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Abstract

Establishing a connection between intrinsic and task-evoked brain activities is critical because it would provide a
way to map task-related brain regions in patients unable to comply with such tasks. A crucial question within this
realm is to what extent the execution of a cognitive task affects the intrinsic activity of brain regions not involved
in the task. Computational models can be useful to answer this question because they allow us to distinguish task
from nontask neural elements while giving us the effects of task execution on nontask regions of interest at the
neuroimaging level. The quantification of those effects in a computational model would represent a step toward
elucidating the intrinsic versus task-evoked connection. In this study we used computational modeling and graph
theoretical metrics to quantify changes in intrinsic functional brain connectivity due to task execution. We used
our large-scale neural modeling framework to embed a computational model of visual short-term memory into an
empirically derived connectome. We simulated a neuroimaging study consisting of 10 subjects performing pas-
sive fixation (PF), passive viewing (PV), and delayed match-to-sample (DMS) tasks. We used the simulated
blood oxygen level-dependent functional magnetic resonance imaging time series to calculate functional connec-
tivity (FC) matrices and used those matrices to compute several graph theoretical measures. After determining
that the simulated graph theoretical measures were largely consistent with experiments, we were able to quantify
the differences between the graph metrics of the PF condition and those of the PV and DMS conditions. Thus, we
show that we can use graph theoretical methods applied to simulated brain networks to aid in the quantification of
changes in intrinsic brain FC during task execution. Our results represent a step toward establishing a connection
between intrinsic and task-related brain activities.
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Introduction

Recently, there has been significant interest in inves-
tigating the relationship between intrinsic and task-

evoked brain activities. This interest is driven by the potential
to discover information contained in intrinsic brain activity
that would reveal the repertoire of functional brain networks
used to execute goal-directed tasks (Cole et al., 2014). Intrin-
sic and task-evoked activities are strongly interdependent
(Bolt et al., 2017), and understanding this interdependence
holds the promise of providing a link between resting state
(RS) and task-based empirical findings (Cole et al., 2014).
Furthermore, the establishment of a clear relationship be-
tween intrinsic and task-evoked brain activities would

allow the assessment of task-related brain areas in patients
unable to comply with such tasks (Branco et al., 2016; Liu
et al., 2009).

Neuroimaging studies have shown that performance of a
cognitive task alters the intrinsic functional connectivity
(FC) in nontask-related brain regions (Bluhm et al., 2011;
Tommasin et al., 2017; Vatansever et al., 2015). Bluhm
and colleagues, for example, found increases in FC between
two ‘‘default network’’ brain regions (posterior cingulate/
precuneus and medial prefrontal cortex [PFC]) and the rest
of the brain during a visual working memory task as com-
pared with a passive fixation (PF) task. In another study,
Tommasin and colleagues found reductions in FC between
brain regions within the ‘‘default mode network’’ (DMN)
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during an auditory working memory task as compared with
an eyes-open RS task. Similarly, Vatansever and colleagues
found reductions in FC within DMN brain regions during a
motor task as compared with an RS task.

A very powerful tool that has been used to quantify changes
in intrinsic FC due to task execution employs graph theoret-
ical methods (Adams et al., 2013; Bolt et al., 2017; Cohen
and D’Esposito, 2016; Fuertinger et al., 2015; Krienen
et al., 2014; Moussa et al., 2011). Graph theoretical metrics
have been used in the past decade to study functional and
structural brain networks as they provide ways to quantify
both global network organization and local network proper-
ties (Bolt et al., 2017; Rubinov and Sporns, 2010).

A recent computational study (Lee et al., 2017) demon-
strated the reliability of graph theoretical metrics obtained
from simulated intrinsic brain activity. Lee and colleagues
modeled brain regions as Kuramoto oscillators coupled by
weights extracted from a structural connectome (Hagmann
et al., 2008). After finding an optimal FC matrix (one that re-
sembled the RS empirical connectivity matrix), they set out
to compute global and local network metrics and compared
them to empirically obtained graph metrics during the RS.
They found that simulated brain activity can be reasonably
used to model graph theoretical metrics of brain organization.

However, there is a need to test the use of graph theoretical
metrics on simulated intrinsic activity during task execution.
We aimed to use computational modeling and graph theoret-
ical metrics to quantify differences in intrinsic functional
brain connectivity of nontask-related brain regions due to in-
creasing task demands.

We used a large-scale computational model of visual pro-
cessing that was previously verified against single-unit re-
cordings in nonhuman primates and empirical positron
emission tomography (PET), functional magnetic resonance
imaging (fMRI), and magnetoencephalography (MEG) data
(Banerjee et al., 2012; Corbitt et al., 2018; Horwitz et al.,
2005; Liu et al., 2017; Tagamets and Horwitz, 1998; Ulloa
and Horwitz, 2016). We embedded the visual processing
model in a structural connectome (Hagmann et al., 2008)
to examine differences in intrinsic neural activity between
three conditions: PF, passive viewing (PV), and a visual
delayed match-to-sample (DMS) task. Specifically, we set
out to investigate whether computational modeling and
graph theoretical metrics could be used to quantify and un-
derstand intrinsic neural activity changes in nontask brain re-
gions due to increasing task demands.

Materials and Methods

In this study, we analyzed FC derived from blood oxygen
level-dependent (BOLD) fMRI time series, calculated from
simulated neural activity data using the framework presented
in a previous article (Ulloa and Horwitz, 2016). Although in
our previous article we evaluated the FC between brain re-
gions directly involved in executing a task, in this article,
we examined the intrinsic FC in the rest of the brain (brain
regions not involved in task execution). To better address
that question, we performed a model parameter search to
find a reasonable match between empirical and model FC.
Hereunder we briefly describe the components of the frame-
work and show how it was used to generate the simulated
multisubject experiment presented in this study.

The source code of our modeling work, including simula-
tion, analysis, and visualization scripts, is freely available at
(https://nidcd.github.io/lsnm_in_python/).

Visual object processing model and The Virtual Brain

Visual object processing model. Our in-house visual
(Tagamets and Horwitz, 1998) object processing model con-
sists of interconnected neuronal populations representing the
cortical ventral pathway that has been shown to process pri-
marily the features of a visual object. This stream begins in
striate visual cortex, extends into the inferotemporal (IT)
lobe, and projects into ventrolateral PFC (Haxby et al., 1991;
McIntosh et al., 1994; Ungerleider and Mishkin, 1982).
The regions that comprise the visual model include those
representing primary and secondary visual cortex (V1/V2),
area V4, anterior IT cortex, and PFC (Fig. 1). Each of these
regions contains one or more neural populations with differ-
ent functional attributes (see caption of Fig. 1 for details).

This model was designed to perform a short-term memory
DMS task during each trial of which a stimulus S1 is presented
for a certain amount of time, followed by a delay period in
which S1 must be kept in short-term memory. When a second
stimulus (S2) is presented, the model must respond as to
whether S2 matches S1. The model can also perform control
tasks: PF and passive perception of the stimuli (PV), in which
no response is required. Multiple trials of the active and passive
tasks constitute a simulated functional neuroimaging study.

