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Abstract

The prediction of protein secondary structure by use of carefully structured neural net-
works and multiple sequence alignments have been investigated. Separate networks are nsed
for predicting the three secondary structures o-helix, @-strand and coil. The networks are
designed using a priori knowledge of amino acid properties with respect to the secondary
structure and of the characteristic periodicity in a-helices. Since these single-structure net-
works all have less than 600 adjustable weights over-fitting is avoided. To obtain a three-state
prediction of a-helix, 3-strand or coil, ensembles of single-structure networks are combined
with another neural network. This method gives an overall prediction accuracy of 66.3%
when using seven-fold cross-validation on a database of 126 non-homologous globular pro-
teins. Applying the method to multiplesequence alignments of homologous proteins inereases
the prediction accuracy significantly to 71.3% with corresponding Matthews™ correlation o
efficients C,, = 0.59, Cs = 0.52 and C. = 0.50. More than 72% of the residues in the
database are predicted with an accuracy of 80%. It is shown that the network outputs ean
be interpreted as estimated probabilities of correct prediction. and therefore these numibers
indicate which residues are predicted with high confidence.

1 Introduction

Prediction of protein structure from the primary sequence of amino acids is a very challenging
task, and the problem has been approached from several angles. A step on the way toa prediction
of the full 3D structure is to predict the local conformation of the polypeptide chain. which is
called the secondary structure. A lot of interesting work has been done on this probiem. and
over the last 10 to 20 years the methods have gradually improved in accuracy. This improvement
is partly due to the increased number of reliable structures from which rules can be extracted
and partly due to improvement of methods.

Most often the various secondary structures are grouped into the three main categories o-
helix, 3-strand and “other”. We use the term coil for the last category. Usually these categories

are defined on the basis of the secondary structure assignments found by the DSSP program
(Kabsch & Sander, 1983). Some of the first work on secondary structure prediction was based
on statistical methods in which the likelihood of each amino acid being in one of the three types
of secondary structures was estimated from known protein structures. These probabilitics were
then averaged in some way over a small window to obtain the prediction (Chou & Fasmann,
1978; Garnier ef al., 1978). These methods were later extended in various ways to include
correlations among amino acids in the window (Gibrat et al., 1987; Bion et al., 1988).

Around 1988 the first attempts were made to use neural networks to predict protein secondary
structure (Qian & Sejnowski, 1988; Bohr ef al., 1988). The accuracy of the predictions made
by Qian and Sejnowski seemed better than those obtained by previons methods, although tests
based on different protein sets are hard to compare. This fact started a wave of applications
of neural networks to the secondary structure prediction problem (Holley & Karplus, 1989;
Kneller et al., 1990; Stolorz et al., 1992), sometimes in combination with other methods (Zhaung
et al., 1992; Maclin & Shavlik, 1993). The type of neural network used in most of this work
were essentially the same as the one used in the study of Qian and Sejnowski, namely a fully
connected perceptron with at most one hidden layer. A very serions problem with these networks
is the over-fitting caused by the huge number of free parameters (weights) to be estimated from
the data. Over-fitting means that the performance of the network is poor on data that are not
part of the training data, even though the performance is very good on the training data (Hertz
et al., 1991). In most previous work the over-fitting is dealt with by stopping the training of
the network before the error on the training set is at a minimum, see ¢.g. (Qian & Sejnowski,
1988; Rost & Sander, 1993b) and section 2.3 of this paper. A significant exception is the work
of Maclin and Shaviik (Maclin & Shavlik, 1993} in which the Chou-Fasman method (Chon &
Fasmann, 1978) was built into a neural network before training. This procedure led to a network
with much more structure than the fully connected ones.

The most successful application of neural networks to secondary structure prediction is prob-
ably the recent work by Rost and Sander (Rost & Sander, 1993a; Rost & Sander, 1993b; Rost &
Sander, 1994), which has resulted in the prediction mail server called PHD (Rost et al., 1991a).
Rost and Sander use the same basic network architecture as Qian and Sejnowski trained on the
three category secondary structure problem. Their networks have 40 hidden units and an input
window of 13 amino acids, and the network is trained to predict the secondary structure of the
central residue. They use two methods to overcome the problem of over-fitting. Firstly, they
use early stopping, which meauns that training is stopped after the training error is below some
threshold. Secondly, an arithmetic average is computed over predictions lrom several networks
trained independently using different input inforination and training procedures. This techuigque
of using an ensemble or committee of neural networks is known to help in suppressing noise and
over-fitting (Hansen & Salamon, 1990; Krogh & Vedelsby, 1995). They also filter the predic-
tions with a neural network which takes the predictions from the first network as input aud
gives a new prediction based on these. This technique was pioneered by Qian and Sejnowski,
and helps in producing more realistic results by for instance suppressing «-helices or J-strands
of length one. The most significant new feature in the work of Rost and Sander is the nse of
alignments.  For each protein in the data set a set of aligned homologous proteins is found.
Instead of just feeding the base sequence to the network they feed the multiple alignment in the
form of a profile, i.e., for each position an amino acid frequency vector is fed to the network.
Using these and a few other “tricks™, the performance of the network is reported to be above
71% correct, secondary structure predictions using seven fold cross-validation on a database of
non-homologous proteins.

One of the primary goals of the present work has been to carefully design neural network
topologies particularly well suited for the task of secondary structure prediction. These networks
contain much fewer free parameters than fully conuected networks and thereby over-fitting is
avoided. We use several methods well-known to the neural network conmmunity to further



improve performance. One of the most interesting is a learned encoding of the amino acids
in a vector of three real numbers. We use the same set of protein structures as Rost and
Sander (Rost & Sander, 1994) for training and evaluation of the method, which means that the
results are directly comparable. Our initial goal has been to get as good predictions from single
sequences as possible. This work had three stages. Firstly, individual networks were designed
for prediction of the three structures. Secondly, instead of using only one network for each type
of structure, an ensemble of 5 networks were used for each structure. Thirdly, these ensembles
of single structure networks were combined by another neural network to obtain a three state
prediction. This prediction from single sequences yields a result of 66-67% accuracy which is
3-4% better than a fully connected network on the same dataset. The method is then applied
to multiple alignments as follows. For each protein in the alignment the secondary structure
is predicted independently. The final prediction is then found by combining these predictions
via the alignment as in (Zvelebil et al., 1987; Russell & Barton, 1993; Levin et al.. 1993). By
this method we obtain a result of 71.3%, which is practically identical to the result of Rost and
Sander (Rost & Sander, 1994)

