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Abstract
There is a critical need for data-mining methods that can identify SNPs that predict among-individual
variation in a phenotype of interest and reverse-engineer the biological network of relationships
between SNPs, phenotypes, and other factors. This problem is both challenging and important in
light of the large number of SNPs in many genes of interest and across the human genome. A
potentially fruitful form of exploratory data analysis is the Bayesian or Belief network. A Bayesian
or Belief network provides an analytic approach for identifying robust predictors of among-individual
variation in a disease endpoints or risk factor levels. We have applied Belief networks to SNP
variation in the human APOE gene and plasma apolipoprotein E levels from two samples: 702
African-Americans from Jackson, MS, and 854 non-Hispanic whites from Rochester, MN. Twenty
variable sites in the APOE gene were genotyped in both samples. In Jackson, MS, SNPs 4036 and
4075 were identified to influence plasma apoE levels. In Rochester, MN, SNPs 3937 and 4075 were
identified to influence plasma apoE levels. All three SNPs had been previously implicated in affecting
measures of lipid and lipoprotein metabolism. Like all data-mining methods, Belief networks are
meant to complement traditional hypothesis-driven methods of data analysis. These results document
the utility of a Belief network approach for mining large scale genotype–phenotype association data.
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INTRODUCTION
PROGRESS IN IDENTIFYING DNA SEQUENCE VARIATION in a large number of biological, expressional, and
positional candidate genes, along with the emerging availability of a genomewide collection
of single nucleotide polymorphisms (SNPs), indicates a need for a data-mining approach for
genotype–phenotype studies. Data mining, in this context, is a process to extract previously
unsuspected information or patterns, such as relationships among variables, from data in large
databases (Han and Kamber, 2001). Classical statistical methods, for example multivariable
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regression or contingency table analysis, are ill suited for high dimensional problems, such as
large-scale genotype–phenotype association studies, because they are “single inference
procedures” instead of the more appropriate “joint inference procedures,” and methods for
combining results across multiple “single inference procedures” are inefficient (Rothman,
1990). Data-mining methods are not meant to replace classical statistical methods, and ideally
the two would be used in a complementary fashion. The former can be considered as
hypothesis-generating methods, while the latter are for hypothesis testing (Rothman and
Greenland, 1998).

A Bayesian or Belief network modeling provides a robust analytic approach for identifying
both predictors of between-individual variation in a phenotype of interest and other potentially
interesting interactions between genetic, physiological, and environmental variables within the
(genotype–phenotype) domain of interest. A Belief network is a graphical representation of a
joint probability distribution among a number of random variables (Pearl, 1988). Belief
network analyses are, therefore, “joint inference procedures.” The network’s topology depicts
a graphical relationship among the variables, or nodes (i.e., which variables are dependent on
or conditionally independent of which other variables). The edges connecting the nodes
indicate dependence. The edge directionality is somewhat arbitrary (see Discussion) and is not
intended to imply a causation; rather, it is employed for the mathematical convenience and to
distinguish (again, somewhat arbitrarily) between the “parent” and the “offspring” nodes. The
edge strength indicates the relative magnitude of the dependency between two variables, given
the other interrelationships. An edge between two SNPs is indicative of strong linkage
disequilibrium, and, therefore, Belief networks can simultaneously take into account linkage
disequilibrium while doing genotype–phenotype association analyses.

Fortunately, in a typical application in human genetics, researchers are primarily interested in
predicting only one or two primary variables (e.g., a disease endpoint or risk factor level), and
it is typically the case that these target variables are influenced by only a limited number of
other variables (a property known as local sparseness). As a result, application of Belief
networks to even a large number of SNPs allows one to isolate the subnetwork around a target
variable and examine the relationship between this variable and its predictors. In many cases,
the target variable is one for which investigators may be interested in predicting a state or level
in future clinical applications. One formal definition of such a subnetwork is known as the
Markov blanket of the variable of interest (Pearl, 1988). By definition, the Markov blanket of
a node A is the “parents” of A, the “children” of A, and the nodes sharing a “child” with A.
Given its Markov blanket, the target variable is independent of all of the other variables in the
network, and dependencies within the Markov blanket may be checked for statistical robustness
using bootstrapping, cross-validation, information-theoretic, and Bayesian (posterior
probability) criteria. A useful introduction to Belief networks can be found in Heckerman
(1995) and, in a less formal fashion, Krause (1998).