The DMS-simulated experiment consisted in three trial
blocks of task interspersed with rest blocks (low-attention
fixation). The PV condition consists in three trial blocks of
low-attention viewing of stimuli interspersed with rest
blocks (low attention fixation). The PF condition consisted
in low-attention fixation on a small dot throughout the simu-
lation; there were no rest blocks in the PF condition.

The key feature used to define a visual object was shape.
Model neurons in V1/V2 and V4 were assumed to be orien-
tation selective (for simplicity, horizontal and vertical orien-
tations were used). The structural submodels employed were
based on known monkey neuroanatomical data. An impor-
tant assumption for the visual model, inferred from such
experimental data, was that the spatial receptive field on neu-
rons increased along the ventral processing pathway [see
Tagamets and Horwitz (1998) for details].

Each neuronal population consisted of 81 microcircuits,
each representing a cortical column. The model employed
modified Wilson–Cowan units (an interacting excitatory and
inhibitory pair of elements for which spike rate was the mea-
sure of output neural activity) as the microcircuit (Wilson
and Cowan, 1972). The input synaptic activity to each neu-
ronal unit can also be evaluated, and combinations of this
input activity were related to the fMRI BOLD signals through
a forward model.

In an earlier version of the model (Horwitz et al., 2005), half
the neural populations within the model were ‘‘nontask-
specific’’ neurons that served as noise generators to ‘‘task-
specific’’ neurons that processed shapes during the DMS task.
The model generated time series of simulated electrical neuro-
nal and synaptic activity for each module that represents a brain
region. The time series of synaptic activity, convolved with a he-
modynamic response function, was then used to compute simu-
lated fMRI BOLD signal for each module representing a brain
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region, as well as FC among key brain regions [see Horwitz et al.
(2005) for details on this method].

This model was able to perform the DMS task, generate sim-
ulated neural activities in the various brain regions that match
empirical data from nonhuman preparations, and produce sim-
ulated functional neuroimaging data that generally agree with
human experimental findings [see Tagamets and Horwitz
(1998) and Horwitz et al. (2005) for details]. In this article,
we employ the version of the model introduced by Ulloa and
Horwitz (2016) in which nontask-specific neurons are replaced
by noise-generated activity from neural elements in The Virtual
Brain (TVB) software simulator (Sanz Leon et al., 2013).

The Virtual Brain. TVB software (Sanz Leon et al., 2013;
Sanz-Leon et al., 2015) is a simulator of primarily RS brain
activity that combines (1) white matter structural connections
among brain regions to simulate long-range connections and
(2) a given neuronal population model to simulate local
brain activity. It also employs forward models that convert
simulated neural activity into simulated functional neuroimag-
ing data. TVB source code and documentation are freely avail-
able at (https://github.com/the-virtual-brain).

In this article, for the structural model, we chose the diffu-
sion spectrum magnetic resonance imaging-based connec-
tome described by Hagmann and colleagues (2008), which
contains 998 nodes. For the neural model for each node,
we employed Wilson–Cowan population neuronal units
(Wilson and Cowan, 1972) to model the local brain activity
because our in-house large-scale neural model (LSNM) sim-
ulators use modified Wilson–Cowan equations as their basic
neuronal unit. Our forward model that converts simulated
neural activity into simulated fMRI is a modification of the
Balloon-Windkessel model of Friston and colleagues (Fris-
ton et al., 2000; Stephan et al., 2007) that is included in TVB.

Integrating TVB and LSNM

To perform our computational study, we concurrently ran
two neural simulators: our LSNM simulator, which gener-
ated task-driven neural activity of the brain regions directly
involved in the visual DMS task, and TVB simulator (Sanz
Leon et al., 2013) to generate RS neural activity in the
brain regions not involved in the task. Because the task-
based brain nodes were embedded within RS brain regions
of interest (ROIs), we expected that the neuroimaging activ-
ity in key connectome ROIs would differ between PF, PV,
and task-based simulations. In this study, we sought to quan-
tify those differences, first by comparing the pattern of FC
across conditions, then by using graph theoretical methods
to quantify those differences.

Within the LSNM, connections and parameter choices
closely follow those in the original articles. Likewise, the
connections and parameter choices among TVB nodes closely
follow those described by Sanz-Leon and colleagues (2015).
There are two differences between the simulations presented
in this article and the previous (Ulloa and Horwitz, 2016) ar-
ticle: the location of the FR units has been changed to PreSMA
and the global coupling parameter has been changed (after a
parameter search procedure detailed hereunder).

Task-based model node placement in TVB. The connec-
tome derived by Hagmann and colleagues (2008) serves as a

source of neural noise to our task-based neural model. Such
a connectome was obtained by averaging the weighted
network of five experimental subjects, where each one of
the 998 nodes represents a ROI covering a surface area of
*1.5 cm2. The connection weights among the nodes rep-
resent corticocortical connections given by white matter con-
nection density among the given nodes. As stated previously,
each node is represented by a Wilson–Cowan population unit
and thus each node is assumed to comprise one excitatory
and one inhibitory neural population. We implemented
noise as an additive term to the stochastic Euler integration
scheme provided by TVB software.

The locations of the four PFC nodes (FS, D1, D2, and FR)
require some comment. The inclusion of these four neural
populations in the original LSNMs was based on the electro-
physiological studies of Funahashi and colleagues (1990)
that found in monkey PFC four distinct neuronal responses
during a delayed response task: neurons that (1) increased
their activity when a stimulus was present (FS), (2) increased
their activity during the delay part of the task (D1), (3) in-
creased their activity during both when a stimulus was pres-
ent and during the delay period (D2), and (4) increased their
activity before making a correct response (FR). It is not
known whether these neuronal types are found in separate
anatomical locations in PFC or are intermixed within the
same brain area, although the latter is the more likely case
(except possibly for the FR population).

In the original modeling studies of Tagamets and Horwitz
(1998) and Husain and colleagues (2004), the functional neu-
roimaging data represented a single region that included all
four nodes. To illustrate the integrated synaptic activity and
fMRI signal for each one of the modules of the combined
LSNM/TVB model separately, we have assigned a different
spatial location to each one of the four PFC submodules.
We have used the Talairach coordinates of the PFC, based
on Haxby and colleagues (1991), for the submodule D1 and
have designated spatial locations in adjacent ROIs for the
FS and D2 submodules. The FR submodule has been allocated
to a spatial location determined by an fMRI study of working
memory in humans (Pessoa et al., 2002). See Table 1 for co-
ordinate locations of each module/submodule of the visual
short-term memory nodes within the structural connectome.