2 Materials and methods

2.1 Data set

When using neural networks for secondary structure prediction the choice of protein database is
complicated by potential homology between proteins in the training and testing set. Homologous
proteins in the database can give misleading results since neural networks in some cases can
memorize the training set. Furthermore, the size of the training and testing sets can have
a considerable influence on the results, because non-homologous proteins in general are very
different. Using a small training set often results in bad generalization ability, while a small
testing set gives a very poor estimate of the prediction accuracy. For evaluation of the method
we therefore use seven-fold cross-validation on the set of 126 non-homologous globular proteins
from (Rost & Sander, 1994), see Table 1. With seven-fold cross-validation approximately 1/7 of
the database is left out while training, and the remaining part is used for testing. This is done
cyclically seven times, and the resulting prediction is thus a mean over seven different testing
sets. The division of the database into the seven subsets (set A-set G) shown in Table 1 is
assumed not to have any influence on the results presented in the following sections. A more
reliable estimate of the prediction accuracy could be achieved by using Leave One Out cross-
validation where one protein is left out while training on the rest, but this would lead to very
large computational demands. The proteins used all satisfy the homology-threshold defined by
Sander and Schneider (Sander & Schneider, 1991), i.e., no proteins in the database have more
than 25% pairwise sequence identity for lengths > 80 residues. The proteins are taken from the
HSSP-database version 1.0, release 25.0 (Sander & Schneider, 1991). The secondary structure
assignment were done according to the DSSP algorithm (Kabsch & Sander, 1983), but the &
types of structures were converted to three in the following way: H (a-helix), 1 (7-helix) and G
(310-helix) were classified as helix (a), E (extended strand) as g-strand (4), and all others as
coil (c).

2.2 Maeasures of prediction accuracy

Several different measures of prediction accuracy have been suggested in the literature. The
most common measure is the overall three-state prediction percentage @3 defined as the ratio of
correctly predicted residues to the total number of residues in the database under consideration
(Qian & Sejnowski, 1988; Rost & Sander, 1993b). Since our data set contains 32% a-helix.
21% pB-strand and 47% coil, a random prediction yields Q3*"4°™ = 36.3% if weighted by the
percentage of occurrence. For comparison the best obtainable prediction by homology methods

Set A || 256b_A  2aat 8abp 6acn lacx 8adh Jait
lak3_A  2alp 9api. A 9apiB lazn 3bbhe Lhhp A
1bds lbmv_l 1bmv_2

Set B || 3blm 4bp2 2cab 7cat A lebh leeh 2cey A
lcd4 ledt_ A 3cla 3cln 4cms 4cpal 6epa
6epp 4cpv lcrn lcse 6ets 2cyp Seyt
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Lfkf 2fnr 2fxb Ifxi A 4fxn 3gap.A 2ghbp
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6tmn_E  2tmv. P [tnf A 4tsl A lubq 2utg A Ywga A
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Table {: The database of non-homologous proteins used for seven-fold cross-validation. All pro-
teins have less than 25% pairwise similarity for lengths > 80 residues and the crystal structures
are determined at a resolution better than 2.5A rms. The data set contains 24,395 residues with
32% o-helix, 21% B-strand and 47% codl.

is about Qg“’mdogy = 88% (Rost et al., 1994b). Qs describes the performance of the method
averaged over all residues in the database. For a single protein the expected prediction accuracy
is better described by the per chain accuracy < Q5" > given by the average of the three-state
prediction accuracy over all protein chains (Rost & Sander, 1993Dh).

A measure of the performance on secondary structure class ¢ = o, /3 or coil is the percentage
Q; of correctly predicted residues observed in class 1. These measures can be very helpful in
detecting over- and under-prediction of one or more types of secondary structures. Note that
Q; differs from the two-state prediction accuracy (Qg; (Hayward & Collins, 1992) used when
evaluating single-structure networks.

A complementary measure of prediction aceuracy is the Matthews® correlation coeflicients
(Matthews, 1975) for each of the three secondary structures; €', C'g and ("0 The correlation
coefficients are. 1.0 if the predictions are all correct and —1.0 if all the predictions are false.
The advantage of the correlation coefficients is seen in case of a random or trivial prediction.
A trivial prediction of helices for all residues gives Q. = 100% and Q5 = 32%. but 7, = 0.0.
Similarly C; is close to zero for random predictions. The Mathews’ correlation coefficients are
widely used and the exact definitions can be found in (Qian & Sejnowski, 198%; Rost & Sander,
1993b; Matthews, 1975).

Even though Mathews’ correlation coefficients give maore reliable estimates of the prediction
accuracy they do not express how realistic the prediction is. Consider the two predictions in
Table 2 obtained from different methods (Rost & Sander, 1993b). Even though prediction
| gives a higher Q3 as well as higher correlation coeflicients than prediction 2, the latter is
more realistic seen from a biological point of view. The first method predicts unrealistic short
helices in contrast to the long helix predicted by the second method. This illustrates the need



Observed HHHHHHHHHHCCC
Prediction 1 [ CHHHCHHHCHCCC
Prediction 2 | CCHHHHHHHHHHC

Table 2: Predictions from two different methods

of comparing predicted and observed mean lengths L; of secondary structure segments. In
addition to the mean lengths an interesting measure is the percentage of overlapping segments
of observed and predicted secondary structure used by Maclin and Shavlik (Maclin & Shavlik.
1993). The percentage of segment overlap PO tells how good the method is at locating segments
of secondary structure. This is of particular interest since the 3D structure of a given protein
family to some extent is determined by the approximate location of regular secondary structure
segments (Rost et al., 1994b). Note that a trivial prediction of helices at all positions gives
P! = 100% if at least one observed helix segment exists. The overlap percentages should in
other words only be used in combination with some of the performance measures mentioned
above.

2.3 Neural networks for secondary structure prediction

The networks used in this work are all feed-forward layered networks, trained using the back-
propagation algorithm in on-line mode, see e.g. (Hertz et al, 1991). The main difference to
previous works (Qian & Sejnowski, 1988; Bohr et al., 1988; Rost & Sander, 1993a; Rost &
Sander, 1993b; Rost & Sander, 1994; Maclin & Shavlik, 1993; Zhang et al., 1992; Hayward &
Collins, 1992) using these types of networks will be described in this section.

In most applications of neural networks to secondary structure prediction, fully connected
networks with a wast number of adjustable weights have been used. For instance, the hest
network found in the work of Qian and Sejnowski (Qian & Sejnowski, 1988) had wore than
10,000 weights. When training a network with that many weights from the limited number of
proteins available one gets into the problem of over-fitting. At some point during training the
network begins to learn special features in the training set, i.e. the network bhegins to memorize
the training set. These special features can be considered as noise or atypical examples of
mappings between amino acid sequence and secondary structure. Since the noise i the training
and testing sets is uncorrelated the generalization ability on the testing set deteriorates at some
point during training, see Figure 1. The point at which the generalization ability deteriorates
is highly dependent on the initial weights and on the dynamics of the learning rule. Henee, it
is almost impossible to determine at which point the training should be stopped in order to get
an optimal solution. Usually early stopping is used, where the training is stopped after some
fixed number of iterations (Rost & Sander, 1993a; Rost & Sander, 1993b: Rost & Sander, 1991)
or by using a validation set to mouitor the generalization ability of the network during training
(Maclin & Shavlik, 1993). When the performance on the validation set begins to deterjorate
the training is stopped. However, sacrificing data for validation sets can be crucial for the
performance of the model, since the available amount of data is limited. Another method is to
choose the network achieving the best performance on the test set by always saving the best
network during training, as was done by Qian and Sejnowski. In that case the performance
on the test set can not be expected to reflect the performance on independent data. The best
approach of course is to deal with the root of the problem, namely finding the proper complexity
of the network.

