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Abstract 

We present a framework for detecting degenerate probes in a DNA microarray that 

may add to measurement error in hybridization experiments. We consider four types 

of behaviour: secondary structure formation, self-dimerization, cross-hybridization and 

dimerization. The framework uses a well-established model of nucleic acid sequence 

hybridization and a novel method for the detection of patterns in hybridization experi­

ment data. Our primary result is the identification of unique patterns in hybridization 

experiment data that are correlated with each type of degenerate probe behaviour. 

The framework also contains a machine learning technique to learn from the hybridiza­

tion experiment data. We implement the components of the framework and evaluate 

the ability of the framework to detect degenerate probes in the Affymetrix HuGeneFL 

GeneChip. 

Résumé 

La présence de sondes dégénerées dans des puces à ADN contribue à l'erreur des 

mesures lors d'expériences d'hybridation. Nous présentons un système qui permettra 

la détection de sondes dégénerées exhibant un des quatre types de comportements 

non-désirables: la formation de structures secondaires, l'auto-dimérisation, la trans­

hybridation et la dimérisation. Notre systëme emploie un modèle d'hybridation d'acides 

nucléiques bien connu ainsi qu'une nouvelle méthode de détection de motifs répétés dans 

des données d'expériences d'hybridation. Notre contribution principale à l'avancement 

des recherches dans ce domaine est la description de motifs d'hybridation spécifiques à 

chacun des quatre types de comportements dégénerées des sondes que nous étudions. 

Notre système utitlise une technique d'intelligence artificielle qui permet l'apprentissage 
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à partir des données des experiences d'hybridation. Nous avons évalué la capacité de 

détection des sondes dégénerées de notre système en analysant la puce HuGeneFL 

GeneChip d'Affymetrix. 
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1 Introduction 

Technologies such as Affymetrix oligonucleotide arrays (DNA chips or GeneChips) 

have launched several new fields in functional genomics. However, the amount of 

error present in the measurements of gene expression produced by this technology 

represents a significant obstacle to understanding gene regulatory mechanisms. This 

thesis presents a framework for identifying several types of error common to Affymetrix 

oligonucleotide arrays. 

EssentiaIly, an organism specific array (a.k.a. chip) contains a set of pmbes that 

target most, if not aIl, genes and other areas of biological interest (termed targets) 

in the genome of the organism. Each probe p is a short strand of nucleic acids (an 

oligonucleotide) of length 20 - 25 bp and is tethered to the chip at a specific location. 

The nucleic acid sequence of each such probe is the Watson-Crick complement of a 

nucleotide sequence t that is located ideally in exactly one position of one target in 

the genome of the organism. We term this complementary strand t a tag and say that 

tag t matches probe p. Each target is typically represented by between 11 and 60 such 

tags. 

A hybridization experiment consists of harvesting, under sorne specific condition, 

a sufficiently large sample of mRNA transcripts from the tissue or organism under 

study.l In an experiment, the mRNA is preprocessed and labelled to form a sample of 

cRNA. This sample is stained and brought into contact with the chip. Those cRNA 

tags present in the sample should then hybridize with (and only with) their mat ching 

probes on the chip. The intensity of each RNA/DNA hybrid (termined probe-tag pair) 

is optically measured. In an error-free scenario, this intensity is proportional to the 

1 Appendix A contains a brief description of hybridization. 

8 



true number of transcripts present in the sample. A statistically robust method is 

then applied to the set of probe-tag pairs representing each target to estimate the 

quantitative level of expression for that target. 

Variability among different hybridization experiments is commonly characterized 

as biological variability, sample variability or technical variability. We are concerned 

primarily with technical variability. Technical variability introduces error to hybridiza­

tion experiments in the form of stochastic error that may be caused by lab equipment 

or conditions, or bias error that may be caused by the design or construction of the 

chip. Bias error will be consistent over aU hybridizations. We focus on the development 

of tools for detecting and eventuaUy predicting bias error in experiments. 

Several strategies exist in the literature for designing DNA microarrays that at­

tempt to minimize (or detect) various types of error [2, 6, 18, 26]. These methods 

however focus primarily on establishing design rules for the de novo construction of 

universal microarrays or on the inclusion of probes to detect faults in the chip construc­

tion phase. The work presented here introduces a framework to predict when probes 

and their matching tags will exhibit degenerate behavior (their intensity readings are 

consistently not proportional to the true number of transcripts present in the sample). 

The framework will provide us with a tool for the in silico evaluation of the quality of 

a chip before it is manufactured. The predictions also act as a filter to remove sorne 

types of error common to gene expression studies. 

This paper considers four types of degenerate behavior that we conjecture to add 

a significant amount of error to intensity measurements in hybridization experiments: 

secondary structure formation (a tag or probe strongly hybridizes with itself), self­

dimerization (two copies of the same tag hybridize), dimerization (two distinct tags in 
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the sample hybridize), and cross-hybridization (two distinct tags t, t' with matching 

probes p,p' respectively tend to hybridize with both p and p'). 

Consider secondary structure degeneracy where a single strand of nucleic acid has 

the ability to fold and hybridize into a stable folded secondary structure. As we focus 

on short sequences, we consider only the most simple folded structure called a hair-

pin loop. For example, tag t = AAAAAAAAGGGTTTTTTTT could fold to form 

a stable hairpin structure as depicted in Figure 1. Now consider tags that exhibit 

t = 5' - A-A-A-A-A-A-A-A-G 
1111 Il 1 1 G 

3' - T-T-T-T-T-T-T-T-G ' 

Figure 1: An example of a hairpin loop. 

self-dimerization. For instance, when two copies of t = TTTCCCATGGGAAA are 

present in a solution, they may hybridize to form a stable duplex as depicted in Figure 

2 Tags may hybridize to unintended probes causing cross-hybridization. Consider t = 

t = 5' - T-T-T-C-C-C-A-T-G-G-G-A-A-A - 3' 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3' - A-A-A-G-G-G-T-A-C-C-C-T-T-T - 5' = t 

Figure 2: An example of self-dimerization. 

TT ACCCTT AAGT AC, t' = TT ACCGTT AAGT AC and p = GT ACTT AAGGGT AA. 

t ' may hybridize to p as depicted in Figure 3 (note also that t may hybridize to p'). 

Finally, different tags t = TT ACCGTT AAGT AC and t ' = GT ATTT AACGAT AA 

may dimerize as depicted in Figure 4. 

A well designed microarray should prevent the occurrence of these four types of 

degeneracy. Figure 5 depicts a stylized view of the four types of degeneracies that may 
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t' = 5' - T-T-A-C-C-G-T-T-A-A-G-T-A-C - 3' 
11111 11111111 

3' - A-A-T-G-G-G-A-A-T-T-C-A-T-G - 5' = P 

Figure 3: An example of cross-hybridization. 

t = 5' - T-T-A-C-C-G-T-T-A-A-G-T-A-C - 3' 
111111111 III 

3' - A-A-T-A-G-C-A-A-T-T-T-A-T-G - 5' = t' 

Figure 4: An example of dimerization. 

occur during a hybridization experiment. Note that we do not daim that aH of the 

expressed tags will hybridize to the probes. In hybridization experiments, it has been 

observed that only a proportion of the expressed tags will hybridize to the probes on 

the chip [4]. This observation do es not affect the work described here, as we examine 

situations when fewer than the expected proportion of tags hybridize to a probe on the 

chip. 

Good behaviour Cross-hybridization 

t.····· .. ·~t' 

Dimerization Secondary structure formation 
or self-dimerization 

Figure 5: Solid arrows indicate that the expected amount of expressed tags should participate 
in the hybridization. Dotted arrows indicate that some fraction of the expected amount of 
available tags may participate in the hybridization. 
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Each of the four degenerate behaviours may contribute to error in gene expression 

measurements in distinct ways. As a simple example, consider the effect of secondary 

structure on the intensity of a probe Pl. Consider a set of tags tl,"" tl representing 

some target 9 where h is known to form secondary structure. Let Pl, ... ,Pl be the 

matching probes for h, ... ,tl respectively. During a hybridization experiment, h will 

have a tendency to hybridize with itself, and therefore it will tend not to hybridize 

with its mat ching probe Plon the chip at the same rate as ti, i > 1. The intensities 

of probe-tag pair (pl, td would then be consistently lower than would be witnessed 

had a better tag been chosen. Moreover, the intensities for this probe-tag pair should 

tend to be consistently lower than other probe-tag pairs representing the same target. 

Therefore, the intensity of the entire target (computed as a weighted average of the 

intensities of aU tags representing that target) will tend to be lower than the true 

number of transcripts present in the sample. Similar style arguments exist for the 

remaining types of degeneracy. 

We conjecture that each of the four types of degeneracy will create unique patterns 

in the hybridization data. The unique pattern is recognizable by comparing the inten­

sity of a probe to the intensities of the remaining probes in its group. For example, a 

plausible pattern of degenerate behavior caused by secondary structure is illustrated 

as follows. Considering once again a set of tags h, ... ,tl representing some target g. If 

the intensity measurements of the probe Pl associated with h rank extremely low w.r.t. 

the intensity measurements for probes associated with t2,' .. ,tl, then it is possible that 

h is prone to form secondary structure and will not hybridize with Pl regardless of 

the condition under which the hybridization is performed. If the rank of the intensity 

of this probe is consistently low w.r.t. probes P2,'" ,Pl especially when target 9 is 
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highly expressed, then this probe-tag pair exhibits a pattern attributed to secondary 

structure. By using appropriate patterns for secondary structure, cross-hybridization, 

dimerization and self-dimerization, we show evidence that specifie probe-tag pairs do 

behave according to these patterns. 

In Section 2, we show how to build a confiict gmph for a chip. This conflict graph 

helps us to organize the relationships between the probes. Each vertex in the conflict 

graph corresponds to a probe on the chip. A self-loop (p,p) is added to the graph 

if the tag t associated with probe p exhibits a high affinity to form strong secondary 

structure or to self-dimerize. An edge (p, p') is added between distinct probes, if the 

associated tags t and t ' exhibit a high affinity to cross-hybridize with p' and p or if tags 

t and t' exhibit a high affinity to dimerize. The affinity for a probe (or pair of probes) 

to exhibit each type of degeneracy is estimated by a weU-studied method based on 

theoretical models for calculating the free-energy (~G) of a hybridization for either a 

single sequence (secondary structure) or between two sequences (cross-hybridization, 

dimerization) [10,13,15,17,24,28]. For dimerization and cross-hybridization, we use a 

straightforward dynamic programming algorithm to calculate the minimum free-energy 

over aU possible hybridizations between the two sequences with the nearest-neighbor 

model and thermodynamic parameters supplied by [15]. In aU cases, an edge is added 

to the conflict graph if and only if the minimum free-energy exceeds a conservative 

threshold. 

In Section 3 we provide a method and notation for formaUy defining patterns in 

hybridization experiments. We begin by examining the pattern for probes not affected 

by any type of degeneracy (non-degenemte probes). We then define the unique patterns 

associated with each of the four degenerate behaviours and the intuition behind each 
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pattern. We finish by justifying the patterns by showing that probes measured to have 

high affinity to be degenerate do in fact exhibit such patterns. 

In Section 4 we show how the definitions of the unique patterns of degeneracy 

and non-degeneracy can be used to measure the extent to which hybridization data 

supports a claim that a particular probe (or pair of probes) is degenerate. 