Simulating electrical activity and fMRI activity.
Electrical activities of each node in Hagmann’s connec-

tome (TVB equations). Each one of the nodes in Hag-
mann’s connectome is represented as a Wilson–Cowan
model of excitatory (E) and inhibitory (I) neuronal popula-
tions, as described in Sanz-Leon and colleagues (2015):

dEi

dt
=

1

sE

�
�Eiþ kE � rEEið ÞSE

aE cEEEi� cIEIi� hE þC Ei, E, uij

� �� �� ��
and

dIi

dt
=

1

sI

�
� Iiþ kI � rIIið ÞSI

aI cEIEi� cIIIi� hI þC Ei, E, uij

� �� �� ��
,

where SE and SI are sigmoid functions described by
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Sa f uð Þ½ �= c

1þ e � a f uað Þ� bð Þð Þ ,

cEE, cEI , cII , cIE are the connections within the single
neuronal unit itself; note that, although the original TVB
Wilson–Cowan population model allows us to consider the
influence of a local neighborhood of neuronal populations,
we have not used this feature in our current simulations
and have left that term out of the mentioned equations;
C Ek, E, ukj

� �
is the long-range coupling function, defined as

C Ei, E, uij

� �
= aG +

l

j=1

uijEj t� sij

� �
þ +

n

j=1

uijEj t� sij

� � !
,

where l is the number of nodes in the connectome and n is the
number of LSNM units connected to a connectome node; aG
is a global coupling parameter (see Supplementary Tables S1
and S2 for the definition and value of the parameters in the
mentioned equations; Supplementary Data are available
online at www.liebertpub.com/brain).

A global coupling parameter aG value of 0.15 (Supple-
mentary Table S2) was found after a parameter search con-
ducted to find a reasonable match between the hybrid
LSNM–TVB model and the default TVB model during
RS (see ‘‘RS Parameter Exploration’’ section hereunder).
Although we could have tuned the coupling between individ-
ual LSNM units and TVB nodes in more detail (e.g., by using
a matrix instead of the single uij term in the mentioned equa-
tion), we have left the probing of the details of that contribu-
tion to future studies.

Electrical activities of each LSNM unit. Each one of the
submodules of the LSNM model contains 81 neuronal popu-
lation units. Each one of those units is modeled as a Wilson–
Cowan population of excitatory (E) and inhibitory (I) elements.
The electrical activities of each one of those elements at time
t are given by the following equations:

dEi tð Þ
dt

=D
1

1þe�KE wEEEi tð ÞþwIEIi tð Þþ iniE tð Þ�/EþN tð Þ½ �

� �
� dEi tð Þ

and

dIi tð Þ
dt

=D
1

1þ e�KI wEI Ei tð Þþ iniI tð Þ �/I þN tð Þ½ �

� �
� dIi tð Þ,

where D is the rate of change, d is the rate of decay, KE, KI

are gain constants, /E, /I are input threshold values, N tð Þ
is a noise term, and wEE, wIE, wEI are the weights within a
unit (the values of D, d, K, s, N are given in Supplementary
Table S3); iniE tð Þ, iniI tð Þ are the inputs coming from other
brain regions at time t. iniE tð Þ is given by

iniE tð Þ =+
j

wE
jiEj tð Þþ+

j

wI
jiIj tð Þþ+

j
cjiz

C
ji Cj tð Þ,

where wE
ji and wI

ji are the weights originating from excitatory
(E) or inhibitory (I) unit j from another LSNM unit into the
ith excitatory element, Cj is the connectome excitatory unit j
with connections to the LSNM unit i, zC

ji is the value of the
anatomical connection weight from connectome unit j to
LSNM unit i, and cji is a coupling term, which was obtained
by using Python’s Gaussian pseudo-random number genera-
tor (random.gauss), using aG=81 as the mean value. We
chose to divide the term aG by 81 because each LSNM mod-
ule containing 81 units. This is a rough approximation to pre-
vent the input from TVB nodes overwhelming the electrical
activity in LSNM units (recall that LSNM units are of finer
grain than TVB nodes). The exploration of the effects of
varying this coupling falls outside the scope of this article.
The input coming into the ith inhibitory element, iniI tð Þ, is
given by

iniI tð Þ= +
k

wE
kiEk tð Þþ+

k

wI
kiIk tð Þ,

where wE
ki and wI

ki are the weights originating from excitatory
(E) or inhibitory (I) unit k from another LSNM unit into the
ith inhibitory element. Note that there are no connections
from the connectome to LSNM inhibitory units. See Supple-
mentary Tables S4 and S5 for details. Note also that although
TVB simulator incorporates transmission delay among the
connectome nodes, the LSNM nodes do not.

Integrated synaptic activity. Before computing fMRI
BOLD activities, we compute the synaptic activity, spatially
integrated over each LSNM module (or connectome node)
and temporally integrated for 50 ms as described by Horwitz
and Tagamets (1999)

rSYN =+
t, i

INi tð Þ,

Table 1. Hypothesized Locations, in Talairach Coordinates, of Visual Large-Scale Neural

Model Modules, Along with the Closest Node in the Hagmann and Colleagues Connectome

Visual submodule Talairach location Source Host connectome node

V1/V2 (18, �88, 8) Haxby et al. (1995) (14, �86, 7)
V4 (30, �72, �12) Haxby et al. (1995) (33, �70, �7)
IT (28, �36, �8) Haxby et al. (1995) (31, �39, �6)
FS Location selected for illustrative purposes (47, 19, 9)
D1 (42, 26, 20) Haxby et al. (1995) (43, 29, 21)
D2 Location selected for illustrative purposes (42, 39, 2)
FR (1, 7, 48) Pessoa et al. (2002) (8, 6, 50)

The acronyms of the submodules in the model hereunder represent visual cortical areas (V1/V2, V4), IT cortex, and prefrontal cortex (FS:
neuronal populations that respond to stimulus presentation, D1 and D2: neuronal populations that keep a memory trace of stimulus presented,
and FR: neuronal population involved in short-term memory task response). Note that the locations of FS and D2 are not explicitly known
(see Methods and Materials section) and were chosen only to demonstrate validity of the method.

IT, inferotemporal.
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where INi tð Þ is the sum of absolute values of all inputs to
both E and I elements of unit i, at time t, and is given by

INi tð Þ = wEEEi tð ÞþwEIEi tð Þþ wIEIi tð Þj j þ +
k,i

wkiEk tð Þ:

Note that the first three terms mentioned are the synaptic
weights from within unit i and the last term is the sum of syn-
aptic connections originating in all other LSNM units and
connectome nodes connected to unit i. Note also that in
our current scheme, there are no long-range connections
from inhibitory populations.

Generation of subjects and task performance of the LSNM
model. We generated simulated subjects by creating sev-
eral different sets of connection weights among submodules
of the LSNM visual network until we obtained the number of
desired subjects whose task performance was >60%. How-
ever, the weights among the nodes with TVB connectome
remained unchanged across subjects. The generation of dif-
ferent connectome sets to simulate individual subjects is out-
side the scope of this article, but will be essential for future
simulation studies investigating the effects of a behavioral
task on nontask brain nodes.

Task performance was measured as the proportion of cor-
rect responses over an experiment. A response in the re-
sponse module (FR, described in the caption of Fig. 1) was
considered a correct response in each trial if at least 2 units
had neuronal electrical responses more than a threshold of
0.7 during the response period. To create different sets of
weights that were different from the ideal subject, we multi-
plied feedforward connections among modules in the LSNM
visual model by a random proportion of between 0.95 and 1.

