
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 12, Number 10, 2005
© Mary Ann Liebert, Inc.
Pp. 1261–1274

An Approximation Algorithm for Haplotype
Inference by Maximum Parsimony

YAO-TING HUANG,1 KUN-MAO CHAO,1,2 and TING CHEN3

ABSTRACT

This paper studies haplotype inference by maximum parsimony using population data. We
define the optimal haplotype inference (OHI) problem as given a set of genotypes and a
set of related haplotypes, find a minimum subset of haplotypes that can resolve all the
genotypes. We prove that OHI is NP-hard and can be formulated as an integer quadratic
programming (IQP) problem. To solve the IQP problem, we propose an iterative semi-
definite programming-based approximation algorithm, (called SDPHapInfer). We show that
this algorithm finds a solution within a factor of O(log n) of the optimal solution, where n

is the number of genotypes. This algorithm has been implemented and tested on a variety
of simulated and biological data. In comparison with three other methods, (1) HAPAR,
which was implemented based on the branching and bound algorithm, (2) HAPLOTYPER,
which was implemented based on the expectation-maximization algorithm, and (3) PHASE,
which combined the Gibbs sampling algorithm with an approximate coalescent prior, the
experimental results indicate that SDPHapInfer and HAPLOTYPER have similar error
rates. In addition, the results generated by PHASE have lower error rates on some data
but higher error rates on others. The error rates of HAPAR are higher than the others on
biological data. In terms of efficiency, SDPHapInfer, HAPLOTYPER, and PHASE output
a solution in a stable and consistent way, and they run much faster than HAPAR when the
number of genotypes becomes large.

Key words: algorithm, haplotype inference, integer quadratic programming, maximum parsi-
mony, semi-definite programming.

1. INTRODUCTION

Correlating variations in DNA sequence with phenotypic differences has been one of the grand
challenges in biology. Efforts have been made to obtain all common variants in the human population,

including single nucleotide polymorphisms (SNPs), deletions, and insertions. Many SNPs have been iden-
tified, and these data are now publicly available for researchers. For example, the International HapMap
Project (Helmuth, 2001), formed in 2002, aimed to characterize the patterns of linkage disequilibrium

1Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
2Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan.
3Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089.

1261

1262 HUANG ET AL.

across the human genome using SNPs such that the information can be used for large-scale genetic as-
sociation studies. As a dense SNP haplotype map is being built (Daly et al., 2001; Helmuth, 2001; Patil
et al., 2001), various methods have been proposed to use haplotype information in linkage disequilibrium
mapping. Some existing statistical methods for genetic linkage analysis have also shown increased power
by incorporating SNP haplotype information (Huang et al., 2004; Seltman et al., 2001; Zhang et al., 2002,
2003). But, the use of haplotype maps has been limited due to the fact that the human genome is a diploid
and, in practice, genotype data instead of haplotype data are collected directly, especially in large-scale
sequencing projects, because of cost considerations. Although recently developed experimental techniques
(Douglas et al., 2001) give the hope of deriving haplotype information directly with affordable costs,
efficient and accurate computational methods for haplotype reconstruction from genotype data are still in
high demand.

A number of methods have been developed to infer haplotypes based on genotypes of unrelated in-
dividuals. These methods can be divided into those based on combinatorics (Bafna et al., 2003; Eskin
and Halperin, 2003; Gusfield, 2001, 2002, 2003; Wang and Xu, 2003) and those based on expectation-
maximization (EM) algorithms or Bayesian algorithms (Excoffier and Slatin, 1995; Lin et al., 2002; Niu
et al., 2002; Qin et al., 2002; Stephens et al., 2001, 2003). The statistical methods first infer haplotype
frequencies and then use these frequencies to compute the haplotype configuration (or called phase) for
each genotype. A recent study by Stephens and Donnelly (2003) compared three statistical approaches, the
PL-EM algorithm (Niu et al., 2002), called HAPLOTYPER, and two MCMC algorithms based on Gibbs
sampling, one called PHASE (Stephens et al., 2001) and another by Lin et al. (2002), using a variety of
simulated and real genotype data. Two measures of accuracy were used: the error rate of individuals whose
haplotype estimates are not completely correct, and the error rate of a single site. The results showed that
both error rates of these algorithms can be as high as 50%.

On the other hand, most combinatorics-based methods consider two models. The first model is based on
perfect phylogeny, assuming there is no recombination, and the other model is based on pure parsimony,
assuming the number of real haplotypes is minimum. In this paper, we study the pure parsimony model.
Gusfield (2003) first formulated the problem and proposed an integer linear programming algorithm to
solve this problem. Wang and Xu (2003) proposed a branching and bound algorithm called HAPAR to find
the optimal solution. Recently, Brown and Harrower (2004) proposed a new formulation of the problem.
Lancia et al. (2004) proved the APX-hardness of the problem. That is, there is a constant λ > 1 such
that the existence of a λ-approximation algorithm for this problem would imply P=NP. Sharan et al.(2005)
showed that it remains APX-hard even in some very restricted cases.

In this paper, we first formulate the haplotype inference based on pure parsimony problem as an optimal
haplotype inference (OHI) problem. Then the OHI problem is reformulated as an integer quadratic program-
ming (IQP) problem. Based on the IQP problem, we propose an iterative semi-definite programming-based
approximation algorithm that finds a solution within a factor of O(log n) of the optimal solution, where
n is the number of genotypes. We also prove that OHI is NP-hard through a reduction from the problem
of Exact Cover By 3-Sets (X3C) (Garey and Johnson, 1979). This algorithm has been implemented and
tested on a variety of simulated and biological data. In comparison with three other methods, HAPAR,
HAPLOTYPER, and PHASE, the experimental results indicate that this algorithm outputs solutions with
high accuracy and efficiency.