APOE encodes a 299 amino acid single-chain protein that is a crucial factor in cholesterol and
triglycerides metabolism and transport. In humans, three common protein isoforms are known:
E2, E3, and E4. Population-based and clinical case-control studies have consistently revealed
an association of the APOE isoforms with cardiovascular disease, cardiovascular disease risk
factor levels, and Alzheimer’s disease (Utterman, 1987; Mahley and Rall, 2000). In addition
to the common APOE isoforms, there is considerable other APOE gene variation that may be
related to interindividual differences in traits of interest. Lai et al. 1998 generated high-density
SNP maps around the human APOE locus on chromosome 19 and identified 10 SNPs showing
a large allele frequency differential between populations. Stengård et al. 2002 identified
multiple APOE SNP variations influencing plasma apoE levels.
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In this study, Belief networks were applied to SNP variation in the human APOE gene and
plasma lipid and apolipoprotein levels from two samples: African-Americans from Jackson,
MS, and non-Hispanic whites from Rochester, MN. This study had three objectives: 1) to
evaluate Belief Network methods, for the first time, in assessing the association between
disease risk factors levels and human gene variation, 2) to determine whether the Belief network
methods identified the previously implicated APOE gene variations as predictors of the plasma
apoE levels, and 3) to identify other SNPs in the APOE gene influencing plasma apoE levels,
as well as other potentially interesting and previously unsuspected dependencies.

MATERIALS AND METHODS
The reader is referred to Stengård et al. 2002 and Nickerson et al. 2000 for a detailed description
of the data used in this study. APOE gene variation was characterized in two stages. In the first
stage, 5.5 kb encompassing the APOE gene were sequenced in a sample of 72 individuals from
multiple populations. Subsequently, 20 variable sites were scored in a sample of 702
individuals from Jackson, MS, and 854 individuals from Rochester, MN. Four SNPs out of
these 20 are located in the coding region of the APOE gene, including sites 3937 and 4075 that
code for the well-known E2, E3, and E4 protein isoforms. In addition, the following data were
available: levels of plasma cholesterol, high-density lipoprotein cholesterol, triglycerides, and
apolipoproteins E, AI, and B. Because of allele frequency differences between the two samples,
and because of the overwhelming influence of population-of-origin when the samples were
pooled (see Results), results are presented here separately for the two samples.

The Belief networks were constructed, analyzed, and visualized using freely available open-
source libraries (Intel Research Open-Source Probabilistic Networks Library (PNL),
www.intel.com/research/mrl/pnl/ and University of Helsinki B-course, b-
course.cs.helsinki.fi) with various source code modifications related to the model selection and
heuristic search algorithms, and bootstrap and simulations framework implementations. The
network topologies that scored the highest posterior probabilities (a Bayesian scoring criterion
based largely on marginal likelihood computations; see Heckerman (1995) and references
therein) were chosen as ones representing the best predictive relationships among all of the
input variables. The BIC (Bayesian information criterion) approximation (Schwarz, 1978) of
the posterior probability criterion was also used when constructing some of the networks.

