symbols), the 10 sleep recordings (green), the 20 peri-ictal averages of temporal lobe 

seizures (brown),  open (orange) and closed eyes (purple). As a reference we also draw the 

results of 100000 samples of Gaussian white noise with the same size as the empirical data 

(gray shaded squares). The inset shows the left tail of the distributions C) Same as B but 

now the stationary pattern of sleep EEGs is compared with the results for seizure EEGs 

(dark brown), open eyes (light brown) and closed eyes condition (red). Furthermore 

Seizure data is compared to  open (light blue) and closed eyes condition (dark blue) and 

finally a pairwise comparison with open and closed eyes (orange) is shown.  
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Figure 5: A and B Quantitative comparison of the stationary pattern derived for different 

sleep stages, C and D  for the pre-seizure, seizure and the post-seizure period, and E and F 

for the open and closed eye condition of young and elderly adults. Figures A, C and E 

display the cumulative distribution of p-values derived from the Mann-Whitney-Wilcoxon-

rank test, Figures B, D and F the corresponding Pearson coefficients. 
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Figure 6: Size of the 90% confidence interval of cross-correlation coefficients in each sleep 

stage (ordinate) versus their mean value (abscissa) for all 10 sleep recordings.  
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1 Supplementary Material of “Characteristic Fluctuations around Stable Attractor 

Dynamics extracted from highly non-stationary Electroencephalographic Recordings”. 
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Average Matrices of resting state EEGs: 

Like Figure 1 in the main text we provide here mean correlation matrices of resting state 

data averaged separately for eyes open and eyes closed condition. Shown is the 

correlation pattern for two subjects, one belongs to the group of young the other to the 

group of elderly adults. The similarity of the correlation pattern is intriguing. A similar 

figure for an average correlation matrix for the pre-seizure, seizure and post-seizure period 

of a focal onset seizure can be found in (Müller et al. 2014) .  
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Figure S1 Average correlation matrices obtained from resting state EEGs for eyes open and 

eyes closed condition of a young and elderly adult. 
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Comparison of average matrices obtained separately for physiological states: 

In order to test quantitatively the similarity of the average cross-correlation matrices 

obtained separately for the different sleep stages we estimated the Pearson correlations 

for each pairwise comparison of the 10 subjects, which participated in the sleep study. 
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Figure S2: Pearson Coefficients between all pairs of the average correlation matrices 

obtained separately for the different sleep stages of each subject. The shortcuts at the 

ordinate denote: R=REM; W=waking and 1,2,3,4, the non-REM sleep stages. The abscissa 

enumerates the subjects. Note, the color scale initiates only at 0.9. 
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At first glance, all correlation coefficients shown in Figure S2 are notably high, namely, 

they are larger than 0.9, which testifies the extraordinary similarity of the average matrices 

obtained for different sleep stages. Second, the waking state shows lowest similarity to all 

sleep stages, as could be anticipated intuitively. Apparently, structural differences of the 

average correlations are more pronounced between the sleeping and the non-sleeping 

brain than between any pair of sleep stages. Furthermore, one observes in Figure S2 that 

the average correlation pattern obtained for NREM sleep stages 2, 3 and 4, as well as that 

for 1 and 2 are also quite similar. The highest structural discrepancies between sleep 

stages can be observed for the comparison of NREM sleep stage 4 and REM as well as 

NREM 1 and 4. The correlation between the average correlation matrices between sleep 

stages 1 and 2 is somewhat lower, but still documents a high structural similarity. The 

same is true for the waking state and sleep stage 1.  

The present results are consistent with the two mechanisms involved in the generation of 

EEG signals. One is the thalamus-cortical oscillator and the other one the brain-stem 

activating system (an important bottom-up activating system), which is responsible for 

alertness. Cortical EEG sleep oscillations depend on the firing mode of the Thalamus-

cortical neurons. During NREM sleep the firing mode changes from the tonic mode, 

characteristic of activated states that are particularly active during the waking state and 

REM sleep, to the oscillatory mode of NREM sleep, when thalamus-cortical neurons 

become hyper-polarized while generating Delta waves and sleep spindles depending on 

the level of hyper polarization (Steriade 1997; Steriade and McCarley, 1990). The presence 

of such oscillations has been shown in an animal model, where Delta-waves as well as 

sleep spindles have been found zero-lag correlated between different cortical locations 

(Contreras et al., 1997; Destexhe et al., 1999). Steriade and coworkers found such 

synchronized oscillations with intra-cranial electrodes placed upon the cortex. Here zero-

lag correlations can not be explained via volume conduction effects. Such phenomenon 

has also been observed in humans by analyzing extra-cranial recordings (Guervara et al., 