One of the main goals of this work has been to design networks that avoid over-fitting all
together. By avoiding over-fitting, the learning and generalization errors stay alimost identical.
and therefore training can be continued until it reaches minimum training error.
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Figure 1: Three-state percentages (1) for the training and testing set during training of the
network with 40 hidden units used in (Qian & Sejnowski, 1988) (spacer unit omitted). The
training set consists of sets B-G and for testing set A is used, see Table 1. The percentages are
plotted against the number of training epochs, i.e. full sweeps throngh the training set. Becanse
of the extreme number of weights the network develops a very poor generalization on the testing
set. In less than 100 training epochs the training set is learnt almost to perfection while the
performance on the testing set has dropped from the maximum value of approximately 62%
to 57%. Qian and Sejnowski reported the best percentage obtained for the testing set as an
estimate of the prediction accuracy.

Adaptive encoding of amino acids

As in most of the existing methods, the secondary structure of the j'th residne R; is predicted
from a window of amino acids, R;_., ..., R;, ..., Rjyn where W = 20 + 1 is the window size.
These neural networks are often referred to as sequence-structure networks. Usually the amino
acids are encoded by 21 binary numbers, such that each number corresponds to one amino acid.
The last number corresponds to a space, and is nsed to indicate the ends of a protein. This
encoding, which we will call the orthogonal encoding, has the advantage of not introducing any
artificial correlations between the amino acids, but it is highly redundant, since 21 symbols
can be encoded in 5 bits. This redundancy is one of the reasons why networks for secondary
structure prediction tend to have a very large number of weights. However, according to Taylor
(Taylor, 1986) the properties of the 20 amino acids with respect to the secondary structure
can be expressed remarkably well by only two physical parameters: the hydrophobicity and the
molecular volume. This suggests using another encoding scheme than the orthogonal one.

By a method called weight sharing (Le Cun et al, 1989) it is possible to let the network
itself choose the best encoding of the amino acids. The starting point is the above mentioned
orthogonal encoding, but we omit the spacer input unit used by Qian aud Sejnowski, and instead
all inputs are set to zero for that part of the window where no residues are present. Ior cach
window position the 20 inputs are connected to M hidden units by 20 > M weights, This set of
weights (and the M thresholds) corresponding to one window position is identical to those nsed
for all the other window positions, see Fignre 2. More precisely, if the weight from input j to
hidden unit 7 is called uri‘] for the k'th window position, then 'uvf’ = uvf’ for all & and L. These
sets of weights are forced to stay identical during training; they alwavs share the same values.
In this way the encoding of the amino acids is the sawne for all positions in the window. The
weights are learned by a straight-forward generalization of back propagation in which weight



A Identical for all positions in the window
A Identical for all positions in the window
@:\ Identical for all positions in the window

Figure 2: Network for predicting helices. The network uses the local encoding scheme and has
a built-in period of 3 residues. Grey circles symbolize three hidden units and emphasized lines
three weights. In the lower part of the figure shaded triangles symbolize 20 shared weights and
shaded rectangles 20 input units. The single-structure network shown has a window size of 13
residues and only one output.

updates are summed for weights sharing the same value (Le Cun et al, 1989). The use of
weight sharing implies that the first layer only contains 21 x M adjustable parameters including
thresholds no matter the size of the window. In this work M = 3 is used and each of the 20
amino acids are thus represented by only three real numbers in the interval {0; 1]. This leads to
a dramatic reduction of the almost 11,000 weights used in the first layer of Qian and Sejnowski’s
fully connected network, even if an extra hidden layer is added to the network.

The adaptive encoding scheme of the amino acids is called local encoding. Since the encoding
is learned along with the other weights in the network it will be the ‘optimal’ encoding, in the
sense that it yields the minimum error on the training set for that specific network and that
specific task. The adaptive nature of the encoding also means that it depends on the initial
weights (like the other weights in the network) and may differ between different runs of the
learning algorithm.

Structured networks

It is a common assumption that a network (or any other adaptive method) with some built-in
knowledge about the problem performs better than more general networks, see ¢.g. (Maclin &
Shavlik, 1993). Many existing prediction methods use the same model for predicting the three
types of secondary structure (helix, strand, and coil). Since the three secondary structures
are very different it is possible that performance could be enhanced if separate networks are
specifically designed for each of the three structures. We will now explain how prior knowledge
about secondary structures can be used to design such single-structure networks.

The majority of the helices in the database used are a-helices. A residue in an «a-helix
is hydrogen bonded to the fourth residue above and the fourth residue below in the primary
sequence, and it takes 3.6 amino acids to make a turn in an a-helix. It is likely that this periodic
structure is essential for the characterization of an a-helix. These characteristics are all of local
nature and can therefore easily be built into a network that predicts helices from windows of
the amino acid sequence. In Figure 2 a network with local encoding (in the first hidden layer).
a built-in period of 3 residues and a window size of 13 residues is shown. The second hidden
layer in the network contains 10 units that are fully connected to the output layer giving a total

of 144 adjustable parameters. For comparison a standard network with no hidden units at all,
orthogonal encoding, and a window length of 13 residues has 261 adjustable parameters.

In contrast to helices, B-strands and coil do not have such a locally described periodic
structure. Therefore, the strand and coil networks only use the local encoding scheme, and a
second hidden layer with 5-10 units fully connected to the first hidden layer as well as to the
output layer. Early studies (results not shown) indicated that a window size of 15 residues was
optimal for all three types of single-structure networks. Thus, a typical structured helix network
contains 160 weights, while typical strand and coil networks contain abont 300-530 weights.

As shown in Figure 2 the single-structure networks only have one output. If the output is
larger than some decision threshold the prediction is a-helix, S-strand or coil depending on the
type of structure under consideration. For an input/ontput interval of [0;1] a decision threshold
of 0.5 was found to be optimal.

The performance of the constrained single-stritcture networks are compared with the predic-
tions obtained from perceptrons with no hidden units having window lengths of 13 amino acids.
The single-structure networks are all trained balanced i.e., for each positive example (helix) a
negative example (von-helix) is chosen at random from the training set. In this way the same
number of positive and negative examples are used in the training. According to Hayward and
Collins (Hayward & Cotlins, 1992) balanced training gives only minor changes in the percentage
of correctly classified residues ((Q2,), but slightly better correlation coefficients. This is in good
agreement with our own experiments (data not shown).