Section 5 extends the confiict graph to allow for learning from hybridization data. 

As the chip is increasingly used by the community and the raw intensity values (i.e., 

the cell files) are made publically available, the potential for learning this library of 

knowledge is increased. We describe a learning approach to detect degenerate probes 

or probe pairs. The method seeks to identify patterns in a training set of hybridization 

experiments that may be indicative of degenerate probes. We discuss methods for 

learning from hybridization data and the challenges that ensue. 

Throughout this work, we test our framework with the Affymetrix HuGeneFL chip 

[12] which contains on the order of 105 probes of length 25 bp representing approx­

imately 6,000 human targets. This is a relatively old chip and the data from many 

hybridization experiments is publically available. The initial experiments described 

here use a set of 126 hybridizations from three laboratories [7, 20, 27]. We also work 

within the framework to examine the structure of the confiict graph and ta investigate 

addition al properties of the HuGeneFL chip such as the discrimination level of probes. 

2 Conflict Graph Framework 

The following notation is used for describing probes and their organization on a specifie 

chip. Let L;dna = {A, C, G, T} and L;rna = {A, C, G, U}. A probe p of length n is a 
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string p = PIP2 ... Pn E ~Jna. A tag t of length n is a string t E ~~na. The reverse t r 

of t is the string tntn-l ... tl. The Watson-Crick (wc-) complement i'j of q is the string 

obtained from qr by interchanging A ...... T and C ...... C. We say that two strings sand 

t are a wc-complementary iff s = t. We say that probe p matches a tag t (or t matches 

p) if! t is the wc-complement of p after replacing U with T. 

Let T = {h, ... , tl} be a set of tags, ti E ~~na. Let P = {Pi: Pi matches ti ET} 

be the set of corresponding probes. The probes are fixed to the chip whilst the tags 

are derived from the mRNA in the sample. Let C = {gl, ... , gm} be the set of targets 

(genes or other areas of biological signficance). For our purposes, each 9 E C is 

represented by a (unique) set of tags Tg ç T. For aIl g,g' E C, 9 =1- g', Tg n Tg' = 0. 

Let Pg represent the set of probes which match the set of tags Tg i.e. Pg = {p E P : 

p matches sorne t E Tg}. We calI Tg the tag group and Pg the probe group for g. Tg 

and Pg are said to target g. 

Definition 1 (Chip) A chip C = (C, P, {Pg : 9 E C}, T, {Tg: 9 E C}) is composed of 

a group C of genes, sets P and T of probes and tags and sets of probe groups Pg E P 

and tag groups Tg E T for each gene 9 E c. 

2.1 Conflict Graph for a Chip 

To organize the properties of probes and relationships between probes on a chip we use 

a confiict graph. Given a chip C = (C, P, {Pg : 9 E C}, T, {Tg: 9 E C}) we create a an 

edge labelled multigraph M = (V, E, T, K;). Each probe pEP on the chip corresponds 

to a vertex p EV. Here K; is a function labelling the edges of M, K; : E -4 {s,x, dl, and 

T = {Ts,Tx,TÛ is a set ofsuitable threshold parameters for the S, X, D functions. 

Functions S, X and D estimate the affinity for a probe or pair of probes to form 
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a structure or duplex that may cause one of the four degenerate behaviours. Affin­

ity for duplex formation is most commonly measured in terms of duplex stability or 

hybridization strength by free-energy b..G [15] defined as the total change in energy 

from duplex to single-stranded states. Appendix B contains information on the mea­

surement of duplex stability. In a series of papers, SantaLucia et. al. [14, 15, 16, 17] 

determine the thermodynamic hybridization parameters for most DNA 2-mers against 

most 2-mers including both wc-complentary 2-mers and mismatch 2-mers, and various 

misalignments. These parameters are used with the nearest-neighbor model (N-N) for 

calculating the b..G for a pair of (not necessarily wc-complement) nucleic acid sequences. 

Essentially, lower b..G scores for two nucleic acid sequences indicate a stronger 

hybridization between the nucleic acid sequences. The N-N model is believed to give 

accurate predictions of duplex free-energy for nucleic acid sequences of length 5 - 60 

[14]. 

Observation 1 The minimum b..G over aU alignments between nucleic acid sequences 

t = t1 ... tn and s = Sl ... Sm can be found in O(nm) time and O(n + m) space. 

The algorithm denoted by 'OP uses standard dynammic programming with a con­

stant gap penalty. As a bulge betwen two short nucleic acid sequences is unlikely, the 

internaI-gap penalty is extremely high. The algorithm takes into consideration ionic 

and temperature conditions. The computation of free-energy between two tags t, t' E T 

is an RNA vs. RNA alignment whereas the computation of free-energy between a probe 

pEP and a tag t E T is a DNA vs. RNA alignment. Since the complete parame-

ters, including mis match parameters, required to compute the free-energy for RNA vs. 

DNA and RNA vs. RNA alignments were not publicly available, we use the parame­

ters for DNA vs. DNA alignments as a good approximation [17]. Therefore, sequences 
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input to VP may be over ~dna or ~rna, but in the latter case, the sequence will be 

translated to ~dna by replacing U with T. We realize that the N-N model applied to 

the wc-complement of probes does not take into account the trailing sequence of the 

actual cRNA tag. We also realize that DNA/DNA parameters will not give us exact 

measurements for DNA/RNA and RNA/RNA structures. This is acceptable, as we 

require a relative measure of stability, not a quantitative measure. 

We implemented an algorithm for the prediction of secondary structure that is 

built upon the standard method for the prediction of RNA secondary structure [13] 

with the DNA parameter set of SantaLucia et. al. and the N-N model. We assume 

that more complicated secondary structures will not form in short sequences (length 

25). Under this assumption, the program returns the minimum free-energy over aH 

hairpin structures (without pseudo-knots) for a nucleic acid sequence. We represent 

this as function S : ~dna --+ lR. S(p) is the affinity for probe p to fold into a secondary 

structure. Although S(p) only measures the affinity of p to form secondary structure, 

it is used to indicate that probe p is degenerate due to secondary structure formation 

of either p or the mat ching tag of p, t. In reality, the affinity for t to form secondary 

structure will differ from the affinity for p to form secondary structure for several 

reasons. For example, probe pis tethered to the chip while tag t is not. Furthermore, 

tag t is an RNA sequence and the free-energy of a secondary structure of t will be 

affected by a tailing ribonucleic acid sequence. However for simplicity, we assume that 

S(p) r:::; S(t) and we will write that a probe p has high affinity to form secondary 

structure to mean either t or p may form secondary structure. More formaHy, we 

include an edge (p,p) E E, pEP, if S(t) < T s , where t matches p and set K(p,p) ~ s. 

We determine the b..G thresholds, including T s , below. 
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We use the algorithm 'OP to predict the pairwise behaviour of two distinct probes 

p,p' E P. Let t, t' E T be the respective mat ching tags of p and p'. For p,p', the 

function X(p,p') = min('OP(p, t'), VP(p', t)) computes the affinity for t' to hybridize 

with p and t to hybridze with p'. If X(p,p') < Tx , then we include an edge (p,p') E E 

and set r.(p,p') f- x. Similarily, let V(p,p') be the result of computing VP(t, t') where 

t, t' matches p,p' respectively. If V(p,p') < Td, then we include an edge (p,p') E E and 

set r.(p,p') f- d. In the case of dimerization, we allow that p = p'. In this case of self­

dimerization (two copies of t dimerize), we add a self-loop to p and assign r.(p,p) f- d. 

For ease of notation, we say that probe p has an affinity to self-dimerize in such a 

case. We may also wish to introduce a threshold for self-dimerization Tsd that differs 

from Td. These sets of secondary structure, self-dimerization, cross-hybridization, and 

dimerization edges are denoted by S, SD, X, and D respectively. 

2.2 Conflict Graph for the Affymetrix HuGeneFL Chip 

Our experiments are based on a set of 126 Affymetrix Inc. (TM) hybridization exper­

iments made publically available by [7, 20, 27]. These hybridization experiments used 

the Affymetrix HuGeneFL chip (TM) and we use the information on the construction 

of HuGeneFL made available through NetAffx (TM) [12]. HuGeneFL is designed for 

human and has a probe set P' of size 131542 used to represent a set G' of 7129 ge­

nomic targets or groups. Affymetrix defines a probe group Pg for each 9 E G'. For our 

purposes, we let C represent HuGeneFL by letting {G c G' : "ig E G, IPgl = 20} and 

{P c P' : "ip E P,p E Pg, 9 E G}. Tag set T and tag groups {Tg: 9 E G} are derived 

from P and {Pg : 9 E G}. In this representation, IGI = 6378 and IPI = 127560 of 

which 127386 are unique DNA sequences. G mostly contains groups that target genes, 
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and not groups used as controls or repeat detectors. However, 58 groups in G are in 

fact Affymetrix control groups. We include these in our experiments since they contain 

probes that may exhibit degenerate behaviour. 

2.2.1 Analysis of /:),.G 

Consider first the function VP for calculating free-energy (~G). We calculate ~G 

for 108 randomly chosen probes p E ~~~a and their wc-complements fi and find that 

-45.083 kcaljmol ~ VP(p,P) ~ -15.603 kcaljmol for aIl p. The range and distribution 

of ~G of the random set of probes should, with high probability, represent the range 

and distribution of ~G of aIl length 25 probes and their wc-complements. We use the 

~G information of the random set of probes as a standard against which to compare 

the ~G of probe-tag pairs of chip C. We find that the distribution of ~G of probe-tag 

pairs of C fits the distribution of aIl possible ~G. The range of ~G is -42.003 kcaljmol 

~ VP(p, t) ~ -18.993 kcaljmol for aIl probe-tag pairs (p, t), pEP and t E T of chip 

C. Figure 6 depicts histrograms of the ~G of the se two sets of probes. 

Let Th be the floor of the largest ~G over aIl probe-tag pairs (p, t), pEP and 

t E T. Here, Th = -19. Note that threshold Th represents the ~G of the weakest 

probe-tag pair of C. We assume that the ~G of any hybridization that occurs between 

a probe and a tag in P x T or a pair of tags in T x T is at most Th. We calculate 

cross-hybridization ~G (measured by function X) and dimerization ~G (measured by 

function V) of aIl pairs of probes (p, p') E Px P, p #- p' to find pairs of probes such that 

X(p,p') ~ Th or V(p,p') ~ Th. Of the more than 8 x 109 possible pairs of probes, 239 

pairs have X ~ Th and 487 pairs have V ~ Th. Figure 7 depicts two histograms of ~G 

values measured by X at most Th and ~G values measured by V at most Th. The foIlow-
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Figure 6: Histrogram (a) depicts the percentage of !:lQ values measured by TYP(p,p) for 108 

randomly chosen probes p E L:~~a' and histogram (b) depicts the percentage of !:lQ values 
measured by VP(p, t) for aH probe-tag pairs (p, t), pEP and t E T of chip C. 

ing are examples of pairs of probes measured to have low X(P,p') or low V(P,p'). For 

probep = GAAAGCGGAACTGTTTCGGAGAAGG in probe group U22029Lat and 

probe p' = GAAAGCGGTACTGTTTCGGAGAAGG in probe group M33317Lat, 

X(p,p') = -27.0336. For probe p = CCCTGCTGCTCATCGAGTCGTGGCT in 

probe group J0307Lcds3J_at and probe p' = CCCTGCTGCTC ATCC AGTCGTGGCT 

in probe group J00148_cds2J_at, X(p,p') = -28.6136. In both of these examples, 

probes p and p' differ by one base and belong to different probe groups. As an exam-

pIe of possible dimerization, probe p = CGAAGCGGAATTCTCCATGCCCGAG in 

probe group M24899_at and probe p' = CTCGGGCATGGAGAATTCCGCTTCG in 

probe group X72632...s_at are measured to have V(p,p') = -32.4935. Note that probes 

p and p' are wc-complements. We find many other similar examples and conclude that 

X and V are capable of detecting pairs of probes with an affinity for cross-hybridization 
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or dimerization. 
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Figure 7: Histogram (a) depicts the number of 6.G values at most Th measured by X(p,p') 
for p, p' E P, p =1= p', and histogram (b) depicts the number of 6.G values at most Th measured 
by V(p,p') for p,p' E P,p =1= p'. 