1995; Achermann and Borbely, 1998). The two mechanisms, one active in waking stage 

and REM Sleep and, the other respectively, during NREM-sleep, mark qualitative 

differences between stage 4 and REM as well as between stages 1 and 4 respectively.  
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From this perspective the largest discrepancy should be expected between NREM sleep 

and waking state, and also between W and REM sleep, whereas, stages 2, 3 and 4 of NREM 

sleep are characterized by increasing amount of Delta activity according with both the 

standard manual (Rechtschafen and Kales, 1968,Lesser et al.,1986). Accordingly, it could 

be expected that the highest correlation is observed between stages 2 and 3 as well as 

between stages 3 and 4. Stage 1, on the other hand, is a transitional state between W and 

sleep with mixed EEG activity, when alertness is already reduced but sleep promoting 

mechanisms of the thalamus-cortical oscillatory mode are still not fully installed (Corsi-

Cabrera et al., 2006). That may explain the closeness between W and stage 1; another 

possible explanation is that, although during stage 2 the oscillatory mode is already 

working, the transition from stage 1 to stage 2 is based on the presence of at least two 

sleep spindles and/or K-complex and a low amount of Delta, introducing possible arbitrary 

difference of classification. A third explanation the short duration and the small overall 

amount of sleep stage 1 periods during night. 

In conclusion, these findings provide a quantitative justification for averaging over the 

whole EEG-recordings, without any distinction between sleep stages.  

Analogously to the results presented in Figure S2 we also estimated the Pearson 

coefficient for the comparison of the eyes open and closed condition of the resting state 

EEGs.   
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Figure S3: Pearson Coefficients for the comparison of average correlation matrices 

obtained separately for the eyes closed and eyes open condition of the resting state EEGs. 

With the exception of recording 1 all estimates are notably above 0.8 

Like in Figure S2 and Figure 2 of (Müller et al. 2014) the similarity of the average spatial 

correlation structure for the two resting state conditions is extremely high. These results 

justify the average over both conditions. The resulting matrix is called the stationary 

pattern of the resting state EEGs. 
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Comparison of the overall correlation strength by using the Mann-Whitney-Wilcoxon 

rank test: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4: Pairwise comparison cross-correlation matrices averages separately for different 

physiological states. P-value are estimated by the non-parametric Mann-Whitney-

Wilcoxon-rank test. Panel A provides the pairwise comparison of different sleep stages, 

panel B  comparison of average correlation matrices derived from the pre-seizure, seizure 
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and post-seizure period, C comparison of the results derived from Young and elderly adults 

with open and closed eye condition. 

Figure S4 provides a detailed comparison of average correlation matrices derived from 

different physiological stages by employing the Mann-Whitney-Wilcoxon rank test. None 

of the comparisons lead to significant results, because the average spatial correlation 

pattern remains extremely similar in all cases considered in this study. 
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Attractor Dynamics, transient behavior and non-stationarity 

In the main text the stable scaffold of spatial interrelations has been interpreted as a 

shadow of the dynamics on (or close to) the attractor in phase space and non-stationary 

dynamical features has been linked to specific excursions from the invariant set. This led to 

the assumption that different physiological states are expressed by characteristic 

deviations from the stationary pattern, which could be confirmed for the peri-ictal 

transition of epileptic seizures, the different sleep stages and the eyes open/eyes closed 

condition during rest. It turned out that average difference matrices are not zero but show 

characteristic deviations if estimated for different physiological states separately. 

Furthermore, this picture drawn from dynamical system theory fits nicely to the abundant 

empirical evidence suggesting that the brain is a complex system operating close to the 

critical point of a second order phase transition and is also congruent with the lavish 

energy consumption of the brain even at resting state. 

Nonetheless, this is a hypothetical statement, given that an adequate reconstruction of the 

true phase space of the brain activity , and though a direct proof that the attractor of the 

brain dynamics is directly responsible for the observed stable correlation pattern is 

principally impossible due to its astronomically high dimension. However, at least the 

opposite direction, namely, that a frequently perturbed and, hence, non-stationary 

dynamical system provides the same correlation pattern as the unperturbed one, while 

qualitative changes of the attractor lead to qualitative changes of cross correlations can be 

shown easily. 

 To this end we performed to types of calculation. In a first step we considered two 

diffusively coupled non-identical Rössler systems (cite Rosenblum): ˙ = − − + −  ˙ = −  ˙ = 0.2 + − 10  ˙ = − − + −  
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˙ = −  ˙ = 0.2 + − 10 , 

where and are 0.985 and 1.05 respectively, = 0.15and = 0.2.  