2. METHOD

Problem formulation

Suppose we are given n individuals for a local chromosomal region of L linked SNPs. Let G =
{g1, g2, . . . , gn} denote the genotypes for the n individuals, where gi = {gi1, . . . , giL}, gij denotes the
genotype for individual i at locus j , and gij = 0, 1, or 2 denote that this locus is homozygous wild type,
homozygous mutant, or heterozygous, respectively. Experimental data may have missing alleles. We let
gij = 3, 4, or 5 to denote two missing alleles, one missing allele and one wild type, and one missing allele
and one mutant.

Let H = {h1, h2, . . . , hm} denote the set of all possible unobserved haplotypes for G. We denote
|H | = m to be the number of elements in a set. If two haplotypes hr and ht form a genotype gi , we

HAPLOTYPE INFERENCE BY MAXIMUM PARSIMONY 1263

denote hr ⊗ ht = gi , and we also say that hr and ht resolve gi , or a haplotype configuration for gi is
hr and ht . Let S = {S1, . . . , Sn} denote the sets of unobserved haplotype configurations for G, where
Si = {(hr , ht) : hr ⊗ ht = gi} denotes the set of all unobserved haplotype configurations for gi . We
formulate the haplotype inference by maximum parsimony as follows, which is referred to as the optimal
haplotype inference (OHI) problem.

Definition. Optimal haplotype inference (OHI) problem: Given a set of genotypes G and a polynomial-
sized set of unobserved haplotypes H for G, find a minimum subset of haplotypes, V ⊆ H , such that for
every genotype gi , 1 ≤ i ≤ n, there exists a pair of haplotypes hr ∈ V and ht ∈ V such that hr and ht

resolve gi (or (hr , ht) ∈ Si).

We would like to note that m (i.e., the size of H) is fixed in this paper because (1) the idea of haplotype
inference is restricted to a high linkage disequilibrium (LD) region, which is usually short (Zhang et al.,
2002, 2004), and (2) the number of observed haplotypes in a short chromosomal region in a human
population is generally small. Theoretically, a genotype in a short chromosomal region may still contain
a large number of ambiguous SNPs due to factors such as missing data and thus corresponds to an
exponential number of possible haplotypes. However, poor-quality genotypes of this kind do not provide
enough information for haplotypes, so we do not use them for haplotype inference. If each genotype
corresponds to a maximum number of K haplotypes, m is bounded by O(nK).

Integer quadratic programming

Define xi as the variable for haplotype hi : xi = 1 if hi ∈ V , and xi = −1 otherwise. Given a set of
genotypes G, the OHI problem can be formulated as the following integer quadratic programming problem:

Minimize
m∑

i=1

(1 + xi)
2/4

IQP(G): subject to:
∑

(hr ,ht)∈Sj

(1 + xr)(1 + xt)/4 ≥ 1, ∀j ∈ [1, n], (1)

xi ∈ {−1, 1}, ∀i ∈ [1, m].

The set V = {i|xi = 1} corresponds to the set of selected haplotypes. The j th inequality guarantees that
genotype gj ∈ G can be resolved.

Semidefinite programming relaxation

Since solving this integer quadratic programming is NP-complete, we consider relaxations of IQP. We
can interpret IQP as restricting xi to be a 1-dimensional vector with unit norm. Thus, we can relax xi into
an (m + 1)-dimensional vector yi of unit Euclidean norm. We introduce another (m + 1)-dimensional unit
vector y0, and relax IQP to

Minimize
m∑

i=1

(y0 + yi)
2/4

SDP(G): subject to:
∑

(hr ,ht)∈Sj

(y0 + yr) · (y0 + yt) ≥ 4, ∀j ∈ [1, n], (2)

|yi | = 1, ∀i ∈ [1, m].

In fact, SDP becomes IQP if we let

y0 = (1, 0, . . . , 0), y1 = (x1, 0, . . . , 0), . . . , ym = (xm, 0, . . . , 0). (3)

1264 HUANG ET AL.

SDP can be solved by semi-definite programming. Let Y = (y0y1 . . . ym)T (y0y1 . . . ym), where yij = yi ·yj .
Then Y is positive semi-definite. We reformulate SDP into the following semi-definite programming:

Minimize C · Y

subject to: Aj · Y ≥ aj , ∀j ∈ [1, n], (4)

yii = 1,

Y � 0,

where Y � 0 means Y is symmetric positive semi-definite. The semi-definite programming is an extension
of the linear programming into convex cones. An efficient algorithm for the semi-definite programming
is called the interior point method. Let OPT(SDP) be the optimal solution of SDP. For any given ε > 0,
the interior point method finds a solution of value less than OPT(SDP) + ε in time polynomial in the
input size and log 1/ε. Once an almost optimal solution Y is found, we can use an incomplete Cholesky
decomposition to obtain vectors y0, y1, . . . , ym.

Algorithm SDPHapInfer

In the following, we introduce an algorithm that iteratively runs a semi-definite programming, finds a
solution {y0, y1, . . . , ym}, and constructs a solution {x0, x1, . . . , xm} by randomized rounding.