Equations for the forward fMRI BOLD model. We
implemented the BOLD signal model described by Stephan
and colleagues (2007). We use the output of the integrated
synaptic activity mentioned as the neural state equation to
the hemodynamic state equations hereunder. The BOLD sig-
nal for each ROI, y(t), is computed as follows:

y tð Þ = V0 k1 1� q tð Þð Þþ k2 1� q tð Þ
v tð Þ

� �
þ k3 1� v tð Þð Þ

�
,

�

where the coefficients k1, k2, k3 are computed as

k1 = 4:3#0E0TE

k2 = er0E0TE

k3 = 1� e,

where V0 is the resting venous blood volume fraction, q is
the deoxyhemoglobin content, v is the venous blood vol-
ume, E0 is the oxygen extraction fraction at rest, e is the
ratio of intra- and extravascular signals, and r0 is the
slope of the relationship between the intravascular relaxa-
tion rate and oxygen saturation, #0 is the frequency offset
at the outer surface of the magnetized vessel for fully deox-
ygenated blood at 3T, and TE is the echo time.

The evolution of the venous blood volume v and deoxyhe-
moglobin content q is given by the balloon model hemody-
namic state equations as follows:

s0

dv

dt
= f tð Þ� v tð Þ1=a

s0

dq

dt
= f tð Þ 1� 1�E0ð Þ1=f

E0

� v tð Þ1=a q tð Þ
v tð Þ ,

where s0 is the hemodynamics transit time, a represents the
resistance of the venous balloon (vessel stiffness), and f tð Þ is
the blood inflow at time t and is given by

df

dt
= s,

where s is an exponentially decaying vasodilatory signal
given by

ds

dt
= �x tð Þ� s tð Þ

ss

� f tð Þ� 1ð Þ
sf

,

where � is the efficacy with which neuronal activity x(t) (i.e.,
integrated synaptic activity) causes an increase in signal, ss is
the time constant for signal decay, and sf is the time constant
for autoregulatory feedback from blood flow (Friston et al.,
2000). See Supplementary Table S6 for the values of the
mentioned parameters. The simulated fMRI BOLD time se-
ries resulting from the mentioned equations were low-pass
filtered (<0.25 Hz) and down-sampled every 2 sec.

RS parameter exploration

We performed a global parameter exploration (for which
we used exclusively TVB simulator and the structural con-
nectome with no task nodes) to obtain a reasonable match be-
tween empirical and model FC (Cabral et al., 2011). We
obtained the empirical FC data sets from Hagmann and col-
leagues (2008) that we used as a target for our simulated FC.
Note that we used a low resolution (66 nodes) FC of matrices
to perform the comparisons between empirical and RS sim-
ulations (Honey et al., 2009): we transformed all correlation
coefficients to Fisher’s Z values and averaged the FC matri-
ces across subjects within each condition.

We then calculated low-resolution (66 ROIs) matrices
(each ROI corresponding to a brain region in the Desikan–
Killiany parcellation (Desikan et al., 2006) for each condi-
tion (Hagmann et al., 2008; Honey et al., 2009) by averaging
FC coefficients within each one of the low-resolution ROIs
(Hagmann et al., 2008) and converted back to correlation co-
efficients using an inverse Fisher’s Z transformation.

We systematically varied the global coupling parameter (aG
in the long-range coupling equation mentioned) and the white
matter conduction speed and conducted a 198-sec RS simula-
tion for each parameter combination. We calculated a Pearson
correlation coefficient between the model FC matrix (for each
parameter combination) and the empirical FC matrix. Then,
we chose the parameter combination that gave us the highest
correlation value and used that combination for the PF, PV,
and DMS simulations of our study. The global strength param-
eter range used was between 0.0042 and 0.15 with a step of
0.01. The conduction speed parameter range used was be-
tween 1 and 10 m/s with a step of 1 m/s. The best combina-
tion of parameters was (0.15, 3), which yielded a
correlation value between simulated and empirical FC of
r = 0.37. Note that absent structural connections were
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removed from this correlation calculation as in Honey and
colleagues (2009), but not in the rest of the article.

From RS to PF, PV, and DMS

After finding an optimal match between empirical and
simulated RS, we performed a simulation of RS with stimu-
lation in visual task nodes using only TVB simulator (Sanz-
Leon et al., 2015). The correlation between RS FC and RS
with stimulation FC was 0.90. Subsequently, we used a
blend of our LSNM simulator and TVB to simulate PF.
The correlation between RS with stimulation and PF was
0.9. As a last step, we performed a DMS simulation and com-
pared it with the PF simulation (correlation was 0.79). Thus,
we used TVB RS simulation (matched to empirical RS) as a
starting point for our PF and task-based simulations.

Network construction

The simulations were performed using TVB simulator
with the 998-node Hagmann connectome and the LSNM vi-
sual short-term memory simulator already described. We iso-
lated the synaptic activity time series of connectome nodes
from the task nodes’ synaptic activity. We used the Balloon
model to estimate fMRI BOLD activation over each one of
the 998 nodes, for each condition, and for each subject sep-
arately. We calculated zero lag Pearson correlation coeffi-
cients for each pair of the BOLD time series to obtain an
FC matrix for each condition and for each subject. We
used the weighted FC matrices within each condition to con-
struct graphs where each one of the 998 ROIs corresponded
to a graph node and the correlation coefficients between each
pair of ROIs corresponded to graph edges (Bolt et al., 2017;
Di et al., 2013).

To keep the same number of edges across conditions, we
thresholded the network edges to a sparsity level of between
5% and 40% (Di et al., 2013) with a step size of 5%.

Graph theory analysis

A set of eight graph theoretical metrics (global efficiency,
local efficiency, clustering coefficient, characteristic path
length, eigenvector centrality, betweenness centrality, partic-
ipation coefficient, and modularity) were calculated using
the FC matrices for each of the conditions using the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010) in
Python, publicly available at (https://github.com/aestrivex/
bctpy). We calculated graph metrics for each individual FC
matrix, for each condition and for each density threshold.
Then we calculated the average and standard deviation of
each graph metric for each density threshold.

Global efficiency (Latora and Marchiori, 2001) measures
‘‘functional integration’’ (Rubinov and Sporns, 2010) and in-
dicates how well nodes are coupled through functional con-
nections across the entire brain. Global efficiency is
calculated as the average inverse shortest path length (Rubi-
nov and Sporns, 2010).

Local efficiency is the inverse of the average shortest path
connecting a given node to its neighbors (Lee et al., 2017).

Clustering coefficient (Watts and Strogatz, 1998) is a mea-
sure of ‘‘functional segregation’’ (Rubinov and Sporns,
2010). The clustering coefficient of a network node is the
proportion of the given node’s neighbors that are function-

ally connected to each other. Whole brain clustering coeffi-
cient is calculated as the average of the clustering
coefficients in an FC matrix (Rubinov and Sporns, 2010).

Characteristic path length is the average shortest path
length between all node pairs in a network (Rubinov and
Sporns, 2010).