This system was then integrated with a 4th order Runge Kutta method using a step with of 

0.05. From the resulting 6 dimensional multivariate recording we then estimated the cross 

correlation matrix over2 data points.  

The attractor of the first Rössler system and the results for the estimation of the average 

cross-correlation matrix are displayed in Figure S5. 

For comparison we then repeated the same computation for the corresponding perturbed 

system. To this end we added independent Gaussian random numbers (zero mean, 

standard deviation equal to 2) to each of the  and  components at every 250 time steps. 

The same is done for both  components, but now absolute values have been taken in 

order to avoid negative values. Furthermore, we reset  components below 10 if they 

increase above 25 in order to prevent divergence. Note, this system is non-stationary by 

definition, given that it moves almost always on a transient around the attractor. As 

displayed in Figure S5, the corresponding trajectory in phase space is notably distorted in 

comparison to Figure S5. However, the mean correlation pattern is not affected by such a 

drastic intervention.   
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Figure S5: A) Attractor of one of the coupled Rössler system and B) the corresponding 

correlation matrix of the complete system. C) and D) shows the same for the strongly 

perturbed system. 

  

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
itä

t B
er

ne
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

9/
14

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 66 of 69 
 
 
 

66 

Br
ai

n 
Co

nn
ec

tiv
ity

 
Ch

ar
ac

te
ris

tic
 F

lu
ct

ua
tio

ns
 a

ro
un

d 
St

ab
le

 A
tt

ra
ct

or
 D

yn
am

ics
 e

xt
ra

ct
ed

 fr
om

 h
ig

hl
y 

no
n-

st
at

io
na

ry
 E

le
ct

ro
en

ce
ph

al
og

ra
ph

ic 
Re

co
rd

in
gs

. (
DO

I: 
10

.1
08

9/
br

ai
n.

20
18

.0
60

9)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

In a second step we created non-stationary signals by considering a mixed Rössler-Lorenz 

system. Here we used the equations S1-S6 and a anti-correlated Lorenz-system: ˙ = − + 0.3 −  ˙ = − −  

˙ = − +  

˙ = − + 0.3 −  ˙ = − −  

˙ = − + , 

with = 10, = 8, = 3and = 28. 

Time series are then created by a mixed state = 1 − +   

respectively,while  increases gradually from zero to one. In total we derived 2 data 

points, such that in the first part the Rössler systems dominate while it is governed by the 

Lorenz systems in the second half. The phase space trajectory of such a mixed system for 

the first and second half as well as the corresponding correlation matrices are shown in 

Figure S6. 
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Figure S6: Results obtained for the mixed Rössler-Lorentz system. A) shows the mixed 

attractor of the derived from the first half of the time series, panel B) the same for the 

second half of the time series. Panel B) and D) show the corresponding correlation 

matrices derived from the complete 6 dimensional system. 

One observes nicely that the geometry of the phase space trajectories change 

qualitatively, which results in qualitatively different mean cross-correlation matrices. 

Evidently, the situation shown in Figure S5 is much more affine to the observations 

reported in the main text. In both cases we are considering highly non-stationary systems, 

but the first one leads to stationary cross-correlations while the mean cross-correlation 

matrix is time dependent in the second case.  

If one destroys, on the other hand, any deterministic feature imprinted in the signals, no 

mutual correlations remain and estimates of the cross-correlation matrix are close to unity 

in matrix space.  

The complete information about the geometry in phase space is imprinted in (measured or 

numerically estimated) time series, a fact that allows the reconstruction of topologically 

equivalent phase space structures via e.g. embedding procedures. Parseval's theorem, on 

the other hand, ensures that the amount of information imprinted in a time series is 
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identical to the information content of its Fourier Transform. Given that the linear auto-

correlation function is equivalent to the power spectrum, the Fourier Amplitudes do not 

contain any information about the attractor topology. The complete information about the 

deterministic structure of an dynamic process is solely induced in the Fourier Phases. Thus 

phase randomized signals carry the same linear univariate properties as the original time 

series but are of stochastic nature otherwise. This can be achieved by Iterative Amplitude 

Adjusted Fourier Transform Surrogates (IAAFT) (Kanz-Schreiber), where Fourier Phases get 

randomized, while Power Spectra as well as Amplitude Distributions are preserved. 

However, such procedure also destroys linear interrelations between time series and 

though cross-correlation estimates are close to zero.  

We acknowledge that the above considerations do not constitute a strict proof for the 

correctness of our interpretation, but, together with the above mentioned evidence, it 

makes it at least more plausible and substantiates the consistent explanation of the 

observed phenomena in terms of dynamical system theory provided in the main text. 
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