A multinomial model for the data was assumed because the majority of the variables (SNPs,
race, gender) were discrete, and the remaining variables were discretized into 10 (or fewer)
categories. Discretizing into fewer categories led to generating more dependencies in the
Markov blankets of the nodes of interest (higher sensitivity), which counterbalanced the loss
of information (because of discretization) when discovering potentially interesting
dependencies. A simple hybrid multinomial/linear Gaussian model was also tried (results not
shown), leading to topologically different Belief networks that made much less biological
sense. Ideally, a sophisticated hybrid model (in which “children” of the multinomial nodes can
be linear Gaussian) would represent the best of both worlds. We are presently implementing
such a model. For now, assuming the purely multinomial model with varying degrees of
discretization is indicated in our context (SNP databases). Searching through model space was
performed by hill-climbing with random restarts, until the Belief network converged to a stable
topology. As a rule, about ten million network topologies were evaluated for each experiment,
requiring no more than 5–15 CPU minutes on a Pentium IV workstation. Other search methods,
such as simulated annealing and beam search, were tried as well (usually leading to the
topologically very similar networks)—however, they proved to be somewhat slower to
converge. In general, the resulting Belief network topologies proved to be extremely robust to
alterations in search algorithm and topology priors, notably in the Markov neighborhoods of
the nodes of interest (apoE levels).
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Once a Belief network was constructed from the data, we were interested in estimating the
significance of particular features of the network, such as the strength of the relationship
between two variables. The magnitude of the relationship between two nodes is defined as the
edge strength. The edge strength between two nodes is expressed as the ratio of posterior
probabilities of the network with the edge present versus absent. Therefore, the higher the
number, the more support there is for that particular edge. A complementary way of assessing
the significance of an edge is to apply nonparametric bootstrapping with replacement
(Friedman et al., 1999). For the application reported here, 500-fold bootstrap was used. For
each bootstrap sample, a Belief network is created and the edge of interest is scored as present
or absent. For each edge of interest, the number of times out of 500 that it is present in the
bootstrap samples is calculated and expressed as a percentage. In the applications presented
here, a bootstrap value of greater than 75% is considered significant evidence for the existence
of an edge, and a bootstrap value of greater than 95% is considered highly significant evidence.
These cut-off values are stricter than those recently used in the area of gene-array expression
analysis (Friedman et al., 2000). Like other cut-off values for “statistical significance,” the
exact number is rather arbitrary, and interested readers are encouraged to adjust the
demarcations and labels according to their own interest and application.

SIMULATION EXPERIMENTS
Although both bootstrap and posterior probability criterion can validate the reconstructed
networks, we have also carried out a series of simulation experiments to test the accuracy of
the network topology reconstruction by using artificial datasets generated from the known
(“true,” predefined) Belief networks. We have largely followed the simulation schemes
described by Sprites and Meek (1995) and Myllymaki et al. 2002; however, our model
networks were closer to the actual (APOE) datasets analyzed in this study. For simplicity, only
a multinomial model was assumed. The model networks consisted of 25 and 50 nodes and
reflected different amounts of “sparseness” (average number of edges connected to a node
being set at 1, 3, and 5). Five hundred– and 1,000-strong datasets were generated from these
networks. We were interested predominantly in how many dependencies present in the model
networks were not recovered by the Belief network reconstruction algorithm. In smaller
networks (25 nodes), both 500 and 1,000 datasets were sufficient to recover most dependencies
(from 76% to 100%, depending on the sparseness factor), certainly an encouraging result. With
50 nodes, the proportion varied from 47% to 92%. Interestingly, this type of simulation
experiment design (comparing graph topologies and computing topological differences) is very
similar to that of a typical simulation study in phylogenetic analysis (see, for example,
Piontkivska [2004] and references therein), and we believe that much of the enormous
experience accumulated within the latter domain can be profitably applied to designing and
carrying out Belief network performance simulations.

Belief networks are known to avoid overfitting (in other words, they avoid generating the
spurious dependencies, or edges, that reflect only the noise in the data). This is because most
of the model selection criteria used to evaluate the candidate networks penalize (implicitly or
explicitly) for the model complexity. Following the simulation scheme of Van Allen and
Greiner (2000) and using the same model networks as described in the previous paragraph, we
looked at whether the choice of the model selection criteria affected the extent of over- (or
under-) fitting in our domain. Preliminary results suggest that the posterior probability
Bayesian criterion achieves the correct balance, whereas BIC and MDL (minimum description
length [Rissanen, 1987]), two well-established and interrelated statistical and information-
theory scoring criteria, usually slightly underfit, especially for small samples. On the contrary,
two resampling-based criteria, bootstrap and cross-validation, usually overfit to some extent,
and either would be a potentially effective choice if a higher sensitivity is desired. (We remind
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the reader that the posterior probability criterion and, to a lesser extent, BIC, were the criteria
predominantly used throughout this study.)

We are presently conducting a series of rigorous simulation experiments, aimed at ascertaining
the performance of the Belief network reconstruction algorithms within the genetic
epidemiology domain, that will be published elsewhere.