Algorithm SDPHapInfer

1. Initialization
(a) Let U = G = {g1, . . . , gn} be the set of unresolved genotypes;
(b) Let V = {} be the set of selected haplotypes;

2. SDP-solving
(a) Formulate IQP(U) and SDP(U);
(b) Solve SDP(U), obtaining a solution {y0, y1, y2, . . . };

3. Randomized-rounding
(a) Randomly pick two multidimensional unit vectors z1 and z2;
(b) Set x0 = 1;
(c) Set xi = 1 for i > 0 if (z1 · yi)(z1 · y0) > 0 and (z2 · yi)(z2 · y0) > 0, xi = −1 otherwise;
(d) Let V = V ∪ {hi : xi = 1};

4. Iteration
(a) Let U be the set of the genotypes that can not be resolved by V .
(b) If |U | 	= 0; go to Step 2;

5. Return V .

In Step 2, if a pair of haplotypes hr ∈ V and ht /∈ V resolve gi ∈ U , we set variable yr = y0 in SDP(U).
Theoretically, we can run the SDP at Step 2 only once and use this result for randomized rounding for
all the iterations without changing the time complexity, but practically, running the SDP for each iteration
gives better solutions.

Analysis of the algorithm

We show in the following that algorithm SDPHapInfer finds a solution of O(log n)-approximation of
the optimal solution of the OHI problem. Let OPTOHI be the optimal solution for the OHI problem
solved by IQP, and let OPTSDP be the optimal solution obtained from Step 2 in the algorithm. Let
W = ∑m

i=1(1 + xi)
2/4 after the randomized rounding in Step 3 in Algorithm SDPHapInfer. In the

following, we first show that E(W) is a lower bound of OPTOHI in Lemma 1. Then we show that with a
constant probability, each of the n inequalities in IQP will be satisfied by the randomized rounding scheme
in Lemmas 2, 3, and 4. Finally, we show that repeating this process O(log n) times, with a high probability,
all the inequalities in IQP will be satisfied and the solution is an O(log n) approximation in Theorem 1.

HAPLOTYPE INFERENCE BY MAXIMUM PARSIMONY 1265

FIG. 1. Left: the case for (z · y0)(z · yi) > 0; right: comparison of two curves cos(θ/2) and 1 − θ/π .

Lemma 1.

OPTOHI ≥ OPTSDP ≥ E(W). (5)

Proof. Through Equation (3), we can convert the optimal solution of OHI obtained by IQP into a
feasible solution of SDP. Therefore, OPTOHI ≥ OPTSDP. Let {y0, y1, . . . , ym} be the optimal solution
obtained by SDP. Let the angle between two unit vectors y0 and yi be θi , 0 ≤ θi ≤ π and 1 ≤ i ≤ m.
Thus, y0 · yi = cos θi . Given two random vectors z1 and z2, the probability for (z1 · y0)(z1 · yi) > 0 and
(z2 · y0)(z2 · yi) > 0 (or the probability for setting xi = 1) is ((π − θi)/π)2 = (1 − θi/π)2, as shown in
Fig. 1. Thus,

E[(1 + xi)
2] = (1 + 1)2 × (1 − θi/π)2 + (1 − 1)2 × (1 − (1 − θi/π)2) = 4(1 − θi/π)2.

At the same time,

(y0 + yi)
2 = 2 + 2y0 · yi = 2 + 2 cos θi = 4 cos2(θi/2).

Obviously,

cos(θi/2) ≥ 1 − θi/π,

as shown in Fig. 1. Thus,

(y0 + yi)
2 ≥ E[(1 + xi)

2],

OPTSDP =
m∑

i=1

(y0 + yi)
2/4 ≥

m∑
i=1

E[(1 + xi)
2/4] = E(W).

After each iteration (Step 4) in algorithm SDPHapInfer, E(W) becomes smaller and smaller. For any
three vectors y0, ys , and yt , we let α denote the angle between y0 and ys , β denote the angle between y0
and yt , and γ denote the angle between ys and yt , as shown in Fig. 2a. Obviously,

0 ≤ α + β + γ ≤ 2π, for 0 ≤ α, β, γ ≤ π. (6)

Lemma 2. After randomized rounding, the probability for (1 + xs)(1 + xt) = 4 is

(
1 − α + β + γ

2π

)2

,

and the probability for (1 + xs)(1 + xt) = 0 is

1 −
(

1 − α + β + γ

2π

)2

.

1266 HUANG ET AL.

FIG. 2. (a) Three angles for vectors y0, ys , and yt ; (b) the sphere triangle ABC formed by three planes to which
y0, ys , and yt are norm vectors.

Proof. After randomized rounding, (1+xs)(1+xt) = 4 or = 0 and nothing else, and (1+xs)(1+xt) = 4
indicates that two random vectors z1 and z2 satisfy the following two conditions: (1) z1 ·y0 > 0, z1 ·ys > 0,
z1 · yt > 0, or z1 · y0 < 0, z1 · ys < 0, z1 · yt < 0; (2) z2 · y0 > 0, z2 · ys > 0, z2 · yt > 0, or z2 · y0 < 0,
z2 · ys < 0, z2 · yt < 0. We project all unit vectors y0, ys , and yt into unit vectors on a three-dimensional
sphere. Let P0 be the plane to which y0 is a normal vector, and similarly, we define plane Ps to ys and
plane Pt to yt . As shown in Fig. 2b, the three planes P0, Ps , and Pt intersect the sphere and thus define
a sphere triangle within which any random vector z (i.e., z1 or z2) satisfies z · y0 > 0, z · ys > 0, and
z · yt > 0. In fact, the three surface angles of this sphere triangles are π − α, π − β, and π − γ , and the
surface area of the sphere triangle is equal to

(π − α) + (π − β) + (π − γ) − π = 2π − α − β − γ.