Filtering the predictions

As described earlier, some predictions may be very unrealistic from a biological point of view.
For instance, prediction 1 in Table 2 has an a-helix of length one in the end. To obtain more
realistic predictions a structure-structure network can be applied to the prediction from the
previously described sequence-structure network. In the work of Qian and Sejnowski a window
of 13 secondary structure predictions is used as input to a fully connected striucture-structure
network with 40 hidden units. Thus, this network has 3 x 13 inputs and 3 outputs, and the
predicted secondary structure for the central amino acid is chosen as the largest of the three
outputs. In this way the prediction becomes dependent on the surrounding structures. The
structure-structure network is often called a filter network, because it is used to fifter out bad
predictions, although it can in principle do more than that. According to (Qian & Sejnowski,
1988; Rost & Sander, 1994) the filter network improves the three-state accuracy significantly and
makes the prediction more realistic in terms of predicted mean lengths of secondary structure
segments. A filter network similar to the one used by Qian and Sejnowski can also be applied
when combining the predictions from the three single-strneture networks. Notice that this
network actually increases the size of the window used for the prediction of an amino acid.
Since the first network uses a window size of 13 (or 15) amino acids, the second network receives
information based on a total window of 25 (or 29) amino acids.

For the single-structure predictions a filter network can be applied in the same manner as
for the three-state predictions. In this work each of the single-structure predictions are filtered
with fully connected networks having 10 hidden units and a window size of 5 single-structure
predictions. As will be shown, the filtration of the single-structnre predictions hefore combining
to a three-state prediction can be omitted without loss of accuracy.

Using softmax for combining single-structure predictions

Usually the neural network outpuis three values, one for each of the three structures. This
type of network does not necessarily choose one of the three structures. For instanee it can (and
sometimes do) classify one input pattern as all three types of structure, e it gives large outpiuts
on all three outpnt units. In practice of course, the input is classified as the structure giving



the largest output, but conceptually this type of classification is more suited for independent
classes. It may be beneficial to build in the constraint that a given input belongs to only one
of the three structures. This can be done by a method called Softmaz (Bridle, 1990), which
ensures that the three outputs always sum to one (for secondary structure prediction the same
idea was used in (Stolorz et al., 1992)). Hence, the outputs can be interpreted as the conditional
probabilities that a given input belongs to each of the three classes. Simulation studies done
by Richard and Lippmann (Richard & Lippmann, 1991) show that neural network classifiers
provide good estimates of Bayesian a posterior probabilities (conditional probabilities). In the
Softmax method the usual sigmoidal activation function

1
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in the output layer is replaced by the normalizing function
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where O; is the i’th output and the sum in the denominator extends over all ontputs. In these
formulas h; = 3=, wi;z; is the net input to output unit 7, wy; is the weight connecting output
unit 7 to hidden unit 7, and z; is the output of hidden unit j.

Here a log-likelihood cost function is used instead of the usnal squared error cost function.
If (; is the target output of the i’th output unit, then the contribution to the cost function from
one training example can be written as

E(w)= Z(,vlog(% (3)
': 1

whereas the usual cost function is $°,((; — 0;)?. The weight update formulas are easily calculated

and turn out to be identical to the ones used in backpropagation if the entropic cost function

defined in (Hertz et al., 1991) is applied.

To combine and filter the single-structure predictions a single neural network is used. This
network takes the outputs from the three single structure networks as input and uses the soft-
max function (2) on the three output classes. The combining network takes a window of 15
consecutive predictions of helix, strand and coil as input, and the input layer is fully connected
to the output layer via 10 hidden units. When using Softmax the predictions can be inter-
preted as estimated probabilities of correct prediction. Results on how well the outputs match
probabilities will be shown.

Ensembles of single-structure networks

The solution found by a neural network after training depends on the initial weights and the
sequence of training examples. Thus, training two identical networks often results in two different
solutions, i.e., two different local minima in the objective function are found. Since the sohutions
are not completely correlated the combination of two or more different networks often improves
the overall accuracy (Rost & Sander, 1994; Hansen & Salamon, 1990). For complex classification
tasks the use of ensembles can be thought of as a way of averaging out statistical fluctnations.
Furthermore, the combination of two or more different solutions can in some cases contribute
valuable information. This is especially true if the ensemble members disagree as discussed in
(Krogh & Vedelsby, 1995). One obvious way to make the ensemble members disagree is to
use different networks and/or training methods. In this work ensembles of 5 different single-
structure networks (for each type of secondary structure) are used. The networks all use the local
encoding scheme and the differences are introduced by using various periods in the a-network
and by using different numbers of hidden units.

Combining

AN network
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\ ‘\?\§§

ensemble ensemble

.. . ANIVGGTEYSTNNASLCVGFEVTRGATKGFVTAGHCGTUN . | .
Amino acid sequence

Figure 3: The ensemble method for combining and filtering ensembles of single-structnure net-
works. ‘The combining network (top of figure) takes a window of 3 x 5 x 15 predictions from
the ensembles of single-structure networks (3 structures, 5 networks for each structure, and a
window length of 15). In the combining network the ensembles for each of the three structures
are weighted separately by position specific weights for each window position.

The usual way to combine the ensemble predictions is to sum the predictions using uniform
{equal) weighting of the ensemble members. Instead, we have chosen to use a neural network for
the combination. Rather than first training a filter network for each of the individual networks
in the ensemble, our approach is to combine and filter the whole ensemble with only one network.
This network takes a window of predictions from all the single-structure networks in the ensemble
and then decides one output for the central residue. However, using a fully connected network
results in considerable over-fitting since a window length of 15 residnes equals 15X 3 X Ng; inputs
for ensembles of Np networks. Here Ng = 5 is used leading to a total of 225 inpats. One way
to reduce the number of weights is by weighting each of the three single-structure ensembles
separately for all positions in the window. In this way segments of 5 inputs corresponding to,
e.g., 5 helix network outputs are connected to one hidden unit in the combining network, sce
Figure 3. Thus, for a given position in the input window each of the three ensembles are averaged
using position specific weights. This constraint gives a total of 3 x 15 = 45 hidden units that
are fully connected to the output layer consisting of three units. The prediction for the central
residue is chosen as the largest of the three outputs that are normalized with softmax. The
combining network is trained unbalanced.

2.4 Using multiple alignments of homologous proteins

Multiple alignments of homologous proteins contain more information about secondary strue
tures than single sequences alone, becaunse the secondary structure is considerably better con
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served than the amino acid sequence. The use of multiple alignments can give significant im-
provements in the secondary structure prediction (Rost & Sander, 1993a; Rost & Sander, 1993b;
Rost & Sander, 1994; Zvelebil et al., 1987) especially if weakly related proteins are included in
the alignments. The latter only holds if the alignment of the weakly related proteins is good,
i.e., resembles the structural alignment obtained by superposition of protein backbones (Levin
et al., 1993).