RESULTS
All Belief networks were generated from the data only, with no consideration of prior/expert
biological knowledge of any kind. We were particularly interested in the apoE level node and
its Markov blanket, although the cholesterol and apoB nodes were also of interest. (Note: In
this section, Belief network node labels appear in bold for clarity.) The Belief network learned
from the sample of 702 individuals from Jackson, MS, is shown in Fig. 1. The relative strengths
of the edges of the network are shown in Table 1. The bootstrap support for the edges in the
plasma apoE level–centered subnetwork are shown in Table 2. Only SNPs 4036 and 4075
belong to the apoE level node Markov blanket. Triglyceride levels belong to the apoE level
Markov blanket as well. Posterior probability support for the edge between SNP 4036 and
apoE level nodes is not strong, but the corresponding bootstrap value (Table 2) is high enough
to support the existence of this edge.

Figure 2 depicts the belief network learned from 854 individuals from Rochester, MN. SNPs
3937 and 4075 belong to the apoE level Markov blanket. Tables 3 and 4 show the relative
strengths of the edges and bootstrap support for the edges in the apoE level Markov blanket,
respectively. In this network, cholesterol and triglyceride levels also belong to the apoE level
Markov blanket.

Before analyzing these two datasets separately, a combined analysis (with the race included
as a covariate) was performed (results not shown). The Race node in the resulting network had
a Markov blanket of a very low sparseness (i.e., was connected with great many other nodes).
This phenomenon is know as “shielding” (with the node in question effectively shielding most
of the remaining variables from each other in a conditional independence sense), and it is an
effective indicator of a hidden admixture (or stratification). If a certain node in a Belief network
(such as, in our context, Race or Gender) is connected to many more nodes than average,
separate subset analyses are indicated. The straightforward biological interpretation (in case
of Race) is, of course, strong racial differences in allele frequencies (causing Race node to be
connected with a large number of SNP nodes.)

DISCUSSION
We present here an application of a Belief network strategy to the analysis of multiple
APOE SNPs and plasma cholesterol and apoE levels, and we discuss how the Belief network
results should be interpreted. Tables 1–4 suggests that the two SNPs influencing the apoE level
most directly are SNP 3937 and SNP 4075. Interestingly, these two SNPs are exactly the ones
responsible for the three well-known and often-studied APOE alleles. Therefore, the Belief
network modeling was capable of extracting that knowledge from the APOE epidemiological
data without any prior information or guidance. Some of the Belief networks generated in this
study (Fig. 1) also suggest that SNP 4036 might be influencing the apoE level (although to a
somewhat lesser extent.) It should be noted here that SNP 4036 is also one of the four coding
APOE SNPs and it has been previously associated with type III hyperlipoproteinemia in a
single family (Rall et al., 1989).

It is important to keep in mind the difference between fitting a single “perfect” model to the
data and extracting pronounced (robust) features from the same data. Belief networks are
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essentially exploratory tools, in that they suggest which dependencies are more likely and,
consequently, what association studies are likely to be worth pursuing further. These further
studies may be conducted in terms of inferring prediction equations for a single target variable
using the Markov blanket of that variable from a Belief network. In our case, SNPs 3937,
4036, and 4075 are clearly obvious candidates for comprehensive association studies if
apoE level is the phenotype of interest. However, directed edges (i.e., one with arrows in Figs.
1 and 2) between these SNPs and the phenotype do not necessarily imply causation, and all
dependencies and directions observed in a Belief network should not be taken literally. A
directed edge only means that the Belief network containing it has a higher posterior probability
given the observed data than the equivalent Belief network containing a reverse edge. (If these
posterior probabilities are not significantly different, the edge is shown as undirected.)

Belief networks are a data-mining tool, meaning that Belief network modeling is a data-driven
exploratory approach for knowledge discovery and hypothesis generation. It should not be
directly compared to traditional statistical tools that are user driven and pursue mainly
hypothesis verification or rejection. A perfect knowledge discovery framework would, in fact,
incorporate both—first hypothesis generation via data-mining tools and then hypothesis
verification via traditional statistical tools (see Smyth [2000, 2001] for general discussion and
Morowitz [2001] for a philosophical contrast). In the present application, confidence in the
existence of an inferred edge was obtained using bootstrapping. Unfortunately, there is little
literature pertaining to the use of bootstrapping in Belief network applications, and this remains
an important area of investigation.