Considering the symmetric case that z ·y0, z ·ys , and z ·yt are all negative, we can calculate the probability
of z1 and z2 for (1 + xs)(1 + xt) = 4,

(
2 × 2π − α − β − γ

4π

)2

=
(

1 − α + β + γ

2π

)2

,

and the probability of z1 and z2 for (1 + xs)(1 + xt) = 0,

1 −
(

1 − α + β + γ

2π

)2

.

Lemma 3. If 0 ≤ α + β + γ ≤ 2π and 0 ≤ α, β, γ ≤ π ,

1 − α + β + γ

2π
≥ 1 + cos α + cos β + cos γ

2π
. (7)

Proof. We define a function f (x) = x + cos x for x ∈ [0, π]. Obviously,

f ′ = 1 − sin x ≥ 0, f (0) = 1 and f (π) = π − 1. (8)

Thus, f increases monotonically over [0, π]. We define another function

g = 2π − 1 − (cos α + α) − (cos β + β) − (cos γ + γ) (9)

for 0 ≤ α + β + γ ≤ 2π and 0 ≤ α, β, γ ≤ π . Equation (7) holds if and only if g ≥ 0. We first show
that g ≥ 0 for the case of α + β + γ = 2π . For α + β + γ ≤ 2π , we show g > 0 by increasing α, β, and
γ to satisfy both 0 ≤ α, β, γ ≤ π and α + β + γ = 2π . In this process, g decreases because f increases
monotonically over [0, π]. Combining these two cases, the lemma holds.

HAPLOTYPE INFERENCE BY MAXIMUM PARSIMONY 1267

Assume α + β + γ = 2π . Then, we replace α by 2π − β − γ ,

g = 2π − 1 − (cos(2π − β − γ) + 2π − β − γ) − (cos β + β) − (cos γ + γ)

= −1 − cos(β + γ) − cos β − cos γ

= −1 − (cos β cos γ − sin β sin γ) − cos β − cos γ

= sin β sin γ − (cos β + 1)(cos γ + 1)

= 2 sin
β

2
cos

β

2
× 2 sin

γ

2
cos

γ

2
− 2 cos2 β

2
× 2 cos2 γ

2

= 4 cos
β

2
cos

γ

2

(
sin

β

2
sin

γ

2
− cos

β

2
cos

γ

2

)

= −4 cos
β

2
cos

γ

2
cos

β + γ

2

= 4 cos
β

2
cos

γ

2
cos

α

2

≥ 0.

By Lemmas 2 and 3, the probability for (1 + xs)(1 + xt) = 0 is

1 −
(

1 − α + β + γ

2π

)2

≤ 1 −
(

1 + cos α + cos β + cos γ

2π

)2

. (10)

Lemma 4. The probability that each inequality in IQP (Equation (1)) is not satisfied after the ran-
domized rounding of SDP is at most e−4/kπ2

.

Proof. Let (y0 + ys) · (y0 + yt) be the ith term in the j th inequality in SDP (Equation (2)). Let k be
the number of terms in the j th inequality. Let αi , βi , and γi be the angles for vectors y0 and ys , vectors
y0 and yt , and vectors ys and yt , respectively. By Lemma 2, the probability that the j th inequality in IQP
(Equation (1)) is not satisfied is

�k
i=1

(
1 −

(
1 − αi + βi + γi

2π

)2
)

.

By Equation (10),

�k
i=1

(
1 −

(
1 − αi + βi + γi

2π

)2
)

≤ �k
i=1

(
1 −

(
1 + cos αi + cos βi + cos γi

2π

)2
)

≤
(

1 −
∑k

i=1(1 + cos αi + cos βi + cos γi)
2/k

4π2

)k

.

In fact, ∑
(hs ,ht)∈Sj

(y0 + ys) · (y0 + yt) =
∑

(hs ,ht)∈Sj

(1 + y0 · yt + y0 · ys + ys · yt)

=
k∑

i=1

(1 + cos αi + cos βi + cos γi) ≥ 4.

1268 HUANG ET AL.

Thus,

(
1 −

∑k
i=1(1 + cos αi + cos βi + cos γi)

2/k

4π2

)k

≤
(

1 − 16/k2

4π2

)k

=
(

1 − 4

k2π2

)k

≈ e−4/kπ2
.

The probability that the j th inequality is not satisfied is at most e−4/kπ2
.

Theorem 1. Algorithm SDPHapInfer gives a solution of O(log n) approximation.

Proof. After t iterations in the algorithm, the probability that the ith inequality in IQP (Equation (1))
is not satisfied is at most pi = (e−4/kπ2

)t = e−4t/kπ2
. Therefore, the probability that at least one of the

inequalities in IQP is not satisfied is less than p = ∑n
i=1 pi = n × e−4t/kπ2

. Let t = c(kπ2/4) ln n, where
c is a constant. Then p = 1/nc−1. Thus, after t iterations, the probability that all the inequalities are
satisfied is at least 1 − 1/nc−1. Also, the expected total number of haplotypes selected is

E

[
m∑

i=1

(1 + xi)
2/4

]
≤ t × E(W) ≤ t × OPTIQP.

With a high probability, algorithm SDPHapInfer stops after O(log n) iterations and finds a solution of
O(log n) approximation.

OHI is NP-hard

Theorem 2. The optimal haplotype inference (OHI) problem is NP-hard.

Proof. We make a reduction from an NP-complete problem called Exact Cover By 3-Sets (X3C)
(Garey and Johnson, 1979) to OHI. The X3C is defined as follows: given a set X = {x1, x2, . . . , xn} with
n = 3q elements and a collection C = {C1, C2, . . . , Cm} of 3-element subsets of X, find a subcollection
C′ ⊆ C such that every element of X occurs in exactly one member of C′.