Eigenvector centrality is a measure of centrality that con-
siders degree of a given node and degree of that node’s
neighbors (Fornito et al., 2016).

Betweenness centrality is the fraction of shortest paths that
cross a given network node (Rubinov and Sporns, 2010).

Participation coefficient is a measure of each node’s par-
ticipation in a given set of network communities.

We used a set of six network communities for the partic-
ipation coefficient calculation, as given in Supplementary
Table S1 of Hagmann and colleagues (2008).

Modularity (Newman, 2004) is a metric of functional seg-
regation and it detects community structure in a network by
dividing a FC matrix into sets of nonoverlapping modules
and it measures how well a network can be divided into
those modules (Rubinov and Sporns, 2010).

Results

To perform this study, we embedded a biologically real-
istic model of visual short-term memory (Tagamets and
Horwitz, 1998), shown in Figure 1, into an anatomical skel-
eton defined by a 998-node structural connectome (Hagmann
et al., 2008), shown in Figure 2, using a blend of our LSNM
simulator (Ulloa and Horwitz, 2016) and TVB simulator
(Sanz Leon et al., 2013). The visual short-term memory
model used here has been previously verified against single-
unit recordings in nonhuman primates (Tagamets and Hor-
witz, 1998) and empirical PET (Tagamets and Horwitz,
1998), MEG (Banerjee et al., 2012), and fMRI data (Corbitt
et al., 2018; Horwitz et al., 2005; Liu et al., 2017). Such a vi-
sual model comprises brain regions that are directly involved
in performing a DMS task for visual objects.

As already mentioned, we added a structural connectome to
provide neural noise to the simulated neural activity during the
DMS task, and in return, to receive inputs back from the DMS
task nodes. We have described our framework in a previous ar-
ticle (Ulloa and Horwitz, 2016), where we focused on the fMRI
BOLD signal generation during the DMS task. In this study, we
sought to analyze the FC configurations in brain regions not
driving task execution. These ‘‘nontask’’ brain regions exhibit
intrinsic activity and because of their reciprocal connections
with task-specific brain regions, their neural activity can po-
tentially be modulated during task execution.

We generated 10 virtual subjects by randomly varying
the connection weights among brain regions in the structural
visual model (see Materials and Methods section for details).
We created three experimental conditions: PF, during which
simulated subjects with a low ‘‘task signal’’ (roughly equiv-
alent to subjects’ attention level during task execution, but
see Materials and Methods section for definition of this pa-
rameter) are fixating on a small dot; PV, during which subjects
passively look at visual shapes; and a DMS task, during which
subjects compared two shapes presented within 1.5 sec of each
other and responded whether the second shape matched the
memory of the first. Each simulated subject performed one
198-sec experiment that consisted of three trial blocks
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interspersed with rest blocks (see Materials and Methods sec-
tion for details).

Changes in simulated BOLD activity of nontask
brain regions due to different task conditions

Figure 3 shows typical (averaged across neuronal popula-
tions within each brain region) neuronal activity for each
condition for task-related brain regions during one trial. Fig-
ure 3 shows the task regions increasing activity due to both
stimuli presentation (V1, V4, IT, FS), short-term memory
maintenance (D1, D2), and response (FR). This increase oc-
curs in the PV and DMS conditions (green and red lines) but
not in the PF condition (blue line). Thus, the stimulus used in
the PF condition (a small dot) does not generate visible
changes in the neuronal activity of task regions. The details
of the task-related responses shown in Figure 3 have been
discussed in detail in previous articles (Horwitz et al.,
2005; Ulloa and Horwitz, 2016).

Figure 4 shows the BOLD signal averaged across those
brain regions with direct anatomical connections to task re-
gions. Figure 2 shows a graphical depiction of the nontask
nodes that are directly connected to task nodes. Notice

how BOLD activity increases during the task blocks (shaded
areas) and how they do so more prominently during DMS
than during PV and during PV than during PF. Also notice
how that BOLD activity change is larger for some of the
brain regions with direct connections to IT, FS, D1, D2,
and FR than those regions with direct connections to V1
and V4. This is due to variations in the strength of the con-
necting weights from task-related nodes to nontask nodes.
As shown in Figure 4, changes in all task-related brain re-
gions correlate with BOLD signal changes in nontask brain
regions directly connected to them.

Intrinsic FC differences between PF, PV,
and DMS conditions

We computed FC matrices for the three simulated condi-
tions and for all subjects. Figure 5 shows the following dif-
ferences between across-subject averages of FC matrices:
PV–PF and DMS–PF. Figure 6 shows scatter plots between
PF and PV and between PF and DMS conditions. As
shown in Figure 6, the correlation coefficients between
PF and both PV and DMS were high (0.90 and 0.83, respec-
tively), demonstrating only small differences in the pair-wise

FIG. 1. Visual short-term
memory model consisted of
interconnected neural popu-
lations that represent primary
and secondary visual (V1/V2,
V4), IT, and PFC. Each one
of the submodules (shown as
squares) within a given brain
module is modeled with 81
(9 · 9) modified Wilson–
Cowan neuronal population
units. Solid arrows represent
excitatory to excitatory con-
nections and dashed arrows
represent excitatory to inhib-
itory connections. Adapted
from Horwitz and colleagues
(2005). IT, inferotemporal;
PFC, prefrontal cortex.

FIG. 2. Graphical repre-
sentation of the location
where each of the visual
short-term memory nodes
was embedded within Hag-
mann’s connectome (Hag-
mann et al., 2008). Also
shown are direct anatomical
connections to connectome
nodes from each one of the
embedded LSNM nodes.
LSNM, large-scale neural
model.
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FIG. 3. Typical electrical activity
in neuronal populations of task-
related brain regions during one
trial of each of the simulated con-
ditions. PF (blue line), PV (green
line), DMS (red line). What is
shown is the average across all
cortical columns in a brain region.
Note that there is a greater electrical
activity in the DMS condition than
in the PV condition and greater
electrical activity in the PV condi-
tion than in the PF condition in all
model brain regions. DMS, delayed
match-to-sample; PF, passive fixa-
tion; PV, passive viewing.

FIG. 4. Average BOLD signal of nontask brain regions with direct connections to task-related brain regions. A complete
simulated fMRI experiment is shown. Shaded areas correspond to a block of three simulated visual trials for DMS and PV
conditions. The nonshaded areas correspond to rest blocks in the PV and DMS conditions. Note that the PF condition consists
in passively fixating on a small dot throughout the whole simulation and no rest blocks (see Materials and Methods section for
details). BOLD activity increases during the task blocks (shaded areas) and they do so more prominently during DMS than
during PV and more prominently during PV than during PF. Also, BOLD activity change is larger for some of the brain re-
gions with direct connections to IT, FS, D1, D2, and FR than those regions with direct connections to V1 and V4. This is due
to variations in the strength of the connecting weights from task-related nodes to nontask nodes. BOLD, blood oxygen level-
dependent; fMRI, functional magnetic resonance imaging.
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consistency of functional connections across conditions. As
already noted, these correlation matrices consist of only con-
nectome nodes (e.g., no LSNM task-based nodes were used
to construct these matrices). In summary, there were small
changes in the pair-wise FC between PF and PV and between
PF and DMS conditions. We next show that differences be-
tween conditions become sharper using graph theoretical
metrics.