Recently Rost and Sander have had significant success by using sequence profiles' from such
alignments as input to the neural network instead of a single sequence (Rost & Sander, 1993a;
Rost & Sander, 1993b; Rost & Sander, 1994). When using profiles instead of single sequences.
correlations between amino acids in the window will not be available to the network. Although
this may not degrade performance in practice, we have chosen another approach, which conserves
these correlations. It is the approach also taken in (Zvelebil et al., 1987; Russell & Barton. 1993;
Levin et al., 1993), where the predictions are made from the single sequences and then combined
afterwards using the alignment. This method also has the advantage of being able to use any
secondary structure prediction method (based on single sequences) and any alignment method.

To the protein for which a secondary structure prediction is wanted (called the base protein).
a set of homologous proteins are found. This set of proteins including the base protein is used
for the secondary structure prediction in the following way.

1. The secondary structure for each of the homologous proteins in the set is predicted indepen-
dently from the amino acid sequences. Any prediction method based ou single sequences
can be used at this stage, but we use the ensemble method described above.

2. The protein sequences in the set are aligned by some multiple sequence alignment method
and each protein is assigned a weight (see below).

3. For each column in the alignment a consensus prediction is found from the predictions
corresponding to each of the amino acids in the column (see below).

For each column the consensus is obtained either by weighied average, or by weighted ma-
jority. The weighted average is calculated by first multiplying the a-helix predictions by the
weights of the proteins, and then summing the weighted helix predictions column-wise. Sim-
ilarly the weighted sums of f-strand and coil predictions are calculated. Note that insertions
in the alignment do not contribute to the column sums. The largest of the three colnmn suns
then determine the predicted secondary structure for this column. In the weighted majority. the
prediction for each amino acid is chosen by the largest of the three ontputs, Then the tatal sum
of a-helix predictions is calculated by column-wise snmming of the weights for 1those proteins
where an a-helix is predicted. Similarly the total sums of J-strand and coill predictions are
found. The secondary structure obtaining the largest colnmn sum is chosen as the prodicted one
for this column. In this way, weighted majority becomes dependent on the extimated weiahits
for each of the proteins in the alignment.

Weighting the aligned proteins

If an alignment contains many very similar proteins and a few that differ cignificantly from
the majority, then the minority will have almost no influence on the prediction. Therefore it
is often a good idea to try to weight the proteins differently. Several weighting schemes have
been suggested in recent years, see e.g. (Altschul et al., 1989: Vingron & Argos. 1950 Sibbald
& Argos, 1990; Gerstein et al., 1994; Henikoff & Henikoff, 1994). Here we will use a newly
developed one based on the maximum entropy principle (Krogh & Mitchison. 1995).

1Sequence profiles are the frequencies of the 20 amino acids in each column of the alignmient
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For an alignment of N proteins, the entropic weights are found by maximizing the entropy
of the alignment defined by (Krogh & Mitchison, 1995):

M M
S(wh...,wN):ZRJ :—Zij(z)logp](m) (1)
=1 j=1
where the sum is extended over all alignment columns 7 = 1,..., M and over the 20 different

amino acids z. p;(x) is the weighted amino acid frequencies for column j, i.e., p;(+) is a function
of the weights assigned to the aligned proteins, see (Krogh & Mitchison, 1995). The entropy is
a concave function in the weights, and it is therefore easy to maximize. We have used simple
gradient ascent in this work, although more efficient techniques are available. ‘T'he problem
with entropic weighting and any other alignment based weighting scheme is that erroneously
aligned proteins can he assigned very high weights, which obviously is wrong. Since aligning
weakly related proteins often results in erroneous alignments (Vingron & Argos, 1989; Levin
et al., 1993) the weighting schemes should be used with precaution. For this reason we have
also tested a combination of the uniform and the entropic weights. Thus, for protein 7 in the
alignment the weight is given hy:

; £(1= ()1n§:nlr01)lr' ()

w; =

where ¢ = 0.5 is used in this work.

To improve the alignment prediction a one-hidden-layer filter network is applied to the
consensus prediction. This network takes a window of 15 consecutive alignment. predictions as
input. In addition the column entropy ¢; and the weighted number of insertions and deletions
(InDels) for each column are used as input. Thus, the filter network has a total of 15 x (34 3) =
90 inputs. The entropy of each alignment column indicates how well the current position is
conserved. That is, if the column entropy is close to zero, then the variation ol the amino acids
in this columnn is small, i.e. this position is well conserved in the protein family. On the other
hand, if the column entropy is large, then the variation of amino acids is large, i.c. this position
is very poor conserved. Since regular secondary structure segments are more conserved than
coil segments. a large variation of amino acids is often observed in coil regions (Rost ef al.,
1994b). Thus, a large column entropy often corresponds to a coil region, and a small entropy
to an n-helix or a B-strand region. The weighted number of InDels is the nuinber of insertions
and deletions on the considered alignment position weighted by equation (5). InDels most often
ocenr in coil regions. To avoid over-fitting the number of hidden units is 5.

The alignments used to test this method are taken from the HSSP-database version 1.0,
release 25.0 (Sander & Schneider, 1991). For each of the 126 non-homologous proteins the corre-
sponding HSSP file is found. These files consists of homologous proteins that have at least 30%,
sequence identity for alignment lengths > 80 residues, and larger for shorter proteins (Sander &
Schnetder, 1991). There are two minor problems using the HSSP files for secondary structure
predictions. For creating the alignments in the HSSP files, knowledge abont the secondary struce-
ture of the hase protein is used, since no insertions or deletions in regular secondary structure
segments are allowed. FPurthermore, there might be homologies between proteins in diflerent
HSSP files, although the base proteins do not have significant homologies, and this might give
homology between the test and training sets. In our experience these points have insignificant
inflitenice on the results. and using the HSSP files gives us the advantage of being able to directly
compare our results with those of (Rost & Sander, 1994).
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Figure 4: Percentage (Q2,4) of residues predicted correctly by the a-network as a function of
the number of training epochs (full sweeps through the training set: set B-(G). The solid curve
shows the percentage of learned residues in the training set and the dotted curve the prediction
accuracy on the testing set (set A).

3 Results

3.1 Two-state predictions by single-structure networks

The result of training the structured a-network on set B-G and using set A as testing set is
shown in Figure 4. This figure shows two interesting features: 1) Over-fitting is gone, é.c. the
accuracy on the training and testing sets are approximately equal; 2) the training and testing
percentages oscillate in phase. The first observation means that this network gives reliable
estimates of prediction accuracy on new proteins not in the database used for developing the
method. The observed fluctuations is mostly due to the use of balanced training where a
different set of negative examples (non-helix) are used in each training epoch. Since the in-
phase oscillations are observed for all of our networks, the final network weights are chosen as
follows. The network is trained for 100 training epochs, and in each epoch the training error is
measured. If the training error is lower than in all previous epochs the corresponding weights
are saved. In this way, the set of weights corresponding to the smallest training error seen during
all 100 epochs is found.