Example. Given X = {1, 2, 3, 4, 5, 6}, C = {C1 = {1, 2, 3}, C2 = {2, 3, 4}, and C3 = {4, 5, 6}}, then
C′ = {C1, C3}.

Genotype construction. Assume every subset in C is distinct. We construct genotypes and haplotypes
with m+ 1 SNP loci, where the j th SNP corresponds to collection Cj . We will explain the purpose of the
(m+1)th SNPs in the following paragraphs. In this reduction, we construct a set of genotypes G = G1∪G2
and a set of haplotypes H = H1 ∪ H2, such that genotypes in G can be resolved by haplotypes in H .

We first design n genotypes for G1, where each genotype gi corresponds to xi and the value of gij is
determined by whether xi ∈ Cj :

G1 = {gi | gij = 2 if xi ∈ Cj or j = m + 1, and gij = 0 otherwise, i = 1, . . . , n}.

Example. For the given X and C, we construct G1 = {g1 = (2, 0, 0, 2), g2 = (2, 2, 0, 2), g3 =
(2, 2, 0, 2), g4 = (0, 2, 2, 2), g5 = (0, 0, 2, 2), g6 = (0, 0, 2, 2)}.

At the same time, we consider a specific set H1 of m haplotypes, where each haplotype hj corresponds
to Cj :

H1 = {hj | hjj = 1, hj m+1 = 1, and hjk = 0 otherwise, j = 1, . . . , m}.

HAPLOTYPE INFERENCE BY MAXIMUM PARSIMONY 1269

Example. For the given X and C, H1 = {h1 = (1, 0, 0, 1), h2 = (0, 1, 0, 1), h3 = (0, 0, 1, 1)}.

Obviously, H1 itself cannot resolve G1, so we add another set of haplotypes H2, such that H1 ∪ H2
resolves G1. Let Di be the set of heterozygous loci (value 2) in gi except the (m + 1)th SNP. Let
H2 = H

(1)
2 ∪ H

(2)
2 ∪ . . . ∪ H

(n)
2 , where

H
(i)
2 = {h(i)

j , j ∈ Di | h
(i)
jk = 1 if k ∈ Di & j 	= k, and h

(i)
jk = 0 otherwise},

and h
(i)
j ⊗ hj = gi .

Example. For the sample example, D1 = {1}, D2 = D3 = {1, 2}, D4 = {2, 3}, D5 = D6 = {3},
and H2 = H

(1)
2 ∪ H

(2)
2 ∪ H

(3)
2 ∪ H

(4)
2 ∪ H

(5)
2 ∪ H

(6)
2 , where H

(1)
2 = {h(1)

1 = (0, 0, 0, 0)}, H
(2)
2 =

{h(2)
1 = (0, 1, 0, 0), h

(2)
2 = (1, 0, 0, 0)}, H

(3)
2 = {h(3)

1 = (0, 1, 0, 0), h
(3)
2 = (1, 0, 0, 0)}, H

(4)
2 = {h(4)

2 =
(0, 0, 1, 0), h

(4)
3 = (0, 1, 0, 0)}, H

(5)
2 = {h(5)

3 = (0, 0, 0, 0)}, H
(6)
2 = {h(6)

3 = (0, 0, 0, 0)}.
Clearly, h1 ⊗ h

(1)
1 = g1, h1 ⊗ h

(2)
1 = g2, h2 ⊗ h

(2)
2 = g2, etc.

To make this reduction complete, we construct the final set of genotypes G2 where each genotype
is homozygous and corresponds to one haplotype in H2. Let G2 = G

(1)
2 ∪ G

(2)
2 ∪ . . . ∪ G

(n)
2 , where

G
(i)
2 == H

(i)
2 , or

G
(i)
2 = {g(i)

j == h
(i)
j , j ∈ Di & h

(i)
j ∈ H

(i)
2 }.

Here we use “==” to indicate that a genotype is numerically equal to a haplotype.

X3C to OHI reduction. Obviously, we need H2 to resolve G2. The (m + 1)th SNPs prevent the case
that a genotype can be resolved by two haplotypes from H1 or two haplotypes from H2. A solution C′
to X3C defines a set of haplotypes H ′ ⊆ H1, where hj ∈ H ′ if Cj ∈ C′. For any genotype gi ∈ G1,
since for any xi ∈ X there exists Cj ⊆ C′ such that xi ∈ Cj , we have a haplotype configuration for gi :

hj ⊗ h
(i)
j = gi . Thus H ′ ∪ H2 resolves every genotype in G.

On the other hand, we show that H ′ ∪ H2 is the minimum set. Let S ∪ H2 be another haplotype
configuration (solution) for G; S may contain haplotypes outside H . Let si ∈ S, and the value at the
kth locus of si is 1. Since the kth SNP corresponds to a subset Ck , there are exactly three genotypes,
corresponding to elements of Ck , with a nonzero value (2) at the kth locus. Then si can resolve at most
three genotypes in G1, and thus |S| ≥ n/3 = |H ′|. H ′ is optimal.

Example. Following the example above, C′ = {C1 ∪ C3} covers X, and the corresponding haplotypes
are {h1, h3} ∪ H2. The optimal haplotype configuration is h1 ⊗ h

(1)
1 = g1, h1 ⊗ h

(2)
1 = g2, h1 ⊗ h

(3)
1 = g3,

h3 ⊗ h
(4)
3 = g4, h3 ⊗ h

(5)
3 = g5, and h3 ⊗ h

(6)
3 = g6.

In summary, OHI is NP-hard.