Consider now the special case of dimerization between two copies of the same probe 

(self-dimerization). We would first like to know the range of self-dimerization I::1G over 

aU probes of length 25. We remove the restriction that 1J(.,.) :::; Th and calculate 

1J(p,p) for 108 randomly chosen probes p E E~~a. We also calculate 1J(p',p') for aH 

probes p' E P. Figure 8 depicts two histograms of 1J(.,.) over both sets of probes. We 

find that -16.303:::; 1J(p',p') :::; 22.286 for aH probes p' E P, compared to -27.763 ~ 

1J(p,p):::; 25.716 for 108 randomly chosen probesp E E~~a. Since the two distributions 

in Figure 8 are similar, there exist probes predicted by 1J to have a high affinity for 

self-dimerization (those with low I::1G). However, the lowest I::1G for self-dimerization 

over aH probes pEP is much higher than the lowest possible I::1G values for self-

dimerization. Note that we find that there is no probe pEP such that 1J(p,p) :::; Th. 

An example of a probe measured ta have low 1J in the case of self-dimerization is 
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p = TGTGTGGCGGTGACACCGTCACCCA with V(p,p) = -15.6435. In this 

example, if two copies of p were to align with each other in opposing directions, they 

may hybridize with only four mismatches. 
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Figure 8: Histogram (a) depicts the percentage of èlG values measured by V(p,p) for 108 

randomly chosen p E ~~~a' and (b) depicts the percentage of èlG values measured by V(p,p) 
for aU probes pEP. 

The range of t:.G for self-hybridization (secondary structure formation) of a probe 

is different than that of hybridization between a probe and its wc-complement. This 

motivates us to calculate S(p) for 108 randomly chosen probes p E E~~a to serve 

as a standard against which to compare S(p/) for probes p' E P from chip C. As 

with self-dimerization, the lowest t:.G measured with S over set P is much higher 

that the lowest t:.G measured by S over the random set of probes. We find that 

-8.678::; S(p/) ::; 8.525 for an probes p' E P, compared to -14.579 ::; S(p) ::; 11.335 

for 108 randomly chosen probes p E E~~a' Figure 9 depicts two histograms of S over a 

random set of probes and over an probes in P. Examples of probes measured to have 

low Sare p = GCCACCACACTGGTGTGCTGGCTGT with S(p) = -8.67883 and 
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p' = GCGAGGAAGCTTCCTCGCAACTTTG with S(p') = -7.36687. Both p and 

p' can fold in such a way (not necessarily at the middle of the sequence) to form a 

hybridization with few mismatched base pairs. 
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Figure 9: Histrogram (a) depicts the percentage of b..G values calculated by S(p) for 108 

randomly chosen p E ~J~a' and histogram (b) depicts the percentage of b..G values calculated 
by S(p) for aIl probes pEP. 
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2.2.2 Analysis of Confiict Graph 

The edge labelled conflict graph M is created from chip C and edges are added by 

applying functions S, X and V to probes in P as detailed in Section 2.1. fj.G thresholds 

for each function (Ts , Tx and Td) are selected according to the ranges of fj.G over a 

set of random length 25 probes and over set P. We include a new threshold for 

self-dimerization, Tsd, sinee we needed a non-empty set 8D to study probes with an 

affinity for self-dimerization. The sizes of edge sets B, BD, X and D for a variety of 

such thresholds are depicted in Table 1. Based on the sizes of edge sets 8, BD, X and 

D and the range of fj.G over all probe-tag pairs of chip C, we create a conflict graph 

M with Ts = -6, Tsd = -14, Tx = -23 and Td = -33. 

Il Ts (kcal/mol) 1 181 Il Tsd (kcal/mol) 1 18DI Il Tx (kcal/mol) 1 IXI Il Td (kcal/mol) 1 IDI Il 
-7 5 -16 2 -30 3 -36 10 
-6 33 -14 12 -23 27 -33 87 
-5 92 -12 38 -20 83 -30 224 
-4 318 -10 114 -18 458 -28 281 

-8 325 

Table 1: Edge set sizes of HuGeneFL conflict graph M compared with various threshold 
values in kcal/mol. 

Conflict graph M contains no vertices with more than one self-loop. Therefore no 

probes are predicted to have an affinity for both secondary structure formation and 

self-dimerization. Let 8 ç P and 8D ç P be the probes corresponding to vertices with 

self-loops labelled sand labelled d respectively. The average fj.G measured by VP of 

probe-tag pairs (p, t) is -33.67294 for p E Band -32.52438 for p E BD. Therefore, 

probes in 8 and 8D typically have matching tags such that the probe-tag pair has low 

fj.G (strong probe-tag pairs). We now consider vertices adjacent to edges indicating an 

affinity for cross-hybridization or dimerization. Let Mx be M with edge set E restricted 
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to edges labeled x. It is the case that the majority of non zero-degree vertices in Mx 

have degree one, although the maximum degree of Mx is three. Let Md be M with 

edge set E restricted to edges labeled d and excluding self-loops. For the HuGeneFL 

chip, all the vertices in Md have either degree zero or one and there are no vertices in 

Mxd = Mx U Md incident to both x and d labelled edges. 

Il Vertex Degree Il Mx 1 ave. b.G Il Md 1 ave. b.G Il Mxd 1 ave. b.G Il 

0 127503 -29.140 127386 -29.134 127329 -29.137 
1 53 -31.442 174 -34.50 227 -32.971 
2 3 -29.376 0 3 -29.376 
3 1 -29.953 0 1 -29.953 

Table 2: Number of vertices with degree i and average probe-tag pair strengths ave. b.G 
for probes represented by vertices with degree i of HuGeneFL conflict graph M = (V, E) for 
subgraphs Mx, Md and M xd. 
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3 Patterns in Hybridization Experiments 

The ide a that degeneracy will create unique patterns in the hybridization data was 

introduced in Section 1. Informally, a pattern was described by the intensity of a 

probe compared to the intensities of the remaining probes in its group. The following 

notation and definitions formalize the concept of patterns in hybridization data. 

3.1 Notation and Definitions 

Let ri = {Hl, ... , HK } be the set of hybridization experiments. The output of a 

hybridization experiment consists of an intensity value for every probe on the chip. 

The intensity of probe p in hybridization Hj is represented by Ij(p) E IR. An estimate 

of the intensity for each target 9 E G is calculated from the members of the probe group 

of g, Pg, where Gand Pg are defined by the chip C. The intensity of target 9 E G in 

experiment Hj is represented by Ij(g) E IR. In a standard hybridization experiment, 

the expression level of a target is determined via a standard statistical method taking 

into account, for instance, specificity of the probe-tag pair. We require an uncorrected 

quantitative measurement of the intensity of the target. For our purposes, Ij(g) = 

EpEPglj(p) U· h .. d· . ·t l l C b (C Ip.I . smg t e mInImUm an maxImum mtensI y eve s lor a pro e p lor a 

target g) over the training set of hybridizations, the intensity measurements of a probe 

(of a target) for all hybridizations are scaled to the (O ... 1] interval. More robust 

variants of Ij(g) are possible. For example, we could normalize data beforehand or 

remove certain probes from the analysis. We do not discuss such strategies any further 

in this thesis. 

At each experiment Hi E Ji and each target 9 E G, the intensity of each probe 
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P E Pg is ranked relative to the intensity of aH remaning probes Pg \ {pl. For simplicity 

of exposition, we assume that aU intensity measurements for a probe group are distinct. 

Definition 2 (Rank) The rank of a probe p E Pg in experiment Hj (written Pj(p, g)) 

is i iff there exist exactly i -1 distinct elements Pl, ... , Pi-l E Pg \ {p} s. t. Ij (Pk) < Ij (p), 

for 1 ~ k ~ i - 1. Wh en the probe group is clear from the context, we denote the rank 

simply as Pj (P). 

We wish to discretize the hybridization experiments into blocks according to Ij(g). 

Let b E lE be the desired number of blocks of the (0 .. 1] interval. 

Definition 3 (Block) For a gene 9 in hybridization Hj, we say that Ij(g) is in block 

b' iff bibl < Ij(g) ~ ~. 

The following definitions relate the rank of a probe p to the intensity of the target 

of p. Throughout the remainder of this thesis, we assume that the size of aH probe 

groups is l. 

Definition 4 (Occurrence) We say that a probe p in hybridization Hj is a rank i, 

block b' occurrence iff pj(p) = i and Ij(g) is in block b' , where p E Pg , 1 ~ i ~ land 

1 ~ j ~ K. 

Definition 5 (Pairwise Occurrence) We say that a pair of probes (p,p/) in hy­

bridization Hj is a rank i, block pair (b l , b2) occurrence iff either 

(i) p is a rank i, block bl occurrence and Ij(g') is in block b2, or 

(ii) p' is a rank i, block bl occurrence and Ij(g) is in black b2, 

where p E Pg, p' E PgI, 1 ~ i ~ land 1 ~ j ~ K. 
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We are interested in the number of times a set of probes are observed to have a 

specifie rank over a set of hybridizations. 

Definition 6 (Rank Count Vector) For P' ç P and H ç ri let y[,',H be the rank 

count vector where yr,',H [il is the number of rank i, block b' occurrences over all probes 

pEP' and all hybridizations h EH. 

Definition 7 (Pairwise Rank Count Vector) For P' ç Px P and H ç ri 1 let 

y(~/~) be the rank count vector where Y(~/~)[i] is the number of rank i, block pair 
l, 2 l, 2 

(b1 , b2 ) occurrences over all probes pairs (p,p') E P' and all hybridizations hE H. 

The rank count vector (or pairwise rank count vector) is a discrete description of the 

pattern made by the ranks of a set of probes over a set of hybridization experiments. 

However we are primarily interested in the underlying pattern (distribution) of ranks 

than the number of occurrences of each rank. We require a family of distributions. 

Sorne members of the family describe a pattern where the majority of ranks are high 

and very few ranks are low (exponential distribution tailing to the left), a symmetric 

pattern where the majority of ranks are low and very few ranks are high (exponential 

distribution tailing to the right), a pattern of equal ranks (uniform distribution) and a 

variety of other patterns. The beta distribution with parameters a and (3 is appropriate 

for this purpose since it is a very flexible, continuous distribution defined over a fixed 

range and it has a wide variety of shapes useful for describing any pattern of ranks [5]. 