The purpose of Belief network modeling is to provide a graphic visualization of the joint
probability distribution of the variables within the domain and to pinpoint probable
dependencies (generate new hypotheses). Therefore, rigorous statistical justification of the
resulting models is not a primary concern. However, it is difficult to accept a model without
an indication of its robustness and support. In addition to the bootstrapping, comparing the
posterior probabilities of models with and without a certain feature (e.g., an edge between two
nodes) is another effective way to estimate support for that feature. In the results provided here,
such methods support the existence of a predictive relationship between SNPs 3937, 4036, and
4075 and plasma apoE levels (i.e., apoE). However, like methods for relating a large number
of SNPs to interindividual variation in a phenotype of interest, their appropriateness and
statistical properties are as yet uncertain. This said, it is possible to “translate” Bayesian (such
as posterior probability) criteria values into the traditional p-values, at least for a dataset of
fixed size (see Raftery [1995] for practical guidelines and philosophical discussion).

Belief network modeling also has practical utility for predicting future outcomes. Given exact
values for some predictive variables (e.g., SNPs) and the learned Belief network, the posterior
probability distributions for the target variables (e.g., plasma apoE levels) can be computed
(see Pearl [1988]) for a general description of a probabilistic inference algorithm for Belief
networks). Of course, in Belief networks any node can be either a predictive or a target variable.
By concentrating largely on the Markov blanket of the target variable, Belief network modeling
can be reduced to naïve Bayes classification, which has many attractive properties compared
to other classifiers (Kononenko, 1990). These properties include computational efficiency,
scalability, and high prediction accuracy, comparable to that of, for example, support vector
machines and decision tree forests.

Other desirable properties of Belief network modeling include absence of overfitting (assuming
posterior probability is used as a model selection criterion [Heckerman, 1995], the resulting
network neither overfits nor underfits the data [Van Allen and Greiner, 2000]) and high
statistical power. Specifically, simulation experiments conducted by us and elsewhere
(Myllymaki et al., 2002) on the artificial datasets of the dimensionality and sparseness
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comparable to the datasets analyzed in the present study indicate that approximately 1,000 data
points would be sufficient to reliably recover true Belief network topology of a useful (25
nodes) size. For the datasets of much higher dimensionality, a variable set reduction (by
filtering or wrapping) is recommended before the Belief network application, so that one can
concentrate on the Markov blanket(s) of interest and take advantage of the high computational
efficiency and power that Belief network modeling brings to the high-local-sparseness systems.

In this study, Belief network modeling of multiple APOE SNPs and plasma cholesterol and
apoE levels led to the identification of the SNPs 3937, 4036, and 4075 as the useful predictors
of the apoE plasma level. However, the amount of potentially interesting hypotheses generated
via Belief network modeling was, in fact, much higher—every strongly supported edge
(dependency) depicted in Figs. 1 and 2 is a valid hypothesis. Many of these hypotheses,
although of less biological interest than the dependencies in the apoE Markov blanket, are
original and would have been difficult to obtain automatically using a non-dependency-
modeling analysis technique. This underscores the efficiency of Belief networks as the data
exploration method, particularly for the novel and largely unexplored datasets. Ideally, Belief
network modeling would be a “middle-tier” data-mining tool, following the variable/feature
set reduction by either filtering or wrapping and, in turn, followed by a traditional hypothesis
verification stage. It should be noted that although in this (“SNP-searching”) application Belief
networks can be compared to various classifiers/estimators, their primary appeal lies in the
automated hypothesis generation ability. While it is possible to use classifiers such as support
vector machines, decision trees, and bagging and boosting extensions thereof to search for
genotype–phenotype associations, none of these techniques is capable of reverse-engineering
the biological networks such as those shown in Figs. 1 and 2.