3. RESULTS AND DISCUSSION

The SDPHapInfer algorithm has been implemented in MatLab. In practice, because of numerous het-
erozygous SNP loci, the number of possible haplotypes could be very large. As a result, solving the
semi-definite programming may be inefficient. To improve the efficiency of SDPHapInfer, we discard the
haplotypes whose removal does not affect the optimal solution. For details of these methods, please refer
to Gusfield (2003) and Wang and Xu (2003).

Furthermore, after obtaining a set of haplotypes, there could be more than one haplotype pair that can
resolve the same genotype. As a consequence, we have to decide which haplotype pair should be assigned

1270 HUANG ET AL.

to the genotype. In our implementation, each haplotype is associated with a frequency, which is defined
as the number of genotypes resolved by the haplotype. When a genotype can be resolved by multiple
haplotype pairs, we first calculate the product of frequencies for each haplotype pair. Then, the haplotype
pair with maximun product is assigned to the genotype. For example, suppose that the problem input
consists of three genotypes (g1, g2, and g3) and SDPHapInfer finds four haplotypes (h1, h2, h3, and h4).
If g1 = h1 ⊗h2 = h3 ⊗h4, g2 = h1 ⊗h3, and g3 = h1 ⊗h4, the frequencies for all haplotypes are h1 = 3,
h2 = 1, h3 = 2, and h4 = 2. In this example, SDPHapInfer will output the solution g1 = h3 ⊗ h4 (instead
of h1 ⊗ h2) for genotype g1.

The SDPHapInfer algorithm has been tested on a variety of simulated and biological data. The experi-
mental results of SDPHapInfer are compared with a branching and bound algorithm called HAPAR (Wang
and Xu, 2003), a PL-EM algorithm called HAPLOTYPER (Niu et al., 2002), and PHASE (Stephens et al.,
2003) which combined the Gibbs sampling algorithm with an approximate coalescent prior.

Comparison of the number of haplotypes

We randomly generate m haplotypes with k SNPs. Based on these haplotypes, a genotype is created by
randomly pairing two haplotypes. Denote n as the number of genotypes which are created in this way.
SDPHapInfer, HAPAR, HAPLOTYPER, and PHASE are then applied to resolve these n genotypes. We
first compare the number of haplotypes found by each algorithm under two parameter settings: (1) m = 10,
k = 10, and n ranges from 5 to 25; (2) m = 20, k = 10, and n ranges from 5 to 25.

Table 1 lists the numbers of haplotypes found by each algorithm. When m = 10, all algorithms output
similar numbers of haplotypes. When m = 20, the number of haplotypes found by PHASE is significantly
larger than the others. This is because PHASE incorporates the coalescent model which tends to select the
haplotype that is close to an included one. However, random data are less likely to have close haplotypes.
Due to the lack of coalescent information, PHASE tends to use more haplotypes than do other methods.

In addition, we observe that HAPAR requires substantially longer execution time than other methods as
m and n become larger. For example, when m = 20 and n ≥ 18, HAPAR fails to output a solution in two
hours, while other methods usually output solutions in less than 10 minutes. We also test these programs
on large datasets containing a few hundreds of genotypes generated from a limited number of haplotypes
(i.e., m = 10 and n = 100, 200, and 300). The experimental result indicates that all programs can still
handle large datasets as long as the numbers of haplotypes and SNPs are limited.

Experiments on simulated data

We now evaluate these algorithms by the error rate, which is a commonly used criterion in the haplotype
inference study (Stephens et al., 2003; Wang and Xu, 2003). The error rate is defined as the proportion
of genotypes whose original haplotype pairs are inferred incorrectly. Two kinds of simulated data, random
data and Hudson’s data (Hudson, 2002), are tested in our experiments.

In the experiment on random data, we adopt the first parameter setting (i.e., m = 10 and k = 10)
and randomly generate 100 datasets for each parameter n (i.e., the number of genotypes). Define ea as

Table 1. The Number of Haplotypes Found by Each Algorithma

m = 10, k = 10, n = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SDPHapInfer 7 6 7 8 7 8 10 10 9 9 9 10 7 10 10 9 10 10 10 10 10
HAPAR 7 6 7 8 7 8 10 10 9 9 9 10 7 10 10 10 10 10 10 10 10
HAPLOTYPER 7 6 7 8 7 8 10 10 9 9 9 10 7 10 10 10 10 10 10 10 10
PHASE 10 6 11 11 7 8 15 11 16 9 10 12 7 10 10 9 10 12 10 34 24

m = 20, k = 10, n = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SDPHapInfer 8 8 11 9 14 13 13 15 13 15 14 15 18 18 17 16 15 15 20 17 18
HAPAR 9 8 11 9 14 13 13 14 13 f 14 f 18 f f f f f f f f

HAPLOTYPER 8 8 11 9 14 13 13 15 13 14 14 14 18 18 15 16 15 15 20 17 18
PHASE 9 9 14 15 17 16 20 20 25 26 26 28 24 29 32 33 24 26 32 39 35

af : fail to find a solution in two hours.

HAPLOTYPE INFERENCE BY MAXIMUM PARSIMONY 1271

FIG. 3. The comparison of four algorithms on simulated data.

the average error rate of an algorithm over 100 datasets. Figure 3(a) plots ea with respect to n for each
algorithm. When n is small, these genotypes can be resolved by many possible combinations of haplotypes.
Thus, the error rates of all algorithms are very high (Wang and Xu, 2003). The error rate for each program
is significantly improved as n grows. When applying these programs on large datasets with n ≥ 100, all
error rates are very close to zero. For example, when n = 300, the error rates of all programs are only
around 0.01.