The probability density function of the beta distribution, the beta density function, 

with parameters a, (3 > ü is defined as 

( ) _ r(a + (3) a-1( _ ),8-1 
fa,,8u -r(a)r((3)u 1 U ,ü<u<l 

28 



where r(·) is the Gamma function generalizing the factorial expression for the natural 

numbers. We define fa,(3 as the beta distribution with beta density function fa,(3(u). 

When Œ = f3 = 1, fa,(3 is the uniform distribution. When Œ :::; 1 and f3 is large (and 

vice versa), fa,(3 is an exponential distribution. We fit a beta distribution to a rank 

count vector by estimating parameters Œ and f3 from the rank count vector. The Œ 

and f3 parameters for a beta distribution can be estimated from sam pIe x as follows 

(1) 

where x is the sample mean and s2 is the unadjusted sample variance. 

We would also like to have the ability to compare how will a rank count vector 

fits a particular beta distribution. Towards this end, we require a discretization of the 

continuous beta distribution. 

Definition 8 (Discretized Probability Vector) The length l probability vector CPa,(3 

is derived from fa,(3 (with beta density function fa,(3(u)) by 

i/l 
CPa,(3[i] = r fa,(3(u)du, for 1:::; i :::; l. 

J(i-l)/l 

We call CPa,(3 the discretized probability vector of fa,(3. 

Figure 10 depicts the distribution function of beta distributions for a variety of 

parameters Œ and f3 and the distribution function of the discretized probability vectors 

derived from the beta distributions as shown in Definition 8. Example 1 is a small 

example of the algorithm for determining a discretized probability vector from rank 

count vectors for a set of probes. 
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Figure 10: Distribution functions for three different values of a and f3 where (a) F(x) is the 
distribution function of the beta density function fo:,{3(u) and (b) <J?(x) is the distribution 
function discretized probability vector cPo:,{3. 

Example 1 Let p' ç P be some set of probes and H ç Tl be a set of hybridization 

experiments. Let b = 3 be the number of blocks. The beta distribution Q: and f3 param-

F'H F'H F'H eters are estimated from three rank count vectors Y1 ' 'Y2' and Y3' . Consider the 

following three rank count vectors: 

F'H 
Y1 ' 

F'H 
Y2 ' 

F'H 
Y3 ' 

(3882,3542,3047,2902,2624,2420,2212,2168,2029,1970,1934,1809, 

1620,1399,1439,1348,1715,1391,1052,533) 

(685,684,685,700,640,685,685,685,685,685,685,685,685,685,685,741 
685,685,685,685) 

(533,1052,1391,1715,1348,1439,1399,1620,1809,1934,1370,2029,2168, 

2212,2420,2624,2902,3047,3542,3882). 

The Q: and f3 parameters estimated from these samples according to Equation 1 are 

li1 = 0.9046, #1 = 1.2677, &2 = 1.0526, #2 = 0.94585, &3 = 1.2608 and ~3 = 0.92526. 

Figure 11 depicts the three discretized probability vectors <Po:b, ,{3b' for estimated lib' and 
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Figure 11: Parameters libl and /3b' estimated from the rank count vectors of Example 1, for 
1 ~ b' ~ 3. Figure (a) depicts the three beta distributions curves f ~ (3~' and figure (b) 

ab" b' 
depicts the three discretized probability vectors cp ~ {3~' 

ab" b' 

3.2 Pattern of Non-Degenerate Behaviour 

The pattern of ranks for a set of probes is formally defined as a beta distribution 

with parameters Œ and {3. We use beta distributions to examine the behaviour of 

non-degenerate probes as introduced in Section 3.1. We assume that there are few 

degenerate probes in the probe set of a chip. Following from this assumption, if we 

select probes uniformly at random we would expect that the aggregate pattern of ranks 

of the selected probes is representative of the majority non-degenerate probes. We 

expect that the ranks of a set of non-degenerate probes should be uniformly distributed 

over aIl ranks from 1 to l. 

Let C = (G,P,{Pg: 9 E G},T,{Tg : 9 E G}) represent the Affymetrix HuGeneFL 
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chip and M be the conflict graph constructed from C as described in Section 2.2. We 

set b = 3 so that hybridizations are partitioned into three blocks corresponding to 

hybridizations with high Ij(g), hybridizations with low Ij(g) and hybridizations with 

mid-range Ij(g) for each target 9 E G. The value of bis not set larger because such 

a value for b increases the possibility of zero values in the rank count vectors. This is 

problematic when estimating Cl: and {3 parameters from the rank count vector. Consider 

P'?-l p' ç P a set of randomly chosen probes from chip C. Let Yb" be the rank count 

vector over the set of aU hybridizations 1t for 1 ::; b' ::; 3. Beta distribution parameters 

are estimated from Yb~',?-l and the discretized probability vector 1J~ {3~ is calculated 
o.b', b' 

from the resulting beta distribution f ~ {3~ for 1 ::; b' ::; 3. These discretized probability 
ab" b' 

vectors 1J~ {3~ are depicted in Figure 12 and confirm that the ranks of non-degenerate 
Cib" b' 

probes are uniformly distributed. This is expected, since the background distribution 

of ranks (pattern of ranks over aU probes) is uniform, as each rank occurs once within 

each group at every hybridization leading to the same number of occurrences of each 

rank. We also find that the distributions do not vary greatly over the different blocks. 

This also indicates that the probes are non-degenerate since the pattern of ranks is 

consistent over aU blocks. 

We are now interested in the background distribution of ranks over the set of aU 

probes with similar probe-tag pair free-energy ~G. We conjecture that the ~G of 

a probe-tag pair (p, t), pEP, t E T measured by DP(p, t) is correlated with the 

pattern of ranks displayed by probe pif pis a non-degenerate probe. If DP(p, t) is low 

(indicating that (p, t) is a probe-tag pair with strong hybridization strength), probe p 

should have a tendency to exhibit high ranks. Otherwise, if DP(p, t) is high, probe 

p should have a tendency to exhibit low ranks. We test this conjecture by creating 
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Figure 12: Estimated discretized probability vectors CPn, (3~ where b = 3 for a set of probes 
...... b" b' 

randomly chosen from P. 

randomly seleeted sets of probes P' ç P sueh that for probe p E P' with matehing tag 

t, Tmin :s; VP(p, t) :s; Tmax for some pair of 6:.G thresholds Tmin and Tmax . ReeaU from 

Section 2.2.1 that -42.003 keal/mol :s; VP(p, t) :s; -18.993 keal/mol for aU probe-tag 

pairs (p, t), pEP and t E T. We eonstruet Plow ç P to be a randomly seleeted set 

of probes sueh that for aU p E Plow with matehing tag t, VP(p, t) < -34. Pmid ç P 

and Phigh ç Pare also sets of randomly seleeted probes sueh that for p E Pmid with 

matehing tag t, -34 :s; VP(p, t) < -26 and for p' E Phigh with matehing tag t' , 

VP(p', t' ) 2::: -26. Beta distribution parameters are estimated from rank eount veetors 

y:'low;lt, y:'mid,7t and y:'hig h,7t and diseretized probability veetors are ealculated from the 

resulting beta distributions for eaeh of Plow, Pmid and Phigh, for 1 :s; b' :s; 3. Figure 13 

depiets the diseretized probability veetors of Plow, Figure 14 depicts those of Pmid and 

Figure 15 depicts those of P high . We find that the distributions estimated from Plow 

have high density at high ranks, while the distributions estimated from Phigh have high 

density at low ranks. The distributions estimated from Pmid have similar density over 

aU ranks. These results eonfirm that 6:.G is eorrelated to the rank pattern of a non-
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degenerate probe and that the background distributions of ranks of non-degenerate 

probes within a range of !:1G is different from the background distribution of ranks 

over aIl non-degenerate probes. We also find that the beta distributions estimated for 

the random set of probes in P and for sets of probes Plow, Pmid and Phigh (Figures 12 

to 15) are consistent with rank patterns of non-degenerate probes sinee they do not 

change for b' = 1, b' = 2 and b' = 3. 

In the following sections, we determine if the rank count vector of a probe p is more 

likely to be sam pIed from the background distribution of ranks of a non-degenerate 

probe or to be sampled from a distribution of ranks corresponding to a degenerate 

behaviour. For this purpose, we require the most accurate estimation of the background 

distribution of a non-degenerate probe. To this end we use the background distribution 

of a non-degenerate probe within a particular range of !:1G values. 

Definition 9 (Background Beta Distribution) Let yt,H be the rank count vector 

of P' = {p E P with matching tag t ET: 1"min ~ VP(p, t) ~ 1"max} for some pair 

of !:1G thresholds 1"min and 1"max, 1 ~ b' ~ b. f~ {3~ is the beta distribution with 
ab" b' 

~ P'H 
parameters âb, and (3b' estimated from Yb" . We define fb' (1" min, 1" max) = f ~ (3~ to be 

Ob" b' 

the background beta distribution of a non-degenerate probe pEP with matching tag 

tE T with 1"min ~ VP(p, t) ~ 1"max at block b'. 
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Figure 13: Discretized probability vectors <Pâ,/3 calculated from rank count vectors yt,low,'H 
for set of randomly selected probes Ilow ç P such that for p E Plow with matching tag t, 
VP(p, t) < -34. 
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Figure 14: Discretized probability vectors <Pâ,/3 calculated from rank count vectors y:'mid,'H 
for set of randomly selected probes Pmid ç P such that for p E Pmid with matching tag t, 
-34 ~ DP(p, t) < -26. 
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Figure 15: Discretized probability vectors <PÔi,~ calculated from rank count vectors y:'hi9h,1i 
for set of randomly selected probes Phigh ç P such that for p E Phigh with matching tag t, 
'DP(p, t) 2: -26. 

3.3 Pattern of Degenerate Behaviour 

We now examine the pattern of ranks of degenerate probes. We provide an intuitive 

hypothesis of the pattern of ranks of a probe affected by each one of the four degen-

eracies. We justify the conjectured patterns by showing their similarity to the patterns 

of ranks of probes represented by endpoints of edges in the edge sets S, SD, X, D of 

conflict graph M from Section 2.1 (probes measured to have a high affinity for degen-

eracy). 

3.3.1 Secondary structure 

Consider a target 9 E G with corresponding probe group Pg = {P,PI, ... ,Pl-Il and 

suppose that it is known that P has a high affinity to form secondary structure. Fur-

thermore, suppose that P is the only degenerate probe in Pg. We conjecture that the 

intensity of P w.r.t. Pg will follow two principles. Firstly, if the target 9 is highly ex-
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pressed in hybridization experiment Hj, the intensity of probes Ij(Pi), 1 :::; i :::; l - 1, 

will be higher than the intensity of p, Ij (p). This is due to the fact that tag t is not 

hybridizing with P during the experiment at the same rate as other non-degenerate 

tags hybridize with members of Pg. Therefore, the rank of pin this experiment, Pj(p), 

is expected to be very low. Secondly, if the target 9 is lowly expresed in hybridization 

experiment Hj, the difference in intensity between members of Pg will be small. 