Graph theoretical metrics of PF, PV, and DMS conditions

Using graph theoretical methods (Rubinov and Sporns,
2010), we computed network metrics on each of the condi-
tions of our simulation results. Graph theoretical metrics pro-
vide ways to quantify both global network organization and
local network properties (Bolt et al., 2017; Rubinov and
Sporns, 2010). Furthermore, to allow our results to be di-
rectly comparable with previous empirical and computa-
tional studies (Di et al., 2013; Lee et al., 2017), we
selected a subset of eight network metrics (see Materials
and Methods section for definition of each metric): global
and local efficiencies, average clustering coefficient, charac-
teristic path length, eigenvector centrality, betweenness cen-
trality, participation coefficient, and modularity.

We calculated these metrics using weighted FC matrices
for a range of plausible threshold densities (Di et al.,
2013). Figure 7 shows across-subject averages of those met-
rics for a range of network densities (Di et al., 2013). Figure 7
shows that as the task changed from PF to PV to DMS, there
was an increase in global efficiency, local efficiency, average
clustering coefficient, and average betweenness centrality
(mostly at the lowest threshold studied, 5%), and modularity.
Conversely, as the task changed from PF to PV to DMS,
there was a decrease in average characteristic path length,
average eigenvector centrality, and average participation
coefficient. Thus, of the eight graph theoretic measures we
examined, seven demonstrated clear intrinsic activity differ-

ences between the three conditions in the nontask-related
nodes.

Differences in graph metrics between PF
and PV and between PF and DMS

For each graph metric obtained, we computed the relative
difference (see Materials and Methods section for details)
between PF and PV and between PF and DMS (Fig. 8).
We observed significant differences between PF and PV
and between PF and DMS in modularity (54.2% – 8% and
81.3% – 11.6%, respectively), eigenvector centrality (16.3% –
1.7% and 22.1% – 1.8%, respectively) and clustering coeffi-
cient (7.9% – 1.3% and 12.7% – 2%); smaller changes in
global efficiency (1.7% – 0.2% and 2.4% – 0.3%), local effi-
ciency (2.2% – 0.3% and 3.2% – 0.4%), characteristic path
length (1.7% – 0.1% and 2.3% – 0.3%), betweenness central-
ity (1.6% – 0.3% and 2.6% – 0.4%), and participation coeffi-
cient (0.2% – 0.1% and 0.4% – 0.1%). These results indicate
that the intrinsic activity metrics that are most changed in
the nontask part of the brain, at least for the tasks we simu-
lated, were modularity, eigenvector centrality, and clustering
coefficient.

Discussion

Using a large-scale computational model of visual short-
term memory embedded into an anatomical connectome,
we compared simulated intrinsic brain activity of nontask-
related brain regions during three tasks: PF, during which
simulated subjects with a low ‘‘task signal’’ or ‘‘attention’’
level are fixating on visual stimuli (a small dot); PV, during
which subjects passively watch changing visual shapes but
take no action; and a DMS task, during which subjects com-
pared two shapes presented within 1.5 sec of each other and
responded whether the second shape matched the memory of
the first.

FIG. 5. Typical differences (PV–PF) and (DMS–PF) between across-subject averages of the FC matrices obtained from our
simulated experiments. Notice that there is an increase in the FC of several pair-wise connections from PF to PV and from PF
to DMS. FC, functional connectivity.

SIMULATED PASSIVE AND TASK FUNCTIONAL CONNECTIVITY 645



The PF condition may be considered equivalent to an RS
condition as a PF task has been often used in RS fMRI stud-
ies. The key difference between the PF and the PV conditions
was that the stimulus during the PF condition was an un-
changing small dot, whereas in the PV condition several dif-
ferent and larger stimuli were presented. The key difference
between the PV and the DMS conditions was the level of the
‘‘task’’ or attention signal, which was set to a low level in the
PV condition and to a high level during the DMS condition.

As discussed in the Materials and Methods section, the
task signal level determines whether an input stimulus is
going to be retained in short-term memory (Horwitz et al.,
2005). In addition, because of feedback connections from
D1 in PFC to IT and V4 (see model diagram in Fig. 1), the
task signal level indirectly influences neuronal activity in
V1, V4, and IT (compare neuronal activity in V1, V4, and
IT during different conditions in Fig. 3).

To quantify differences between PF, PV, and DMS con-
ditions, we used pair-wise temporal Pearson correlations
(FC matrices) and graph theory metrics of fMRI FC matrices.

As already mentioned, both pairwise correlations and graph
theoretical metrics have been applied in both task and rest
neuroimaging studies to glean information regarding the in-
volvement of mechanisms responsible for brain function.

Although we found small differences between the FC ma-
trices of the simulated conditions, these differences were not
particularly impressive. However, we found clear-cut differ-
ences in each of the graph theory metrics: graded increases
from PF to PV to DMS in global efficiency, local efficiency,
clustering coefficient, betweenness centrality, and modu-
larity; and graded decreases from PF to PV to DMS in char-
acteristic path length, eigenvector centrality, and average
participation coefficient. Our simulated graph theory results
largely agree with empirical studies, as discussed hereunder
in detail.

In our computer simulations, the intrinsic brain activity
across different conditions is modulated by ongoing neural
activity in brain regions engaged in each task (task brain re-
gions). This modulation happens through the strength of the
anatomical connections of those brain regions to the rest of
the brain (nontask brain regions, see Fig. 2).

When the brain engages in a behavioral task, the activity
in neuronal populations driving the task has the potential
of reverberating throughout the brain, thereby altering the in-
trinsic neural activity of neuronal populations not involved in
the task. A crucial question is whether one can quantify those
changes in intrinsic FC. Computational modeling can be use-
ful in this regard, as it allows us to isolate nontask from task
neuronal populations and to convert simulated synaptic ac-
tivity into neuroimaging time series, which, in turn, can be
converted to FC matrices. Furthermore, unlike empirical
data, in a computational model we know which neuronal
populations participate in the task and which neuronal popu-
lations do not.

A commonly used method to simulate the RS is by mod-
eling local neuronal populations with oscillators and using
the structural connections obtained from diffusion tractogra-
phy as connection weights between the model neuronal pop-
ulations. A parameter search is then conducted to find a
global coupling parameter and a white matter conduction
speed producing a simulated FC matrix that best matches
an empirical FC matrix (Cabral et al., 2011; Ghosh et al.,
2008; Gilson, et al., 2016; Hansen et al., 2015; Honey
et al., 2009; Lee et al., 2017; Roy et al., 2014; Sanz-Leon
et al., 2015). This is the method we used to generate intrinsic
activity in the ‘‘rest of the brain’’ of our simulations.