We observe that the error rates of PHASE are higher than those of SDPHapInfer, HAPAR, and HAP-
LOTYPER in this experiment. This is because random data does not fit the coalescent model of PHASE.
The coalescent information in random data is inadequate for PHASE to infer correct haplotypes. On the
other hand, the methods based on other models perform well on random data (e.g., the error rates are less
than 0.1 when n > 12).

In the experiment on Hudson’s data, we generate coalescent haplotypes by Hudson’s program (Hudson,
2002) which can simulate a set of haplotypes under the assumption of neutral evolution and a uniformly
distributed recombination rate using the coalescent model. When using this program, the recombination
parameter is set to 100. Similarly, 100 datasets (for each parameter n) are generated by randomly pairing
these haplotypes. Figure 3(b) plots ea with respect to n for all algorithms. In this experiment, PHASE out-
performs all other methods. This is because these simulation haplotypes are generated using the coalescent
method and PHASE incorporates the approximate coalescent prior in their algorithm. The error rates of
all algorithms again gradually decrease as n becomes larger.

Experiments on biological data

We also test these algorithms on biological data of β2-Adrenergic receptors (β2ARs) from Drysdale
et al. (2000) and cystic fibrosis from Kerem et al. (1989). The β2ARs data contain 15 haplotypes with 13
SNPs, and the cystic fibrosis data consist of 28 haplotypes with 23 SNPs. We again generate 100 datasets
for each parameter n by randomly pairing these haplotypes.

Figure 4(a) plots ea with respect to n for the experiment on the β2ARs data. The experimental result
indicates that the error rates of SDPHapInfer are similar to those of HAPLOTYPER. On the other hand,
PHASE slightly outperforms other methods when n is small, and the error rates are close to those of
SDPHapInfer and HAPLOTYPER when n becomes large. It is a surprise to see that HAPAR is outperformed
by other programs, because theoretically the solution found by SDPHapInfer is an approximation to the
optimal solution found by HAPAR. We observed that sometimes HAPAR may fail to resolve all genotypes
in one dataset and thus obtains higher error rates. One possible reason is that HAPAR discards many
haplotypes to increase efficiency in the implementation, but it might discard critical haplotypes and then
cannot resolve all genotypes.

Figure 4(b) plots ea with respect to n for the experiment on the cystic fibrosis data. In this experiment,
many genotypes cannot be resolved by HAPAR in two hours and are thus discarded. Because of insufficient
data, the error rates do not decrease smoothly as in previous experiments. The performance of each
algorithm does not differ much on these data.

1272 HUANG ET AL.

FIG. 4. The comparison of four algorithms on biological data.

Discussion and comparison

PHASE outperforms other methods in Hudson’s data because they are generated using a coalescent
process and PHASE uses an approximate coalescent prior in the Gibbs sampling algorithm. This is also
the reason that the performance of PHASE is slightly better than that of others in biological data of β2ARs
and of cystic fibrosis, but much worse in random data.

The performance of SDPHapInfer is very similar to that of HAPLOTYPER in all experiments. One
possibility is that SDPHapInfer infers haplotypes based on a criterion which mixes the maximum parsimony
model with the maximum likelihood method used in HAPLOTYPER. Consider an alternative relaxation
of IQP (Equation (1)) to the following quadratic programming:

Minimize
m∑

i=1

(1 + xi)
2/4

subject to:
∑

(hr ,ht)∈Sj

(1 + xr)(1 + xt)/4 ≥ 1, ∀j ∈ [1, n],

−1 ≤ xi ≤ 1, ∀i ∈ [1, m].

Define wi = (1 + xi)/2. We can think of wi as the weight of the ith haplotype that contributes to
the resolution of a genotype. Since 0 ≤ wi ≤ 1, the meaning of wi is similar to the ith haplotype
frequency expressed in the likelihood function of HAPLOTYPER (Niu et al., 2002). Note that the SDP
relaxation (Equation (2)) is simply a further relaxation of IQP. Therefore, this mixed criterion implies that
SDPHapInfer can find solutions as good as HAPLOTYPER.

4. CONCLUSION

In this paper, we studied haplotype inference by maximum parsimony using population data. We formu-
lated this problem as an integer quadratic problem and proposed an iterative semi-definite programming-
based approximation algorithm called SDPHapInfer. In addition, we proved that SDPHapInfer finds a
solution within a factor of O(log n) of the optimal solution. The SDPHapInfer algorithm has been im-
plemented, tested, and compared with three other methods on a variety of simulated and biological data.
The experimental results indicate that the error rates of SDPHapInfer and HAPLOTYPER are similar on
all kinds of data. PHASE has lower error rates than other methods on Hudson’s data but has higher error
rates on random data. In the experiment on the β2ARs data, the performance of HAPAR is worse than the
others. In terms of efficiency, HAPAR is the fastest of the four algorithms when the numbers of haplotypes
and genotypes are small. However, the execution time of HAPAR is unstable. Especially on the datasets of
larger haplotypes and genotypes, it is substantially slower than the others. On the other hand, SDPHapInfer,
HAPLOTYPER, and PHASE output solutions in a stable and consistent way.

HAPLOTYPE INFERENCE BY MAXIMUM PARSIMONY 1273

ACKNOWLEDGMENTS

We thank Hsueh-I Lu for his help in semi-definite programming. We thank Thiruvarangan Ramanaj for
pointing out a mistake in Lemma 4. We also thank the referees for their valuable comments. Yao-Ting
Huang and Kun-Mao Chao were supported in part by NSC grants 92-2213-E-002-059 and 93-2213-E-002-
029. Ting Chen was supported in part by NIH CEGS: Implications of Haplotype Structure in the Human
Genome, Grant No. P50 HG002790.