Let S' = {p E V(G) : (p,p) ES} be the set of probes predicted to exhibit secondary 

structure. We bin the intensity values for aU genes 9 into b blocks (Definition 3). For 

S'and hybridization set H, let Yi = yf' ,H be the rank count vector as defined in 

Definition 6, for each i, 1 :::; i :::; b. Using Equation 1, we compute parameters â i , fii 

for a beta distribution. The resulting discretized probability vectors 4J A. (3A. calculated 
Ua, '1. 

from 1&i,/3i for 1 :::; i :::; b depicted in Figure 16 for b = 3 re-affirm the description of 

secondary structure forming probes. The probability vectors of S' confirm the intuition 

that probes predicted to form secondary structure behave similar to non-degenerate 

probes when the target is lowly expressed (b = 1) sinee probes in S' have low probe-tag 

pair b.G and they would be expected to have background beta distributions similar 

to that of Plow depicted in Figure 13. In fact, we find that probes in S' exhibit fewer 

high ranks than would be expected for non-degenerate probes within the same probe-

tag pair b.G range. As the target becomes highly expressed (b = 3), the intuition 

for secondary structure behaviour is again confirmed since the probes in S' have high 

probability of very low ranks and low probability of very high ranks. More formaUy, 

4J~ (3~ has a near uniform distribution and 4J~. (3~. has a distribution that approaches 
al, 1 a"" 1. 

exponential with 4J~. (3~ [j] > 4J~. (3~. [j + 1], as i approaches b. 
Q"o 1, 0'1., t 
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Figure 16: Estimated discretized probability vectors <P
Ôi

,t3i for 1 ~ i ~ b for the set of probes 
S' predicted to have an affinity to form secondary structure for T s = -6, b = 3. 

3.3.2 Self-dimerization 

We conjecture that probes with an affinity to self-dimerize will follow the same be-

havioural conjecture as that used for secondary structure. We tested the conjecture 

by examining the set of probes BD' = {p E V(G) : (p,p) E BD} predicted to exhibit 

self-dimerization. Let Yi = yfD', H be the observed count vector as defined in Defini-

tion 6 for each i, 1 :::; i :::; b. As for secondary structure, we use Equation 1 to compute 

estimate parameters âi, 7Ji for a beta distribution. Figure 17 depicts the discretized 

probability vectors CP~. â. calculated from the resulting f;;, â. for 1 :::; i :::; 3. Our intu-
\.4'1. ,/Jt \.4'1. ,fJt 

ition of the pattern of ranks of self-dimerizing probes is re-affirmed by the discretized 

probability vectors. We find that ranks of probes in BD' in block 1 are distributed as 

non-degenerate probes with low probe-tag pair 6.G (-35.213 :::; VP(p, t) :::; -28.613 

for p E BD' with matching tag t). And as the target becomes highly expressed (b = 3) 

there is a decrease in the probability of high ranks and an increase in the probability 

of low ranks. Note that this re-affirmation for self-dimerization is not as strong as that 
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for secondary structure. 
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Figure 17: Estimated discretized probability vectors <I>&i,13i for 1 ::; i ::; b for the probes 
belonging to the set of predicted probes prone to self-dimerization BD' for Tsd = -14, b = 3. 

3.3.3 Cross-Hybridization 

Consider two distinct targets g, g' E G with corresponding probe groups Pg = {p, Pl, ... ,Pl-I} 

and Pgl = {p',pi, ... ,Pl-d and suppose that the tags t, t' have high affinities to cross-

hybridize with p' and P respectively. We say that the probe p gains tags from p', as 

sorne of the t' tags will not hybridize with p' but p. Alternatively, the probe p loses 

tags to p', as sorne of the t tags will hybridize with p' but not with p. If 9 is lowly 

expressed and g' is highly expressed in hybridization Hj, then probe p will gain tags 

from p' but p' is not likely to gain tags from p. Therefore, p is expected to have a 

high rank w.r.t. the other elements of Pg and p' is expected to have low rank w.r.t. the 

other elements of Pgl. Simlarily, If g' is lowly expressed and 9 is highly expressed in 

hybridization Hj, then p' is expected to have a high rank w.r.t. the other elements of 

Pg and pis expected to have low rank w.r.t. the other elements of Pgl. If both targets 
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are equally expressed, then Pj (p) and Pj (p') are both expected to behave as the ranks 

of non-degenerate probes. 

Let X' = {p, p' : (p, p') E X} be the set of probe pairs predicted to exhibit cross-

hybridization. We bin the intensity values for each of the genes 9 into b blocks (Defi-

nit ion 3). For X' and hybridization set H, let Y(i,j) = Yt,;~ be the observed pairwise 

rank count vector for each block pair as defined in Definition 7. Using Equation 1, 

we compute estimate parameters (ii,j,7Ji,j for a beta distribution, 1 ::; i,j ::; b. Fig-

ure 18 depicts the a subset of discretized probability vectors <p" ' (3', , calculated from 
(l't,], 1.,J 

estimated beta distributions f&, ,(3' , for 1 ::; i,j ::; b where b = 4. The discretized 
't,]' '/,,] 

probability vector <p, , (3' , is labelled by "block i,j". Each probability <P" ,(3', ,[k], for 
Œ'/,,] , ",J a t ,], "'" 

1 ::; k::; l, is the probability that probe p E X' is a rank k occurrence when p is in block 

i and probe p' is in block j. The discretized probability vectors confirm the intuition 

regarding cross-hybridization described above. 

Figure 18(a) depicts block pairs (values of i, j) when i is fixed at a high value (i = 3 

or i = 4) and the value of j varies. Block pairs (3,1) and (4,2) are hybridizations when 

p is expected to lose tags to p' since 9 is highly expressed and g' is lowly expressed. 

Similarly, Figure 18(b) depicts block pairs when i is fixed at a low value (i = 1 or 

i = 2) and the value of j varies. Block pairs (2,4) and (1,3) are hybridizations when p 

is expected to gain tags from p' since 9 is lowly expressed and g' is highly expressed. 

When i = 3 and j = 1 and slightly less when i = 4 and j = 2, we observe that the 

probability of high ranks decreases and there is an increase in the probability of low or 

middle ranks. When i = 2 and j = 4, we observe an increase in the probability of high 

ranks, though we also observe an increase in the probability of low ranks. It may be the 

case that some probes p do indeed gain tags from p', while others do not and continue to 
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have a high probability of low ranks. When i = 1 and j = 3, we do not observe a curve 

indicating cross-hybridization. We note that these distributions for cross-hybridization 

do not re-affirm our intuition as strongly as in the cases of secondary structure and 

self-dimerization. The estimated parameters âi,j, i3i,j, 1 ::; i, j ::; b for aU b2 block pairs 

are available online [21J. Block pairs (4,1) and (1,4) are not included because there 

were no such pairwise occurrences in the data sets. 
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Figure 18: Estimated discretized probability vectors </;&,/3 for the set of probe pairs X' pre­
dicted to have an affinity to cross-hybridize with T x = -23 and b = 4. Figure (a) depicts 
block pairs (values of i, j) when i is fixed at a high value (i ~ b) and Figure (b) depicts block 
pairs when i is fixed at a low value (i ~ 1). 
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3.3.4 Dimerization 

Consider two distinct targets g, g' E G with corresponding probe groups Pg = {p,Pb'" ,Pl-l} 

and Pg' = {p',pi, ... ,P;-l} and suppose that the corresponding tags t, t' have high a 

affinity to dimerize with each other. If both 9 and 9' are highly expressed in hybridiza-

tion Hj, then, sinee both t and t' are present in the sample, both p and p' will have 

fewer than expected tags hybridize with them. Therefore, p and p' are expected to have 

low ranks w.r.t. the other elements of Pg and Pg" If it is the case that (i) neither 9 nor 

g' is highly expressed or (ii) exactly one of 9 or g' is highly expressed but the other is 

not expressed, then, since only one of t or t' is present, the number of tags hybridizing 

to their respective probe will be as though no degeneracy existed. Therefore, the ranks 

pj(p) and pj(p') are both expected to behave as the ranks of non-degenerate probes. 

Let D' = {p,p' : (p,p') E D} be probes predicted to exhibit dimerization. We bin 

the intensity values for each of the genes 9 into b blocks (Definition 3). Let Y(i,j) = Y~,}~ 

be the observed count vector for each block pair as defined in Definition 7. Using 

Equations 1, we compute estimate parameters â(i,j), 13(i,j) for a beta distribution, 1 ~ 

i,j ~ b. Figure 19 depicts a subset of discretized probability vectors </1& . f3' . . calculated 
1.,,' '1.,) 

from estimated beta distributions 1& .. f3' . . for 1 ~ i,j ~ b where b = 4. As with cross-
'1.,1' 1,3 

hybridization, discretized probability vector </1& . f3' . . is labelled "block i,j" and each 
1,,1' 1.,) 

probability in </1& . f3' . [k] for 1 ~ k ~ l is the estimated probability that probe p E D' 
t,)' '/.,) 

is a rank k occurrence when p is in block i and its dimerizing pair p' is in block j. 

Figure 19(a) depicts block pairs when dimerization should not affect the behaviour 

of the probes (when i ~ j ~ 1) while Figure 19(b) depicts block pairs when dimerization 

should raise the probability of low ranks (when i ~ j ~ 1). We found that in block 

pairs where i ~ j ~ b, the estimated probability vector </I~ .. f3~.. indicates that it is 
Œ(.,]}, ("]) 
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likely that probes in D' have lower ranks. And when i :::::: j :::::: 1 or i :::::: 1 and j :::::: b 

(and j :::::: 1 and i :::::: b), the estimated probability vectors indicate a non-degenerate 

behaviour of probe p. This is true since as with X', probes in D' are measured to 

have low probe-tag pair !::.G and thus if they behaved in a non-degenerate manner, 

their background distribution would be similar to that of probes set PIOW from Section 

3.2. Thus, the discretized probability vectors cp A .. (3A .. re-affirm the intuition regarding 
Œ'I.,J' Z,) 

dimerization described in Section 3. The estimated parameters (Xi,j, 13i,j, 1 ~ i,j ~ b 

for aIl b2 block pairs are available online [21]. 
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Figure 19: Estimated discretized probability vectors cPêt,/3 for the set of probe pairs D' pre­
dicted to have an affinity to dimerize with Td = -33 and b = 4. In Figure (a) block pairs 
where dimerization does not occur are depicted an in Figure (b) block pairs where dimeriza­
tion occurs are depicted. 

Note that for pairwise degeneracies we use b = 4, since we require a large difference 

between the intensities of the two targets to reflect situations when one target is highly 

expressed and the other is lowly expressed. 
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4 Experimental Support 

In Section 3, we show that it is possible to define unique patterns for each type of 

degeneracy and that beta distributions can formally define each such pattern. We also 

show that the background distribution of ranks of a set of non-degenerate probes can 

be defined as a beta distribution. The discretized probability vector <Pa,(3 derived from 

beta distribution fa,(3 associated with a degenerate behaviour gives us a probability 

vector P = (pl, ... ,Pl) where Pi is the probability that a degenerate probe p' is a rank 

i occurrence at any hybridization, 1 ~ i ~ l. We now witness a rank count vector 

y = (YI, ... , YI) from a degenerate probe p' and we want to know the probability of 

y, given the probability vector p. In such a case, the probability of the rank count 

vector Y of probe p' is given by the multinomial distribution formula defined as follows. 