For the single structure predictions a fully connected network with hidden units only performs
as well as a one-layer network if the training is stopped at the right time, see (Hayward &
Collins, 1992). Therefore we use a one-layer network as a reference model. In Table 3 the results
obtained with the single-structure networks are summarized. From the table it is scen that the
structured networks predict the three secondary structures better than the reference models.
Furthermore, the structured helix network learns the training set better than the reference helix
network despite the fact that the latter contains more weights (reference a-network: 261 weights.
structured a-network: 160 weights). This shows that the learned representation of the amino
acids is considerably better than the orthogonal representation.

When comparing two-state predictions for different testing sets a considerable variation in
performance is seen. For testing set B the helix network classifies Q3. = 72.5% of the residues
correctly while this number is Qg , = 77.7% for testing set F. The variation between the seven
different testing sets is observed for all of the single-structure networks and is partly due to
the different distributions of the three secondary structures, and partly due to the fart that
non-homologous proteins in general are very different. This emphasizes the importance of nsing
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a-network:

Reference 74.10 72.54 0.42 0.37
Structured 75.59 74.98 0.42 .39
Filter 76.31 76.46 0.42 0.40
B-network:

Reference 75.08 73.84 0.39 0.36
Structured 78.10 76.48 0.41 0.37
Filter 81.52 81.34 0.41 0.41
coil-network:

Reference 71.91 70.78 0.43 0.41
Structured 72.09 71.33 0.44 0.42

Table 3: Two-state predictions of c-helix, #-strand and coil found by seven-fold cross-validation.
The reference networks are perceptrons with window lengths W = 13. The structured networks
all use the local encoding scheme and the a-network has a built in period of 3 residues. The
fully connected filter network takes a window of 15 predictions from the structured network as
input and has 10 hidden units. The filter is trained unbalanced.

cross-validation when estimating prediction accuracies.

To improve the two-state prediction a filter network is applied. This network takes a window
of 15 consecutive predictions from the sequence-structure network as input. The filter network is
fully connected and contains 10 hidden units. As shown in Table 3 the filter improves prediction
approximately 1.5% for helices and almost 5% for strands. Filtering the coil predictions gives
ouly about 0.5% improvement, probably because coil is an irregular structure, 0., it is not so
much dependent on the surronnding structures.

3.2 Combining single-structure networks

To obtain a three-state prediction the single-structure networks are combined with a filter net-
work. The filter network takes a window of 15 consecutive secondary structure predictions
as input and has 10 hidden units. In Table 4 is shown the results achieved when nsing the
non-filtered and the filtered single-structure predictions as input. From this table it is scen
that fillering the single-structure predictions before the combining network does not improve
performance. This is because the combining network in itself acts like a filter network. For
comparison, the performance of a network identical to Qian and Sejnowski’s with 40 hidden
units is also shown in Table 4. The performance of this network is evaluated on the same set of
non-homologous proteius by seven-fold cross-validation, and it is scen that the fully connected
network only obtains Q3 = 63.2% compared to Q3 = 65.1% obtained by combining the unfiltered
single-structure predictions. Note that the results obtained with the Qian and Sejnowski model
is fonnd by using the best performance on each of the seven testing sets, which over-estimates
the performance. For the combining network the above defined stop criterion is nsed.

The effect of the local encoding scheme is illustrated by a three-state network, which uses
the adaptive encoding of amino acids in the first layer and 5 bidden wnits in the second layer.
This network has a window size of 15 residues leading to a total of only 311 adjustable weights
compared to approximately 11,000 weights in Qian and Sejnowski’s network. Despite this dif
ference the local encoding network gives about the same Q3 and better correlation coefficients,
indicating that the amino acids are well described by only three real parameters, and that the
fully connected networks are highly over-parametrized. Results after filtration are shown in
Table 4. The filter network has an inpnt window of 15 and a hidden laver consisting of 10 nnits.

When combining ensembles the approach described in section 2. (Figure 3} is used. Fnsem
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QB [Ca [ Cs ] Cc ]
Combined single-structure nets:
Filtered input 64.46 | 0.45 | 0.39 | 0.42
Unfiltered input 65.39 | 0.46 | 0.41 | 0.43
Ensembles 66.27 |0.48 | 0.41 | 0.44
Alignments:
Uniform (Not filt.) 68.81 [ 0.55 | 0.46 | 0.48
Entropic (Not filt.) 68.68 | 0.54 | 0.46 | 0.47
Entropic+Uniform (Not filt.) 69.20 | 0.55 | 0.46 | 0.48
Entropic4Uniform (Filtered) 71.32 | 0.59 | 0.52 | 0.50
Reference models:
Qian and Sejnowski network 63.16 | 0.40 | 0.35 | 0.41
Local encoding (Not filt.) 63.10 }0.42 ] 0.36 | 0.41
Local encoding (Filtered) 64.20 | 0.44 | 0.37 | 0.41

Table 4: Cross-validated three-state predictions obtained by various methods. Ensembles refers
to the combination of ensembles of 5 single-structure networks with a constrained network and
Alignments refers to using multiple alignments of homologous sequences in combination with
ensembles. The alignment prediction is obtained by weighted average and different weighting
schemes are shown. The effect of filtering the alignment prediction is also shown. For comparison
is shown the performance of a fully connected network similar to the one used by Qian and
Sejnowski with 40 hidden units (input spacer units are omitted). Note that the performance for
the fully connected network is given by the best performance on the testing set during training
and that the previously defined stop criterion is used for all other networks. Also shown is a
three-state prediction network with local encoding in the first layer and 5 hidden units in the
second layer fully connected to the output layer. Results with and without filtration are shown.

bles give an improvement of approximately 0.9% in the overall three-state prediction accuracy
mostly due to a better helix prediction (higher Cy), see Table 4. This is less than the im-
provement of more than 2% reported by Rost and Sander (Rost & Sander, 1994) when using
ensembles of nenral networks for secondary structure prediction. This is probably because the
single-structure networks used in this work are very well adjusted and that no over fitting is
observed. The networks used by Rost and Sander have a considerable tendency to over-fit,
and we believe that an important role of the ensemble in their work is to “average out™ the
over-fitting. This is possible if the members in the ensemble over-fit differently. 1o they make
different errors, and therefore their average output is generally better than the owrput of any
single network in the ensemble (Hansen & Salamon, 1990: Krogh & Vedelsby 10975

3.3 Using multiple alignments of related proteins

To improve the performance of the ensemble method multiple alignmentsare applied as des tibed
previously. Since only minor differences where observed hetween the weighted nigoriry heme
and the weighted average scheme only results from the latter (whicl tend to e the hest) v il be
presented in the following. As can be seen in Table 4 the difference hetween uniform weighting
and entropic weighting is surprisingly small. Furthermore, the entropic weighting seems to he
slightly inferior to the uniform weighting. As already discussed, any weighting scheme suffers
from assigning large weights to erroneous alignments, and that might be one of the reasons
for this. However, using the combined weighting scheme a gain of approximately (.5% is seen
compared to both uniform and entropic weighting.