REFERENCES

Bafna, V., Gusfield, D., Lancia, G., and Yooseph, S. 2003. Haplotyping as perfect phylogeny: A direct approach.
J. Comp. Biol. 10, 323–340.

Brown, D., and Harrower I. 2004. A new integer programming formulation for the pure parsimony problem in haplotype
analysis. Proc. WABI ’04, 254–265.

Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., and Lander, E.S. 2001. High-resolution haplotype structure in
the human genome. Nature Genet. 29(2), 229–232.

Douglas, J.A., Boehnke, M., Gillanders, E., Trent, J.M., and Gruber, S.B. 2001. Experimentally-derived haplotypes
substantially increase the efficiency of linkage disequilibrium studies. Nature Genet. 28(4), 361–364.

Drysdale, C., McGraw, D., Stack, C., Stephens, J., Judson, R., et al. 2000. Complex promoter and coding region
β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl. Acad.
Sci. 97, 10483–10488.

Eskin, E., and Halperin, E. 2003. Large scale recovery of haplotypes from genotype data using imperfect phylogeny.
Proc. RECOMB ’03, 104–113.

Excoffier, L., and Slatkin, M. 1995. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid
population. Mol. Biol. Evol. 12, 921–927.

Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner,
A., Faggart, M., Liu-Cordero, S.N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E.S., Daly, M.J., and
Altshuler, D. 2002. The structure of haplotype blocks in the human genome. Science 296(5576), 2225–2229.

Garey, M.R., and Johnson, D.S. 1979. Computers and Intractability, Freeman, New York.
Gusfield, D. 2001. Inference of haplotypes from samples of diploid populations: Complexity and algorithms. J. Comp.

Biol. 8, 305–323.
Gusfield, D. 2002. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. Proc. RECOMB

’02, 166–175.
Gusfield, D. 2003. Haplotyping by pure parsimony. Proc. CPM ’03, Lecture Notes in Computer Science 2676, 144–155.
Helmuth, L. 2001. Genome research: Map of the human genome 3.0. Science 293(5530), 583–585.
Huang, Y.-T., Zhang, K., Chen, T., and Chao, K.-M. 2004. Approximation algorithms for the selection of robust tag

SNPs. Proc. WABI ’04, 278–289.
Hudson, R.R. 2002. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18,

337–338.
Kerem, B., Rommens, J., Buchanan, J., Markiewicz, D., Cox, T., Chakravarti, A., Buchwald, M., and Tsui, L.C. 1989.

Identification of the cystic fibrosis gene: Genetic analysis. Science 245, 1073–1080.
Lancia, G., Pinotti, C., and Rizzi., R. 2004. Haplotyping populations by pure parsimony: Complexity of exact and

approximation algorithms. INFORMS J. Comp. 16, 348–359.
Lin, S., Cutler, D.J., Zwick, M.E., and Chakravarti, A. 2002. Haplotype inference in random population samples. Am.

J. Human Genet. 71, 1129–1137.
Niu, T., Qin, Z., Xu, X., and Liu, J.S. 2002. Bayesian haplotype inference for multiple linked single-nucleotide

polymorphisms. Am. J. Human Genet. 70, 157–159.
Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., Doshi, J.M., Hacker, C.R., Kautzer, C.R., Lee, D.H., Marjoribanks,

C., McDonough, D.P., et al. 2001. Blocks of limited haplotype diversity revealed by high-resolution scanning of
human chromosome 21. Science 294, 1719–1723.

Qin, Z., Niu, T., and Liu, J. 2002. Partitioning-ligation-expectation-maximization algorithm for haplotype inference
with single-nucleotide polymorphisms. Am. J. Human Genet. 71, 1242–1247.

Seltman, H., Roeder, K., and Devlin, B. 2001. Transmission/disequilibrium test meets measured haplotype analysis:
Family-based association analysis guided by evolution of haplotypes. Am. J. Human Genet. 68(5), 1250–1263.

Sharan, R., Halldorsson, B.V., and Istrail, S. 2005. Islands of tractability for parsimony haplotyping. Proc. CSB ’05,
to appear.

Stephens, M., and Donnelly, P. 2003. A comparison of Bayesian methods for haplotype reconstruction from population
genotype data. Am. J. Human Genet. 73, 1162–1169.

1274 HUANG ET AL.

Stephens, M., Smith, N.J., and Donnelly, P. 2001. A new statistical method for haplotype reconstruction from population
data. Am. J. Human Genet. 68(4), 978–989.

Wang, L., and Xu, Y. 2003. Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–1780.
Zhang, K., Deng, M., Chen, T., Waterman, M.S., and Sun, F. 2002. A dynamic programming algorithm for haplotype

partitioning. Proc. Natl. Acad. Sci. 99(11), 7335–7339.
Zhang, K., Sun, F., Waterman, M.S., and Chen, T. 2003. Haplotype block partition with limited resources and appli-

cations to human chromosome 21 haplotype data. Am. J. Human Genet. 73, 63–73.
Zhang, K., Qin, Z.S., Liu, J.S., Chen, T., Waterman, M.S., and Sun, F. 2004. Haplotype block partitioning and tag

SNP selection using genotype data and their applications to association studies. Genome Res. 14(5), 908–916.

Address correspondence to:
Kun-Mao Chao

Department of Computer Science
National Taiwan University

#1 Roosevelt Rd. Sec. 4
Taipei, Taiwan

E-mail: kmchao@csie.ntu.edu.tw

or to

Ting Chen
Department of Biological Sciences
University of Southern California
1042 West 36th Place, DRB 290

Los Angeles, CA 90089-1113

E-mail: tingchen@usc.edu