Let Xl, ... , X n be a sequence of independent identically distributed random variables 

each taking one of l possible values 1, ... , l. Values occur with fixed probabilities 

P = (Pl, ... ,Pl). Let Yl, ... , Yi be random variables that count the number of times 

each of the l values occur in X!, ... , Xn. The probability that Y[i] = y[i] for 1 ~ i ~ l 

is given by multinomial distribution formula 

( ) - n! II [']Y[i] 
Py,p Y - It(y[i]!) . P ~ . 

t 

The multinomial distribution formula is used in our experimental support functions, 

described below for each degenerate behaviour. Each experimental support function 

measures the support from a set of hybridizations that the ranks of a probe p' E Pare 

distributed according to a dis crete probability distribution that has been associated 

with a degenerate behaviour. We use the experimental support functions to determine 
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if a rank count vector of a probe p supports or contests the daim that p is degenerate. 

Firstly, consider the secondary structure formation degenerate behaviour. The 

experimental secondary structure support function S(p) is the average, over aIl blocks, 

of the log ratio of the probability of observing the rank count vector given that probe 

p is prone to secondary structure and of the probability of seeing the rank count vector 

given that p is non-degenerate. Let cPi, 1 ~ i ~ b, be the discretized probability vector 

derived from a beta distribution associated with secondary structure behaviour. In our 

experiments, cPi is derived from the estimated beta distribution for secondary structure 

fCi (3~. described in Section 3.3.1. Let cP~, 1 ~ i ~ b be the discretized probability vector 
" . 

for block i derived from the background beta distribution fi (7m in, 7max ) of ranks of 

probe p, given that p is non-degenerate, as defined in Section 3.2. The ÂG thresholds 

are 7 m in ~ VP(p, t) ~ 7max for matching tag tE T such that fi (7m in , 7max ) is estimated 

from a sufficiently large set of probes. Given the collection of rank count vectors 

y = (YI ... Yb) for probe p over hyridization set H, let 

We examine the ability S to measure the experimental support that a probe is 

degenerate due to secondary structure formation. Recall that S is the set of aIl s 

labelled edges of conflict graph M as defined in Section 2.1. Let S' = {p E V(G) : 

(p,p) E S} be the set of probes predicted to exhibit secondary structure. We calculate 

S(p) for aIl probes pEP. 

Figure 20(a) depicts a histogram of the percentage of support values measured by 

S(p) for aIl pEP and Figure 20(b) depicts a histogram of the percentage of support 
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values measured by S(p) for aIl p E S' for b = 3. We find that S does not indicate that 

the experimental data supports the daim that an probes p' E S'are degenerate due to 

secondary structure formation. We would expect that S(P) for an p E S'are among 

the highest over the range of values calculated by S. However, we find that that g 

do es not discriminate between probes in S'and probes in P\S'. 
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Figure 20: D~icted here are histograms of secondary structure formation support values 
measured by S for (a) the set of probes P and (b) the set of probes S'. 

The experimental self-dimerization support function SV(p) defined as the average, 

over an blocks, of the log ratio of the probability of observing the rank count vector 

given that probe p is prone to self-dimerization and of the probability of seeing the 

rank count vector given that p is non-degenerate. Function SV(p) measures the level 

to which hybridization data supports the daim that probe p is degenerate due to 

self-dimerization. Let cfJi, 1 ~ i ~ b, be the discretized probability vector of a beta 

distribution associated with self-dimerization. In our experiments, cfJi is derived from 

the estimated beta distribution of self-dimerization J&.. f3~" Let cfJ~, 1 ~ i ~ b be the 
" , 
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discretized probability vector for block i derived from the background beta distribution 

fi (Tmin, Tmax ) of ranks of probe p, given that p is non-degenerate, as defined in Section 

3.2. The !::.G thresholds are Tmin :$ VP(p, t) :$ Tmax for matching tag t E T such that 

fi (Tmin, Tmax ) is estimated from a sufficiently large set of probes. Given the coUection 

of rank count vectors of p over hyridization set H, y = (Yl, ... Yb, ) let 

As with 5, we wish to examine the ability of S15 to measure the experimental 

support that a probe is degenerate due to self-dimerization. We calculate S15(p) for aU 

probes pEP. Let BD' = {p E V(G) : (p,p) E BD} be the set of probes predicted to 

exhibit self-dimerization in conflict graph M. Figure 21(a) depicts a histogram of the 

percentage of support values measured by S15(p) for aU pEP and Figure 20(b) depicts 

a histogram of the percentage of support values measured by S15(p) for aH p E BD' 

for b = 3. We find that S15 does not discriminate between probes in BD' and probes 

in P\BD' since values S15(p) for p E BD' are consistent with a set of values randomly 

sampled from values of S15 of aU probes in P. 

We measure the support that a pair of probes (p,p') display cross-hybridization 

behaviour in hybridization set H with support function X(p,p'). Let CPi,j, 1:$ i,j :$ b, 

be the discretized probability vector derived from a beta distribution associated with 

cross-hybridization. In our experiments, CPij is derived from f~ (3~ ,1:$ i,j :$ 
, Q(i,j)' (i,j) 

b. Let any undefined CPi,j be equal to vector consistent with the pattern of cross-

hybridization. Let CP~,j' 1 :S i, j :S b, be the discretized probability vector for block 

i derived from the background beta distribution fi (Tmin, Tmax ) of ranks of probes p 
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---Figure 21: Depicted here are histograms of self-dimerization support values measured by SV 
for (a) the set of probes P and (b) the set of probes 3D'. 

and p', given that p and p' are non-degenerate probes. The 6.G thresholds are T min ~ 

min {VP(p,t), VP(p', t')} and Tmax ;::: max {VP(p,t),VP(p',t')} for matching tags 

t,t' ET such that fi(Tmin,Tmax ) is estimated from a sufficiently large set of probes. 

Given the collection of pairwise rank count vectors y = (YI,I ... Yb,b) for probe pair 

(p, p') over hybridization set H, let 

X( ') - ~ "l (PY(i,j),<P(i,j)(Y(i,j))) 
p,p - b2 L..t og P 1 ( •• ) • 

l~i,j9 }(i,j),<P(i,j) Y(~,J) 

Recall that set X contains pairs of probes (p, p') predicted by conflict graph M to 

exhibit cross-hybridization. We calculate X(p,p') for aU probe pairs (p,p') E X and 

for 1.7 million randomly selected probe pairs sampled from the eight billion pairs in 

the population2 • Figure 22(a) depicts a histogram of the percentage of support values 

2The results on the random selection of probe pairs reflect the total probe pair population with a confi­
dence level of 99% and a confidence interval of 0.1. 
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measured by X(p,p') over the set of randomly ehosen probe pairs and Figure 22(b) 

depicts a histogram of the percentage of support values measured by X(p,p') for aH 

(p, p') E X for b = 4. We find that X is unable to diseriminate between probe pairs 

(p, p') E X and probe pairs (p, p') ~ X. This is clear sinee we would expect that 

support values of X(p,p') for (p,p') E X are among the highest support values X over 

aH probe pairs. Instead, we find that the support values X(p,p') for (p,p') EX foHow 

the underlying distribution X over aH probe pairs. 
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Figure 22: Figure (a) depiets a histogram of the pereentage of support values measured by 

X(p,p') for a large randomly selected set of probe pairs (p,p') E P x P and (b) depicts a 

histogram of the percentage of support values measured by X(p,p') for (p,p') EX. 

The experimental support funetion for dimerization fj is very similar to X in both 

definition and its ability to diseriminate dimerizing probe pairs. Support function i5 

for a probe pair (p,p') is defined as foHows: 

Where <Pi,j, 1 :::; i, j :::; b is defined as for X but is derived from a beta distribution 
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associated with dimerization. D contains pairs of probes (p, p') predicted by conflict 

graph M to exhibit dimerization. We find that i3 is unable to discriminate between 

probe pairs (P,p') E D and probe pairs (p,p') ~ D. Figure 23 depicts histograms of 

the percentage of support values measured by i3 for (a) a set of 1. 7 million randomly 

selected probe pairs from P x P and (b) the set of probe pairs (p,p') E D. 

'" 
18 

, 

~ . . 
_. 

r 
".,." 

,1 

'" 
18 

16 

14 

Jh-I,··h7è r:- IH-hm 
(a) (b) 

Figure 23: Figure (a) depicts a histogram of the percentage of support values measured by 

V(p, p') for a large randomly selected set of probe pairs (p, p') E P x P and (b) depicts a 

histogram of the percentage of support values measured by V(p,p') for (p,p') E D. 
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We found that in HuGeneFL, the experimental support functions were not able 

to detect a pattern of degeneracy in the hybridization data. It is expected that the 

experimental support functions should assign large support values to the members 

of sets of probes (or probe pairs) predicted to be degenerate by conflict graph M. 

However, the support values measured for probes (and probes pairs) in these probes 

sets behave at random and are not reflective of probe sets that are known to exhibit 

patterns of degeneracy in the hybridization data. 

Another indication of the failure of the experimental support functions is the dis­

tribution of experimental support values for an four types of degeneracy. The majority 

of probes are measured by S and SV have positive support values, meaning that hy­

bridization data supports the daim that the majority of probes are degenerate. This 

directly contradicts the assumption that there are few degenerate probes in the probe 

set P. We find the same contradiction in the support values measured by X and fj of 

a randomly selected set of 1. 7 million probe pairs sampled from the eight billion pairs 

in the population. 

4.1 Reasons for Failure of Experimental Support Func­

tions 

We believe that counting the frequency of ranks is a very good method for determining 

degenerate behaviour of probes over a set of hybridization experiments. However, 

the experimental support functions used to detect the degeneracy from the observed 

frequencies did not succeed. We believe that the experimental support functions did not 

succeed when considering a solitary probe (or probe pair) at a give block (or block pair) 

because there too few hybridizations within the block (or block pair) to ensure that 
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each of the rank categories has a sufficiently large frequency. This occurs because the 

experiment partitions an already small hybridization set into b blocks (often resulting 

in as few as 1 and 5 hybridizations within a block). In addition, there are many rank 

categories (20), leading to high instances of sampling zeroes, cases when the count of 

a rank is zero. 

The experimental support functions use a log likelihood goodness-of-fit test. We 

designed experimental support functions with several other different goodness-of-fit 

tests without success. Consider a chi-square test. Such a test works best with a 

frequency of at least 5 in each category (in this model the category is rank) [11]. We 

apply this rule to our experimental model to determine an estimate on the minimum 

required size of hybridization set H. In our estimated probability distributions of 

degenerate probes and non-degenerate probes, the probability of a rank may be as low 

as 0.01. Therefore 500 hybridizations per block would be a very liberal estimate on the 

required number of hybridizations. Recall that the entire set of hybridizations must 

be partitioned into b blocks (or b2 block pairs). Although b can be chosen according 

to the total number of hybridizations, it should not be smaller than three. If the 

hybridizations were uniformly distributed over the blocks, then we would required 

1500 hybridizations (IHI = 1500) in the sample to guarantee that the statistical test is 

applied to enough data. A much larger hybridization set is required for the pairwise 

tests. 

We conjecture that the main reason for failure of the experimental support functions 

is the small size of H used in our experiments. We formalize the following questions. 

Question: What is the total minimum size of rank count vector and the 

minimum value for each category in the rank count vector required to 
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guarantee that the 0:, (3 parameter estimates define a beta distribution 

with very good fit to the rank count vector? 

Question: What is the total minimum size of rank count vector and the 

minimum value for each category in the rank count vector required for 

a successful goodness-of-fit test. 

The answers to these questions will allow us to determine the minimum required 

number of hybridizations required and will help us to choose the proper value of b, the 

number of blocks of hybridizations. 