Consistency of pair-wise FC across task conditions

There were small differences between FC matrices PV and
PF and between DMS and PF (Fig. 5). There was also a high
correlation between the pairs in the FC connectivity matrices
between PF and PV and between PF and DMS (Fig. 6). Sev-
eral researchers have used pair-wise spatial correlations be-
tween FC matrices to compare intrinsic with task-evoked
conditions (Bolt et al., 2017; Buckner et al., 2009; Cohen
and D’Esposito, 2016; Cole et al., 2014; Di et al., 2013; Krie-
nen et al., 2014; Smith et al., 2009).

In general, there is a relatively high spatial correlation
(i.e., 0.64–0.9) between a passive condition (such as visual
fixation or eyes closed, which are often used to study intrin-
sic brain activity) and a task condition. Despite such high

FIG. 6. Correlation between PF and PV and between PF
and DMS weighted FC matrices. The correlation coefficients
between PF and both PV and DMS were high (0.90 and 0.83,
respectively), demonstrating only small differences in the
pair-wise consistency of functional connections across con-
ditions.
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FIG. 7. Mean graph theoretical metrics for each condition for a range of network densities (5–40%). Error bars correspond
to standard deviation. As the task changed from PF to PV to DMS, there was an increase in global efficiency, local efficiency,
average clustering coefficient, average betweenness centrality (mostly at the lowest threshold studied, 5%), and modularity.
Conversely, as the task changed from PF to PV to DMS, there was a decrease in average characteristic path length, average
eigenvector centrality, and average participation coefficient.
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correlations, differences do exist between passive and task
FC, and those differences may be attributable to functional
modifications that allow the brain to focus on performing a
given task (DeSalvo et al., 2014; Di et al., 2013; Tomasi
et al., 2014).

Bolt and colleagues (2017) recently showed that one can
have largely consistent FC between passive and task condi-
tions, and at the same time have largely different whole-
brain graph theoretical metrics between passive and task con-
ditions. However, a description of the mechanisms behind
those seemingly divergent results has not yet been provided.

Increases in global efficiency

Our study resulted in higher global efficiency for DMS
than for PV and higher global efficiency for PV than for
PF. During the simulated PF condition, the stimulus used
is small and mostly activates V1/V2 and V4 and IT areas
to a small degree (blue lines in Fig. 3). During the PV condi-
tion, the larger stimuli used causes an increase of neuronal
activity in V1/V2, V4, IT, FS, D1, D2, and FR (as shown
in the trial time series of Fig. 3, green lines), thereby contrib-
uting to an increase in neuronal activity of nontask nodes di-
rectly connected to task nodes (see green lines in the shaded
areas of the time series in Fig. 4).

During the DMS condition, the neuronal activity across
the task brain regions is higher than during the PV condition
(red lines in Fig. 3). This increase in neuronal activity of task
brain regions contributes to an increase in neuronal activity
of several of the nontask brain regions with direct connec-
tions to task regions during PV and DMS conditions as com-
pared with PF condition (Fig. 4). As shown in the FC
differences in Figure 5, there is an increase in the FC of sev-
eral pair-wise connections from PF to PV and from PF to
DMS. This increase in FC contributed to a consistent in-
crease in global efficiency from PF to PV to DMS (Fig. 7).

Graph theoretical measures in empirical studies have consis-
tently shown higher global efficiency during task than during
passive conditions [although this could depend on the com-
plexity of the task, but see Cohen and D’Esposito (2016)].
The global efficiency has been found to be higher during a
task than during PF (Bolt et al., 2017; Cohen and D’Esposito,
2016), higher during a task than during an eyes closed condition
(Fuertinger et al., 2015), greater during a one-back visual mem-
ory task than during PV and an eyes closed condition (Wen
et al., 2015), and higher for coactivation studies than during
RS (Di et al., 2013). In our simulations, the global efficiency
is higher during DMS than during PV and PF. This is due to
the short-memory task causing an increase of neural activity
in brain regions that are, in turn, connected to a widely distrib-
uted network in the rest of the brain.

Increases in local efficiency

Our simulations showed a greater local efficiency for
DMS than for PV and a greater local efficiency for DMS
than for PF. This is consistent with empirical studies showing
an increase in local efficiency with increasing task demands
(Wen et al., 2015).

Increases in clustering coefficient

Our simulations showed a greater clustering coefficient
during DMS than during PV and a greater clustering coeffi-
cient during PV than during PF. Previous empirical studies
have found a clustering coefficient that is greater for task
than during PF (Bolt et al., 2017), lower during a blend of ac-
tivation studies than during RS (Di et al., 2013), and greater
during a language task than during eyes closed (Fuertinger
et al., 2015).

Increases in characteristic path length

Our simulations showed smaller characteristic path length
during DMS than during PV and smaller characteristic path
length during PV than during PF. This is to be expected be-
cause as the global efficiency increases, the characteristic
path length decreases.

Decreases in mean eigenvector centrality

Our simulations showed smaller eigenvector central-
ity during DMS than during PV and smaller eigenvector
centrality during PV than during PF. The eigenvector cen-
trality metric provides a measure of how well connected a
given node is, considering how well connected that
node’s neighbors are. Thus, eigenvector centrality is recur-
sive because a given node’s eigenvector centrality depends
on the node’s neighbors’ eigenvector centrality.

To get a more detailed view of the reason behind smaller
mean eigenvector centrality for more complex tasks (Fig. 7),
we rendered the eigenvector centrality for each node on ax-
ial and sagittal views of the brain (Fig. 9A). Figure 9A shows
that as the task complexity increases (from PF to PV to
DMS), the eigenvector centrality increases in a few nodes
and decreases in most other nodes.

Thus, on average the eigenvector centrality decreases but
the nodal eigenvector centrality in a few nodes increases as
the task complexity increases. Note that several of the
nodes in which the eigenvector centrality increases during

FIG. 8. Relative difference between PF and PV and be-
tween PF and DMS for each one of the graph metrics
shown in Figure 7. Error bars correspond to standard devia-
tion. Although there were significant differences, the major
differences were for CC, EC, and M. BC, betweenness central-
ity; CC, clustering coefficient; CP, characteristic path length;
EC, eigenvector centrality; GE, global efficiency; LE, local ef-
ficiency; M, modularity; PC, participation coefficient.
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PF and DMS are the nodes that are directly connected to task
nodes (compare Fig. 2). The reason the increases are concen-
trated on the right side of the brain is due to the task nodes,
which are embedded in the right side of the brain, having di-
rect connections mostly to the right side of the brain (Fig. 2).
Compare the changes in eigenvector centrality with the
changes in betweenness centrality (Fig. 7), which remain al-
most the same during PF, PV, and DMS (Fig. 9B).

Increases in betweenness centrality

Our simulations show a higher betweenness centrality at
the lower density threshold (5%), but the average between-
ness centrality is very similar across all the other density
thresholds (Fig. 7). As already mentioned, the betweenness
centrality at each individual node (Fig. 9B) remains rela-
tively constant across conditions. Previous empirical studies
have shown a difference in nodal centrality when RS and task
are compared (Di et al., 2013).