Using a network to filter the alignment prediction as described in section 2.4 gives an amazing
gain of more than 2% in the three-state accuracy. The filter takes a window of 15 “raw™ alignment
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predictions, the column entropy and the weighted number of InDels as input. The network is
fully connected and contains 5 hidden units. Thus, the filtered alignment prediction vields
Q3 = 71.3%, and the corresponding Matthews correlation coefficients of (,, = 0.59, (g = 0.52,
and C. = 0.50 indicates a very good prediction. Comparing the filtered alignment prediction to
the one obtained using single sequences a gain of 5% is observed.

Tn order to further improve the performance, the following additional inputs were tried.

|. Normalized distance from the central residue to the ends of the protein
2. Normalized length of the protein
3. Frequency of the 20 amino acids in the base protein

The last two inputs contain global information about the protein under consideration. However,
none of these attempts lead to significant improvements (they all resulted in a gain of less than
0.1%).

Compared to the single-sequence method the alignment method obtains 5% higher classifi-
cation rate, and a considerable increase is seen in the Matthews correlation coeflicients for all
three structures. This confirms that evolutionary information is extremely important in the
description of secondary structure from amino acid sequences. In the work of Levin et al. {Levin
et al., 1993) a gain in accuracy of almost 7% is reported when applying multiple alignments to
a combination of the GOR (Garnier ¢t al., 1978) and SIMPA (Levin & Garnier, 1988) methods.
A similar gain is reported by Rost and Sander (Rost & Sander, 1994) when using profiles to
train a neural network resembling the one used by Qian and Sejnowski. The smaller gain of 5%
found in this work is probably due to a better single-sequence method than the ones used by
the above mentioned authors.

The increase in prediction accuracy when using multiple alignments is mostly due to a better
prediction of a-helices and A-strands as shown in Table 5. Thus, the increase in Q. is only
about 2% compared to more than 11% for Q. This indicates that multiple alignments mostly
contributes information about regular secondary structures in agreement with the fact that
the three-dimensional structure of a protein family mainly is determined by the approximate
lacation of helices and strands (Rosl et al, 1994b). Hence, the ends of regular sccondary
structure segments are less well defined than the core of regular secondary structure segments.
This is verified in Table 5 where it is scen that the core of helix and strand segments are predicted
considerably hetter than the mean for all residues. The corresponding percentages for cofl shows
that the core and ends of coil segments are approximately equally well defined.

As discussed earlier, the performance of the prediction method should not be based only on
the percentages of correctly predicted residues. In order to see how realistic the prediction is
the predicted and observed mean lengths of secondary structure segments are shown in Table
5.1t is seen that the alignment method gives a much better prediction of segment lengths for
helices and strands than the single-sequence method. The predicted helix segments have nearly
the same lengths as the observed helix segments and the underprediction of J-strands tends to
he slightly worse for the ensemble method. However, the overprediction of coil scems to remain
unchanged when using alignments.

Since B-sheets often contain non-local interactions the strands are poorly defined from local
sequences of amino acids. This is reflected in the f-strand prediction shown in Table 5; only
Q4 = 57.0% of the observed strands are heing correctly predicted. This should be compared to
Q., = 68.9% and Q, = 79.2%. In some sense il is more interesting if the algorithm finds segments
of helix or strands at approximately correct locations. FEven though the strand prediction is
clearly inferior to the helix prediction (in terms of @, and Qg) segments of these two strnctures
are located equally well. As shown in Table 5 an impressive 83% of all predicted helix segments
overlaps with at least one observed helix segment. The corresponding percentage for strand
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[ Ensembles | a-helix | B-strand [ coil |
Q: (Al 642% | 45.7% | 76.9%
Q; (Core) || 71.5% | 53.5% | 79.5%
LD 9.1 5.1 6.2
LPred 7.5 3.8 7.8
POV 68% 69% 91%
Alignments || a-helix | f-strand | coil ]
Q. (A 68.9% | 57.0% | 79.2%
Q; (Core) 76.6% | 67.1% | 81.9%
Lo 9.1 5.1 6.2
Lired 9.3 4.4 7.8
POV 83% 80% 95%

Table 5: The performance of the ensemble and alignment method on each of the three secondary
structures found by seven-fold cross-validation. “All” refers to all residues, while “Core™ refers
to all residues except the first and last residue in segments of secondary structure.
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Figure 5: Distribution of per chain three-state accuracies obtained by the alignment method.
The average three-state accuracy is < Qgh‘”" >= 70.8% with a standard deviation of ¢ = 9.3%.

is 80%. These high overlap percentages illustrate that the alignment method is very good at
locating and distinguishing segments of regular secondary structure.

For a new protein with unknown structure the performance is better described by the per
chain accuracy Q§***. The alignment method yields Q§**™ = 70.8% + 9.3%. This is slightly
smaller than the performance measured per residue, which means that long chains are predicted
slightly better than short chains. Albeit the expected per chain accuracy lies between Q5 =
61.5% and Q$"*™ = 80.1% the prediction can be significantly worse as illustrated in Figure 5.
For four of the chains in the data set the three-state accuracy is less than 50%. Most prediction
methods are good at capturing general features contained in the database used for training.
Hence, the more atypical a given protein is compared to proteins in the training set the more
likely is a poor prediction.
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Figure 6: Observed accuracy versus estimated accuracy for the alignment method. Fach dot on
the curve corresponds to a prediction interval (0.3-0.4, 0.4-0.5 ete.). The estimated accuracy is
given by the arithmetic average of network predictions in the given interval, and the observed
accuracy by the three-state prediction percentage for these residues.

3.4 The neural network output as estimated probabilities of correct predic-
tion

The prediction for a certain residue is given by the output unit with the largest output. The
actual output value for this unit can be interpreted as the probability that the prediction is
correct. To see if this interpretation is correct, one can find the actual accuracy of predictions
for residues giving an output in a certain interval. In Figure 6 is shown the observed three-state
accuracy versus the estimated accuracy for those residues prodncing an output in a certain inter-
val. The estimated prediction accuracy is given by the arithmetic average of network predictions
in the interval. The figure shows that a linear relationship exists between the estimated and the
observed accuracy verifying that the network outputs can indeed be interpreted as estimated
probabilities of correct prediction. Note that the lowest estimated probability is 0.33 since the
three ontputs must sum to one and since the prediction is chosen as the largest of the three
outputs.