5 Learning from Hybridization Data 

One strength of this framework lies in its potential ability to learn suspect probe-tag 

pairs from hybridization data. If we can accurately predict the behavior of a probe 

with no prior knowledge regarding the conditions of hybridizations with the chip, then 

this probe adds no new information to the experiment and should be removed from the 

chip. Suppose that the experimental support functions defined in Section 4 did have 

the ability to provide a method to discriminate between the amount that experimental 

hybridization data supports a claim of degeneracy. With these experimental support 

functions we could extend the confiict graph to enable the identification of degenerate 

patterns in the large amount of hybridization data that would indicate the presence 

of a degenerate probe. Although the experimental support functions do not behave as 

desired, we include the following description of a learning technique from hybridiza­

tion data so that it may be used once successful experimental support functions are 

determined. 
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5.1 Extended Conflict Graph of a Chip 

Let C = (T, A) be a chip of interest and let M = (V, E, T, h;) be constructed as described 

in Section 2. The ~ function labelling the edges of M is extended to include experi­

mental edge labels ~ : E --7 {s, x, d, 8, X, dl, and {Tg, T;d' Tx, T,il are suitable threshold 

parameters for the 5, SV, X and f5 experimental support functions defined in Section 

4. The K hybridization experiments ri = {Hl, ... , H K} are randomly partitioned into 

two halves called the training set and verification set. W.l.o.g. let the training set 

hybridizations be HT = {Hl, ... , HlK/2J=d. 

The addition of experimental edges to M is accompli shed by examining the probe 

intensities in the hybridization experiments of the training set with experimental sup­

port functions 5, SV, X and f5 . Using 5, a self-Ioop (p,p) with ~(p,p) r- S is added 

to the conflict graph M iff 5(p,p) > TS• Similarly, a self-Ioop (p,p) with ~(p,p) r- dis 

added to the conflict graph G iff SV(p,p) > T;d. An edge (p,p'), p -1= p' is included in 

G iff X(p,p') > Ti; (or f5(p,p') > T,Û. The set of aIl experimental secondary structure, 

cross-hybridization, or dimerization edges respectively are denoted 5, X and D. 

Through building M we predict the behaviour of each probe and probe pair in chip 

C. Probes predicted to exhibit a degenerate behaviour are organized into sets of the 

same type. Let B = {(p,p) E E and ~(p,p) = s} and 5 = {(p,p) E E and ~(p,p) = s}. 

Let BD = {(p,p) E E and ~(p,p) = d} and SD = {(p,p) E E and ~(p,p) = dl. 

Let X = {(p,p') E E and ~(p,p') = x and p -1= p'}. Define X, D, and D similarily. 

Probes in B, BD, X or D are predicted by theoretical supports to exhibit the respective 

degeneracy and probes in 5, SD, X or D are predicted by experimental supports to 

exhibit the respective degeneracy. 

A truly degenerate probe exhibits a particular pattern over aIl hybridizations. We 
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test the ability of M to detect degenerate probes or probe pairs by testing if a predicted 

degenerate probe exhibits the expected pattern in subsequent (unseen) hybridizations. 

Our verification set Hv consists of the remaining hybridization experiments 1-l\HT . 

The accuracy of the ability of this method to detect probes atfected by secondary 

structure is measured by considering each probe p for which (p,p) E Sor (p,p) E S. 

We ask whether the ranks of p over Hv support the decision that p has the affinity 

to form secondary structure. The answer is given by comparing the probability that 

p follows the rank distribution of a secondary structure probe to the probability that 

p follows the rank distribution of a well behaved probe. This ratio is calculated with 

support function S. 

1 { 1 Scores(S) = TSï' L 
(p,p) ES 0 

~ H H 
if S(p) > T8 for yp,HV = yf' v ... Yh' v 

otherwise. 

The prediction accuracy of S, Scores(S) is calculated similarly. It is possible to 

test if the secondary structure detection ability of M is improved by combining the 

theoretical and experimental detection approaches by scoring S n 8. We also must 

consider the specificity of the predicted set. To do so, we count the number of probes 

~ H H ~ 

P such that S(p) > TB for yp,HV = yf' v ... yf:' v and (p,p) ri: S or (p,p) ri: S. ScoresD 

is defined similarly using SV and the same series of questions are posed for prediction 

sets SD, BD and SD n BD. 

The same approach is used to measure the accuracy and specificity of the cross-
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hybridization prediction sets. Consider the accuracy of set X, 

1 { 1 Scorex(X) = ïXï' L 
(p,p')EX 0 

l'f X~(p p') > ,,-, l'or y(p,p'),Hv _ y(P,pl),Hv y(p,pl),Hv 
, 'x l' - (1,1) ... (b,b) . 

otherwise. 

for support function X. Accuracy scores Scorex((X)) and Scorex(X n (X)) are also 

calculated. ScoreD is defined for fj similarly. 

For an score functions, higher scores are better indicators of detection power than 

near zero scores. 

Due to the inability of the experimental support values to properly measure the 

degeneracy or non-degeneracy of a probe or probe pair based solely on hybridization 

data, it is impossible to use appropriate experimental thresholds to reject or aceept 

the hypothesis of degeneracy using the experimental support functions. Therefore, we 

can not add experimental edges to M to construct sets S, Si5, X and D or calculate 

prediction scores. 

We found that problems with the experimental support functions and their ap-

plication to the HuGeneFL data set are apparent in the learning method sinee there 

is an absence of variation between support values calculated over HT and Hv. The 

support values calculated over HT for a probe or probe pair are nearly identical to 

those calculated of the value over Hv. The same is true for an three remaining types 

of degeneracy. We would expect that the experimental support functions applied to 

different hybridization sets should lead to more variation in the support values. 
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6 Affymetrix Discrimination 

As we stated in the introduction, the framework and methods described in this paper 

can also be used to investigate additional properties of the probe set of a chip. We are 

interested in examining the discrimination property of each probe on an Affymetrix 

GeneChip. The discrimination property measures the ability of the intensity of a 

probe to reflect the true amount of target mRNA transcripts in the sample solution. 

Affymetrix describes a chip as a set of probe pairs comprised of Perfect Match (PM) 

and Mismatch (MM) probe cells. Each PM probe is a probe as we have defined it 

throughout this paper, though now there is an MM probe associated with each probe. 

The MM probe of a probe pis a probe with a sequence that differs from the sequence 

of P by one base pair only. Recall that at each hybridization j in the hybridization set 

H, Ij(p) is the intensity of probe pEP of chip C. We let Ij(p) be the intensity of the 

mismatch probe of p at hybridization j. 

The expression analysis of Affymetrix GeneChips is performed by a statistical de-

tection algorithm that measures the presence or absence of a transcript. The detection 

algorithm is a voting algorithm that combines votes from each probe of a probe group 

to assign a calI of present, marginal or absent ta the transcript targeted by the probe 

group. The vote of each probe at hybridization jE H is its discrimination score Rj(p) 

defined as follows: 

The discrimination of a probe Rj(p) meaures the ability of the probe to detect its 

intended target by taking the target-specifie intensity difference (Ij(p) - Ij(p)) relative 

ta the overall hybridization intensity (Ij(p) +Ij (p)). The detection algorithm calculates 

57 



a detection p-value according to the discrimination score of each probe p in the probe 

group Pg. If the majority of probes in Pg have Rj(p) :::::: 1 then the detection p-value is 

more significant and the transcript is likely assigned a caU of present. Otherwise, if the 

majority of probes p E Pj have Rj(p) near or below zero then the detection p-value is 

less significant and the transcript is assigned a caU of absent. If the detection p-value 

is above or below user-defined thresholds then the transcript receives a marginal caU. 

Consider conflict graph M for HuGeneFL. Let Rj(p) be the discrimination of eaeh 

probe pEP at hybridization j E 1t and let R(p) = frtr . L-jEH Rj(p) be the average 

discrimination of probe p over aU hybridizations. We now compare R(p) of probe pEP 

to the free-energy 6.G measured by VP(p, t) of probe-tag pair (p, t) (a measure of the 

hybridization strength of (p, t). Figure 24(a) depiets a scatterplot of this R(p) and 6.G 

comparison. We find that probes pEP with high 6.G (VP(p, t) > -22) for matching 

tag t E T, unanimously have R(p) :::::: O. This indicates that several probe-tag pairs of 

HuGeneFL are too weak to diseriminate between expressed and non-expressed states. 

It is possible that a near zero average discrimination of a probe is caused by the 

expression level of the target of the probe. To test this, we foeus only on probes in 

probe groups Pg such that there exists a probe p' E Pg with VP(p', t ' ) > -22 for 

matching tag t' E T. Figure 24(b) depicts R(p) of aU probes pEP such that p E Pg 

and there exists a probe p' E Pg with VP(p', t' ) > -22 for mat ching tag t' E T. We 

find that the near zero average discrimination of probe p' E Pg is not solely caused 

by the expression level of target 9 E G since R(p) takes values both much above and 

below zero for p E Pg where VP(p, t) ::; -22 for matching tag t. 

We conclude that the hybridization between a probe p' and its matching tag t' where 

VP(p', t' ) > -22 is too weak for p' to have a significant detection p-value (p' is not 

58 



erè 

'.8 
, .. 
, .. 
•• 2 

• ~ 

'-0.2 

'-0.4 

'-9.6 

"'0.8 

_1~~-L~~ __ ~~-L~ __ L-~~-L~ 
-H -12 -16 -38 -36 -31 -32 -30 -28 -26 -21 -22 -28 .. 1E 

liG 

(a) 

"<,'{, 

•• S 

... 
0.4 

..2 
~ 

• • 
-0.2 

.... 
-0.6 

-13.8 

-1 L-~-L~----'L-.L.-~-L--'-__ '---...L....--'----'---.J 
-44 -12 -40 -38 -36 -34 -32 -38 -2a -26 -24 -22 -29 -18 

liG 

(b) 

Figure 24: Figure (a) depicts a scatterplot of R(p) against VP(p, t) of aIl probes in pEP, 
and figure (b) depicts a scatterplot of R(p) against VP(p, t) of aIl probes in p E Pg such that 
there exists a probe p' E Pg with VP(p', t' ) > -22, for matching tag t' . 

able to discriminate). We hypothesize that such a probe will under-represent the true 

amount of tags present in the sample and will therefore always have a very low rank. 

The probability vectors depicted in Figure 25 confirm this hypothesis, and confirm the 

daim that the background distribution of ranks of such a probe p' is affected by the 

b.G of the probe-tag pair (p', t ' ) as shown in Section 3.2. 
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Figure 25: Estimated discretized probability vectors <Pô:,S for an probes pEP such that 
'DP(p, t) > -22, for probe-tag pair (p, t). 
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7 Contribution 

There are several technical challenges that arise when dealing with large probe sets and 

large sets of hybridization experiments due to their size. A significant contribution of 

this paper is the development of the necessary computational infrastructure to facili­

tate the testing of data from a large set of hybridization experiments. The chip and 

hybridization data is stored in a MySQL database. We implemented fast algorithms 

for performing the dynamic programming functions DP and S in Java. We also de­

signed and implemented efficient algorithms for the estimation of Œ and f3 parameters 

for a beta distribution from hybridization data. The over 8 billion pairwise operations 

X, D, X and i5 were distributed using BioOpera Pro cess Support for Bioinformatics 

[3]. The computations were executed on several different machines at the McGill Cen­

tre for Bioinformatics Computational Biology Lab. AlI software was developed using 

the Apple Project Builder environment on a Macintosh running the Macintosh OS X 

operating system. We have developed an online resource for the work presented in this 

thesis and hope to make many of the tools that we created for this framework publicly 

available [21]. 