Decreases in participation coefficient

Our simulations showed greater participation coefficient
(in a predefined set of modules) for PF than for PV and

greater participation coefficient for PV than for DMS
(Fig. 7). Participation coefficient measures each node partic-
ipation in a set of predefined modules. We used the modules
defined by Hagmann and colleagues (2008). Previous studies
have shown a higher participation coefficient (between-
module connectivity) during PF than during a semantic
task (DeSalvo et al., 2014).

Increases in modularity

Our simulations showed a smaller modularity for PF than for
PV and smaller modularity for PF than for DMS. Some empir-
ical studies have found a greater modularity metric during RS
than during a blend of activation studies (Di et al., 2013), and
a greater modularity during PF than during an n-back task
using visually presented phonemes (Cohen and D’Esposito,
2016). However, Cohen and D’Esposito (2016) found a simi-
lar modularity during PF and a finger tapping task.

Other empirical studies have found that the modularity
varies as a function of performance, but here the evidence
is also inconsistent. For example, Stevens and colleagues
(2012) found a positive correlation between RS modularity
and visual working memory capacity and Meunier and col-
leagues (2014) found a negative correlation between

FIG. 9. Eigenvector centrality (A) and betweenness centrality (B) depicted on a node-by-node basis on sagittal (left) and
axial (right) views of the brain. The density threshold used for the mentioned depiction was 10%. As the task complexity
increases (from PF to PV to DMS), the eigenvector centrality (A) increases in a few nodes and decreases in most other
nodes. Note that several of the nodes in which the eigenvector centrality increases during PF and DMS are the nodes
that are directly connected to task nodes (compare Fig. 2). The reason the increases are concentrated on the right side
of the brain is due to the task nodes, which are embedded on the right side of the brain, having direct connections
mostly to the right side of the brain (Fig. 2). In contrast, the betweenness centrality (B) remains relatively constant across
conditions.
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modularity and memory scores in an odor recognition task.
In addition, Yue and colleagues (2017) have found signifi-
cant individual variability in modularity during RS.

Related computational studies comparing RS
and task-based FC.

Two previous computational approaches have compared
the intrinsic brain activity obtained during RS versus that
obtained during task; however, none of those models was
specifically concerned with quantifying intrinsic activity dif-
ferences between different task conditions (which is the goal
of our article). The first of those studies, by Ponce-Alvarez
and colleagues (2015), simulated RS using a set of mean
field equations (excitatory–inhibitory pairs) interconnected
by the anatomical connections of a 66-node connectome. A
visual task was approximated by applying external stimula-
tion (stationary inputs) to visual nodes during the RS simula-
tion. Ponce-Alvarez’s model revealed a decreased synaptic
activity variability during the visual task as compared with
the RS condition.

The second computational study comparing task versus
rest (Cole et al., 2016) similarly applied stationary inputs
to a set of neighboring nodes in a simplified computational
model to simulate six different tasks. Cole and colleagues
used the FC strengths during a passive task to predict the
fMRI task activation of a held-out brain region. They did
this for every one of the simulated brain areas so as to pro-
duce a prediction of the fMRI activity in each of the simu-
lated brain areas.

Caveats and limitations of our study

Different passive experimental conditions have been used
in neuroimaging to study intrinsic brain activity [also re-
ferred to as the ‘‘RS’’] (Biswal et al., 1995; Fox et al.,
2006; Greicius et al., 2003). Three of the conditions most
commonly used as a RS condition are PF, eyes open with
no fixation, and eyes closed. Yan and colleagues (2009)
found significantly higher FC in DMN brain areas during
eyes open than during eyes closed condition.

It is also important to emphasize that the fMRI results can
vary depending on several other factors, including how a RS
task is defined (Van Dijk et al., 2010; Yan et al., 2009),
which task instructions are given to subjects (Benjamin
et al., 2010), and whether subjects were engaged in a task be-
fore RS (Waites et al., 2005). Thus, although one can com-
pare (within the limitations outlined hereunder) the results
of our study with empirical studies using PF, our results can-
not be directly extrapolated to all RS-fMRI studies.

One way in which the simulations presented here are dif-
ferent from our previous article (Ulloa and Horwitz, 2016) is
that the model response units have been relocated from PFC
to PreSMA.

The relocation of the response units to PreSMA is based
on an fMRI study by Pessoa and colleagues (2002), who
found an increase in BOLD fMRI in the PreSMA area at
the end of the delay period during a visual working memory
task. In addition, a study by Petit and colleagues (1998) has
also demonstrated BOLD fMRI activity in the PreSMA area
during a working memory task. The relocation from previous
studies from our laboratory of the model response units to

PreSMA makes biological sense as it better reflects the com-
plexity of the task we are trying to simulate. The identifica-
tion of realistic locations within the brain for each one of the
model units is crucial as different locations of task-related
modules will modulate different nontask nodes in the con-
nectome, thereby producing different FC configurations.

One of the limitations of our study is that our model connec-
tome does not have other sensory systems apart from the visual
system. Therefore, one should exercise caution when comparing
FC matrices of our simulation with empirical matrices as the
empirical matrices would contain higher FC that are the result
of other sensory systems being activated by either intrinsic or ex-
trinsic processes. For example, in an fMRI scanner room, there
is significant auditory stimulation (scanner noise) as well as so-
matosensory input, which we have not simulated in this study.

In our simulations, we only embedded the visual model in
the right hemisphere. As a result, the intrinsic activity was
mostly localized to the right hemisphere. Nonetheless, there
were significant intrinsic activity changes in the left hemi-
sphere, and those were caused by structural connectivity be-
tween both hemispheres.

Another limitation of our study is that the weights of the
structural connectome used in this article are undirected
and we assumed all connection weights to be excitatory. It
is well known that diffusion tractography has serious limita-
tions as it produces a significant number of false positives
(Maier-Hein et al., 2017), has relatively low resolution,
and measures white tracts only indirectly ( Jbabdi et al.,
2015). Some researchers have simulated whole brain activity
using connectome data sets obtained from reconstructions of
retrograde tracer injections in macaques (Chaudhuri et al.,
2015) or a composite of diffusion spectrum imaging in hu-
mans and macaque tracer data (Sanz-Leon et al., 2015).

Despite the low resolution and lack of sign and direction
of the human tractography data, we decided to use it as it
allowed the ‘‘brain regions’’ of our task-based simulator to
be embedded into plausible locations within the structural
connectome.

Conclusions

In conclusion, we used our large-scale neural model-
ing framework to quantitatively compare neural dynamics of
nontask brain regions during PF, PV, and a visual short-term
memory task. We were able to obtain quantitative measures
of differences in simulated FC by using graph theoretical
methods. Our simulated graph theory results largely agreed
with experiments. We were also able to relate those network-
level changes to the underlying model mechanisms. We
showed that we can use computational modeling, FC, and
graph theoretical metrics to quantify changes in intrinsic
FC of nontask brain regions due to increasing task demands.

Our study is relevant to the characterization of intrinsic
brain activity differences between passive and active task
conditions and to the use of neural modeling in the design
of empirical studies and the comparison of competing hy-
pothesis of brain function.
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