In Figure 7 is shown the observed accuracy plotted against the percentage of residnes pre-
dicted with outputs above a certain value. This is another way to see that the higher output
of the filter network the more reliable is the prediction. In this figure one can see that 72% of
the database yields Q3 = 80% and 36% scores about, Q3 = 90%. Thus, for more than 36% of
the database an accuracy comparable to that of homology methods is achieved. This position
specific reliability measure can be used to locate those regions of a new protein with unknown
structure that are predicted with particular high confidence thereby making an experimental
determination of the structure considerably easier. These results are very simitar to the results
of (Rost & Sander, 1994).

Since A-strands are predicted less accurate than both a-helices and eoil the estimated prob-
ability for this structure is generally smaller than the probabilities for a-helices and coil. I
Figure 8§ the percentages of observed helices, strands and coil predicted with outputs in the
given intervals are shown. Most g-strands are predicted with an output helow 0.6 corresponding
to a relatively uncertain prediction. In contrast an impressive 27% of all observed helices are
predicted with outputs in the interval 0.9-1.0 corresponding to a very high reliability. Further-
more, helices are generally predicted with considerably higher confidence than both eoil and
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Figure 7: Observed accuracy versus percentage of residues yielding predictions above the valne
shown on the curve.
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Figure 8: Percentage of observed helices, strands and coil predicted with a given output. Note
that more than 27% of the observed helices are predicted in the interval 0.9-1.0 corresponding
to very high confidence.

B-strands. This indicates that helices are better defined by local sequences ol amino acids thian
the other structures, which is in agreement with the local nature of the helic strnetare

4 Conclusion

Secondary structure prediction by use of highly structured nenral networks and mnltiple whan
ments of homologous proteins have been investigated. By using small nenral networks for pre
dicting each of the three secondary structures over-fitting was avoided and o consistent wtop
criterion based on in-phase fluctuation of the training and testing error war doveloped. One of
the features of the single-structure networks were an adaptive encoding of the amino acid-in
which each of the 20 amino acid were represented by three real numbers. This alone decreases
the number of network weights tremendously as compared to fully connected networks. The
effect of this method was illustrated by a network for three state prediction containing only
311 adjustable weights, which outperforms a standard fully connected network with more than
10,000 weights! The low number of weights used in our single-sequence networks indicates that
the implemented mapping from a window of the amino acid sequence to the secondary structure
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Figure 9: Three-state predictions obtained hy methods using cross-validation. The wethods are
grouped into non-network methods, network methods, and network methods using the infor-
mation contained in multiple alignments. Furthermore, the predictions that conld be obtained
from a random predictor (Random) and by homology modeling (M) are shown. Non-network
methods: C+F is the Chou-Fasmann algorithm (Chou & Fasmann, 1978), where the results
are taken from (Maclin & Shavlik, 1993) where a cross-validation is performed on the data set
used by Qian and Sejnowski; GORIIT uses information theory (Gibrat ef al., 1987); Combine
combines three different non-network methods (Biou et al., 1988). Network-methods: Qiau
and Sejnowski is similar to the fully connected feed-forward network described in (Qian & Se-
jnawski, 1988) evaluated on the database given in Table 1, note that the performance is chosen
as the best accuracy obtained on the testing sets, and spacer units are omitied; FSKBANN
is a method that designs a multi-layer feed-back network from the Chou-Fasmann algorithm
(Maclin & Shavlik, 1993); SM-MBR-NN is a method combining a statistical module, a memory
based reasoning module and a neural network (Zhang et al., 1992); ENSCOMB is our ensemble
based single-sequence method. Network-methods using alignments: PUD is the profile
network developed by Rost and Sander (Rost & Sander, 1994) using sequence profiles as in-
put; ALIPRED is our alignment method. Note that PHD, ENSCOMB and ALIPRED all use
the database shown in Table 1 and therefore can be compared directly. The data sets used in
C+F. FSKBANN, and SM-MBR-NN have sequence similarities above 30% between proteins in
the training and testing sets. All nther methods are reported to have no significant sequence
homology.

is relatively simple.

Another neural network was used to combine ensembles of the single-structure predictors.
and this gave a cross validated accuracy of 66.3%. This is as good as or even better than results
obtained by most other prediction methods based on single-sequences as input (non-alignment
methods). See Figure 9.

The use of multiple alignments gave a considerable gain in prediction accuracy as shown in
Figure 9, and the prediction accuracy of 71.3% obtained by the alignment method is comparahle
to the one obtained by Rost and Sander with their profile network (PHD) (Rost & Sander, 1994).
In onr work, the alignments were used in a very different way, becanse the predictions were done
on the individual sequences first, and then combined, instead of using a profile as an nput
to the network. It is very interesting that the two methods performn the same, because the
profile method averages out all high order correlations in the proteins. It indicates that these
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correlations are of minor importance. We would also like to note the other major difference.
namely that the combined system is an order of magnitude smaller than the PHD system in
terms of the number of adjustable parameters.

In the predictions based on multiple alignments we weighted the sequences by the method
described in (Krogh & Mitchison, 1995). This weighting did not improve performance, which
we believe is a result of giving large weights to sequences that may be aligned slightly wrong. It
turned out that combining the weighting scheme with uniform weighting gave the best results.
although the gain was only about 0.5% compared to no weighting.

The interpretation of neural network outputs as conditional probabilities was illustrated by
use of the softmax approach. A linear relationship between estimated and observed prediction
accuracy was observed, and therefore residues predicted with particular high confidence can
easily be identified. It is noteworthy that more than 72% of the residues in the data set were
predicted with a network output larger than 0.6. This corresponds to an observed prediction
accuracy of approximately 80% for these residues. The remaining 28% of the database was
predicted with less accuracy indicating that the secondary structure of these residues are not
well described by local windows of amino acids.

When training neural networks the final accuracy can depend on small fluctnations in initial
conditions etc., and thus the percentages can vary within an interval of about 0.5%. Therefore
we have not reported on results from training with additional information that only gave of
the order of 0.1% each. By including such information, fine-tuning the sequence weights. and
training the whole system many times to pick the best, we would be able to come very close
to 72% accuracy or maybe even higher. In that case, however, the cross-validation results
would heavily influence the selection of the right combination, and thus the final estimate of the
prediction accuracy would be biased. It is also important to notice that adding or removing a
single sequence from one of the seven sets can change the performance by as much as 0.5%. For
these reasons we do not believe it is reasonable to compare results at a very fine level.

Most of the ideas we had to improve the performance of neural networks have been tested
in this project, which is actually a few more than reported in the present paper. Although
we did not improve on the overall accuracy, when compared to the best methods. we believe
that this type of work is important, because we learn about both protein secondary structure
and about the prediction methods. It is well known that interactions between amino acids far
apart in primary sequence but close in space are of immense importance to protein folding,
To increase the accuracy of secondary structure predictions even further, we believe that these
global interactions in some way must be taken into account.
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