8 Conclusion 

We present a framework for detecting degenerate probes in Affymetrix DNA chips. 

Our predictions are based on a theoretical model of nucleic acid hybridization and 

on patterns in a large collection of hybridization data. As the number of hybridiza­

tions increases, the framework should give increasingly better predictions of degenerate 

probe-tag pairs. In this sense, we learn from experience the behavior of the chip as it 
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is used increasingly by the community and, in turn, this will enable us to design better 

future chips. 

The method of examining probe ranks to analyze the behaviour of a probe over 

a set of hybridization data is a simple and successful method. The method was used 

to define unique patterns of four basic types of degeneracy in terms of distribution of 

rank. The results from Sections 2 and 3 show a clear relationship between theoretical 

predictions of degeneracy caused by hybridization and observed ranks. The structural 

analysis of the conflict graph for HuGeneFL produced several key insights that lead to 

better prediction strategies. We find that very strong probe-tag pairs (low D.G) are 

more frequently predicted to be degenerate than mid-range or weak probe-tag pairs 

(higher D.G). We also see that the distribution of ranks of a probe is dependent on the 

hybridization strength between the probe and the matching tag. 

The accuracy of our proposed framework will improve as the number of hybridiza­

tions and diversity of conditions under which the hybridizations were performed in­

creases. As described in Section 3, the behaviour of a degenerate probe changes over 

a range of target intensities. A wide range of conditions guarantees a high degree of 

biological diversity (the expression of each target represented on the chip varies due 

to changes caused by the conditions under which the hybridization was performed). 

It must be the case that there is sufficient biological diversity in order to be able to 

properly evaluate the behaviour of a probe over a set of hybridizations. When high 

biological diversity is present for each probe in a set of hybridizations, there will be 

a large number of hybridizations in each block which leads to aIl non-zero values in 

the rank count vectors. It is also important to have an abundant set of hybridizations, 

since as the number of hybridizations increases (thus increasing the expected amount 
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of biological diversity), the likelihood that a well-functioning probe-tag pair always ex­

hibits a degenerate pattern should decrease. Thus, our confidence that these probe-tag 

pairs are not behaving appropriately is strengthened. The experiments contained in 

this paper were carried out with a relatively small set of hybridizations (126). A much 

large collection of hybridizations (on the order of 2000) would ensure that sufficient 

biological diversity exists so that each probe is expressed (either highly or lowly) at 

least once. 

Though the experimental support functions proved indiscriminate, we believe that 

the model itself is sound and can lead to more meaningful results through the use of 

statistically sound methods for determining the appropriate number of blocks and for 

choosing the theoretical and experimental 6.G thresholds. The most immediate im­

provement to be made is the discovery of successful experimental support functions. 

There are several methods we could employ to achieve successful experimental support 

functions. The most simple approach would be to attain additional hybridization re­

sults from experiments performed with HuGeneFL. We may also consider introducing 

pseudo-counts to increase the amount of data in the rank count vector while preserving 

the underlying pattern in the vector. There is also the option of employing an alter­

native test statistic. In designing these experiments, we tried using the chi-square test 

to determine the goodness-of-fit between the estimated background probability distri­

bution and the observed data. The chi-square test gave no better results than the log 

likelihood ratio test statistic. AIso, the test should distinguish between two hypotheses 

(that the probe is degenerate or that the probe is non-degenerate) instead of simply 

testing one hypothesis. We hope to refine our current test statistic and research other 

non-parametric methods for determining an underlying pattern from an observed rank 
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count vector. 

An online resource containing additional results is publicly available at [21] and we 

will make our software freely available at this same location. Our software is sufficiently 

robust as to carry out these experiments with a ten fold increase in the number of 

hybridization experiments. We have made several clarifications and improvements to 

the framework in [22]. 

This model can be used for a variety of purposes other than error detection. The 

versatility of this model was shown in Section 6 when it was used for the analysis 

of probes that are measured to be indiscriminate by Affymetrix's statistical methods. 

One can quickly imagine several other useful patterns to detect in the hybridization 

data. For instance, a pattern could be designed for detecting correlation or causation in 

gene expression experiment data by examining the intensities of probe groups over the 

set of hybridizations. This approach could be used for network inference and finding 

network motifs (building blocks) of transcriptional regulation networks [19]. 

The focus in [23] is the integration of our framework with the model-based analysis 

of oligonucleotide arrays from Li and Wong [8, 9]. Li and Wong give a simple model 

for determining the intensity measurement for a target as a non-linear combinat ion 

of the probe intensities from the probe group and parameters that specify the quality 

(sensitivity) of each probe. Both the theoretical model of hybridization and the support 

functions based on the distribution of rank patterns presented in our paper can be 

modified to give a score for the quality of a probe. In this way, our framework provides 

an alternative, possibly better avenue for estimating parameters for use in the Li and 

Wong model. 

Although we describe only an application of the model to the Affymetrix HuGeneFL 
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chip, the model has been designed to be universal, so that it can be used to analyze the 

quality of any existing oligonucleotide microarray or microarray design. Ultimately, to 

validate this model, the candidate degenerate probes and probes pairs must be verified 

in a wet-lab to conclude whether they are truly degenerate. Based on further results, we 

could test the validity of this model by creating a chip with known degenerate probes 

or probe pairs and run a variety of hybridizations to guarantee biological diversity. 
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A N ucleic Acid Sequence Hybridization 

The technology of microarrays is predicated upon the hybridization of two single 

stranded nucleotide sequences into stable double stranded complexes. Such a duplex 

is created by the formation of hydrogen bonds between the Watson-Crick base pairs 

of two strands of DN A, two strands of RN A or one strand each of DN A and RNA. 

The hybridization reaction takes place under specific physical and chemical conditions 

that can be altered to promote or inhibit the formation of the duplex. 

The Watson-Crick (wc-) complement s of a nucleic acid sequence s is obtained 

by reversing the sequence and interchanging A +-t T (or U in the case of RN A) and 

C +-t G. 

Example: If s = ACTTGCAATCGT AATCGC then s = t = GCGATT ACGATTGCAAGT 

A Watson-Crick complement pair of oligonucleotides s and t, s = f may exhibit 

perfect hybridization to form a stable duplex. For example, s = ACTTGCAATCGT AATCGC, 

t = GCGATT ACGATTGCAAGT hybridize as follows: 

5' - A-C-T-T-G-C-A-A-T-C-G-T-A-A-T-C-G-C - 3' 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3' - T-G-A-A-C-G-T-T-A-G-C-A-T-T-A-G-C-G - 5' 

Two oligonucleotides sand t may hybridize even if not aIl of their aligned bases 

are Watson-Crick pairs. However, imperfect hybridization or hybridization with mis-

matched base pairs form less stable duplexes. 
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B Thermodynamic Models of Nucleic Acid Hy-

bridization 

Nucleic acid sequence hybridization and DNA secondary structure formation are well­

understood processes. There exist several models for predicting either the stability of 

a candidate structure. [10, 13, 15, 17, 24, 28]. 

A combinatorial model for DNA hybridization behaviour simply counts the num­

ber of base pairs that form Watson-Crick pairs and those that mismatch. Such a model 

is not based on the biochemical properties that govern the hybridizations, but is rather 

based on the similarity of the two tags in question. Such a model commonly uses 

measurements of distance between strings to predict the occurrence of imperfect hy­

bridizations (Hamming distance, longest common substring or subsequence). We have 

seen that two very similar targets will cross-hybridize to each other's probes. It is very 

likely that such targets will share a long common substring, though there may be a 

possibility for cross-hybridization when there are many shorter common substrings and 

weakly mismatched base pairs. 

Several models have been proposed in the literature to analyze DNA hybridization 

by estimating thermodynamic properties governing the formation of a duplex. The 

melting temperature TM of two strands of nucleic acid is the temperature at which 

half of each strand's nucleotides are in double-helical duplex form and half are in single­

stranded form. The most simple model for estimating the TM of a duplex is the 2-4 

model consisting of a simple rule based on the number of hydrogen bonds between 

a two nucleotides. With the 2-4 model, the TM of a sequence and its Watson-Crick 

complement is TM = 2(number of A-T base pairs)+4(number of C-G base pairs) [24]. 
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A thermodynamic nearest-neighbour model of DNA hybridization offers a more 

specific and biologically based model for short DNA sequences. The nearest-neighbour 

model is widely applied for estimating thermodynamic properties of duplex formation. 

The model can be used to measure the stability of duplex formation between two 

short stands of nucleic acid and can also be used for estimating the stability of a 

folded secondary structure. The nearest-neighbour model can be used to determine 

several thermodynamic measures of helix formation and helix melting (LlSO, LlHo, LlGo 

and TM). We use change in free-energy LlG (measured in kcallmol) of the helix 

formation to provide a relative measure of duplex stability. The change in free-energy is 

more accurate than other thermodynamic measures [15]. The nearest-neighbour model 

defines LlG37 as the sum of the following terms: a helix initiation penalty, a sum of free­

energy change for helix formation at each base pair, a penalty for symmetric st rands 

and if applicable, a penalty for the terminal dangling ends or external mismatches. The 

free-energy charge for each base pair is determined by summing LlG nearest-neighbour 

parameters calculated for helix formation at 37°. 

D N A and RN A helices have different structures and accordingly, have different 

nearest-neighbour parameters. They also differ in helix initiation factors. Several sets 

of nearest neighbour thermodynamic parameters have been obtained for DN AI DN A, 

RN AI RN A and DN AI RN A helices. AlI three types of duplexes are possible in 

the context of microarrays. With Affymetrix GeneChips, there is the possibility for 

RN AI DN A and RN AI RN A hybridizations. RN AI RN A duplexes are generally most 

stable, and the stability differences between DN AI DN A and RN AI DN A depend on 

their sequence composition [25]. We use a set of D N AI D N A parameters determined 

at John SantaLucia's lab because in addition to Watson-Crick pairs, they comprise 
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mismatched pairs and dangling end parameters [14]. 

C Affymetrix GeneChips 

Affymetrix GeneChips are the most commercially popular DNA chips for gene expres­

sion assays. The technology allows expression states of genes to be determined by 

measuring the amount of expressed mRNA captured by the chip. The hybridization 

occurs between the cRNA strand and the immobilized DNA probe. The GeneChip 

experimental pro cess proceeds as follows. A sufficiently large sample of mRNA tran­

scripts from the target tissue or organism is processed and transformed into a target 

sample of labeled cRNA fragments. This target sample is then brought into contact 

with the chip and the transcript fragments theoretically hybridize with (and only with) 

their wc-complementary probes on the chip. The hybridization that occurs on the chip 

forms RNA/DNA hybrids. After hybridization occurs and the chip has been stained, 

the intensity of each probe location is optically measured. The intensity readings of 

each set of probes representing one expression target are statistically analyzed to clas­

sify the transcript as present or absent, and to estimate that gene's quantitative level 

of expression [12]. 
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Figure 26: The process of an Affymetrix GeneChip expression experiment. Image from [12]. 
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