Availability of a large collection of SNPs throughout the human genome and improvements
in SNP genotype technologies pave the way for large-scale genomic SNP association studies.
Analytic methods are needed to identify regions of the genome containing collections of genes
and SNPs for further hypothesis-driven research. Even within a gene, there are often very large
numbers of SNPs that may be potentially important for the gene’s effect on a target variable.
Methods are needed to select sites (i.e., a relatively small subset of SNPs) for further study.
Belief network modeling, while being such a method, also possesses the unique ability to
reconstruct and validate a biological network of dependencies between SNPs, phenotypes, and
other genetic and nongenetic factors. In general, Belief network modeling is capable of
combining data-driven approaches with user- or hypothesis-driven approaches. Therefore,
Belief networks and similar or competing methods (or a combination thereof) are likely to
become a regular part of the human geneticists toolbox in the coming years.
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FIG. 1.
Learned Belief network relating APOE SNPs to plasma apoE levels in Jackson, MS. Node
legends: numbers refer to corresponding SNPs (see Fig. 1 in Nickerson et al. [2000] for an
APOE SNP map). APO_E, APO_A, APO_B, TRIG, CHOL, and HDL stand for levels of
apolipoproteins E, AI and B, triglycerides, cholesterol and high-density lipoprotein cholesterol,
respectively. Line thickness corresponds to the relative edge strength (see Table 1.)
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FIG. 2.
Belief network learned from the Rochester, MN dataset. All designations are as in Fig. 1. Line
thickness corresponds to the relative edge strength (see Table 3.)
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Table 1
RELATIVE EDGE STRENGTHS IN THE JACKSON, MS NETWORK

a

Node 1 Node 2 Edge strength

APO_E TRIG 970916
SNP 3937 SNP 4075 190785
SNP 4075 APO_B 105196
SNP 471 SNP 1998 73280
APO_A CHOL 51954
SNP 560 SNP 3673 13854
SNP 2440 SNP 5361 9439
SNP 308 SNP 2440 2505
SNP 4075 APO_E 2221
SNP 4075 SNP 624 880
SNP 73 SNP 560 374
HDL WEIGHT 261
SNP 1998 SNP 545 50
SNP 73 SNP 4951 45
GENDER APO_A 18
SNP 1163 SNP 4075 5.95
APO_E SNP 4036 4.68
SNP 73 SNP 4075 4.04
SNP 1998 SNP 624 3.44
SNP 2440 SNP 545 2.99
SNP 73 SNP 5361 2.81
SNP 4036 SNP 308 1.17

a
For each edge, its strength is the ratio of the posterior probability of the model containing the edge to the posterior probability of the identical model

with the edge removed. Due to the limited software resolution there is no significant difference between the values above 1,000,000. Twenty edges with
such values are considered highly significant and are not shown here. However, they are drawn in Fig. 1.
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Table 2
BOOTSTRAP VALUES AND STRENGTHS FOR THE EDGES BELONGING TO THE MARKOV BLANKET OF THE APOE NODE IN THE JACKSON, MS NETWORK

Node 1 Node 2 Edge strengtha Bootstrap valueb

SNP 4036 APO_E 4.68 76%
SNP 4075 APO_E 2221 85%
TRIG APO_E 970916 98%

a
The edge strength observed in the study sample.

b
The percentage of times the edge was scored as present out of 500 bootstrap samples.
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Table 3
RELATIVE EDGE STRENGTHS IN THE ROCHESTER, MN NETWORK

a

Node 1 Node 2 Edge strength

APO_E SNP 4075 191513
WEIGHT HDL 74236
SNP 1163 SNP 1575 19032
SNP 832 SNP 2440 11575
SNP 1998 SNP 2440 2331
CHOL SNP 4075 248
SNP 1998 SNP 3106 78
TRIG GENDER 59
SNP 2907 SNP 2440 12
SNP 4075 SNP 1575 7.92
APO_B GENDER 4.95
SNP 1163 SNP 2907 2.68

a
For each edge, its strength is the ratio of the posterior probability of the model containing the edge to the posterior probability of the identical model

with the edge removed. Due to the limited software resolution there is no significant difference between the values above 1,000,000. Twenty-five edges
with such values are considered highly significant and are not shown here. However, they are drawn in Fig. 2.
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Table 4
BOOTSTRAP VALUES AND STRENGTHS FOR THE EDGES BELONGING TO THE MARKOV BLANKET OF THE APOE NODE IN THE ROCHESTER, MN NETWORK

Node 1 Node 2 Edge strengtha Bootstrap valueb

SNP 3937 APO_E >106 97%
SNP 4075 APO_E 191513 98%
TRIG APO_E >106 99%
CHOL APO_E >106 100%

a
The edge strength observed in the study sample.

b
 The percentage of times the edge was scored as present out of 500 bootstrap samples.
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