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Abstract

The problem of inferring haplotypes from genotypes of single nucleotide polymorphisms (SNPs) is
essential for the understanding of genetic variation within and among populations, with important ap-
plications to the genetic analysis of disease propensities and other complex traits. The problem can be
formulated as a mixture model, where the mixture components correspond to the pool of haplotypes in
the population. The size of this pool is unknown; indeed, knowing the size of the pool would correspond
to knowing something significant about the genome and its history. Thus methods for fitting the genotype
mixture must crucially address the problem of estimating a mixture with an unknown number of mixture
components. In this paper we present a Bayesian approach to this problem based on a nonparametric
prior known as the Dirichlet process. The model also incorporates a likelihood that captures statistical
errors in the haplotype/genotype relationship trading off these errors against the size of the pool of
haplotypes. We describe an algorithm based on Markov chain Monte Carlo for posterior inference in our
model. The overall result is a flexible Bayesian method, referred to as DP-Haplotyper, that is reminiscent
of parsimony methods in its preference for small haplotype pools. We further generalize the model to
treat pedigree relationships (e.g., trios) between the population’s genotypes. We apply DP-Haplotyper
to the analysis of both simulated and real genotype data, and compare to extant methods.

1 Introduction

The availability of a nearly complete human genome sequence makes it possible to begin to explore individual
differences between DNA sequences on a genome-wide scale, and to search for associations of such genotypic
variation with disease and other phenotypes [17]. The largest class of individual differences in DNA are the
single nucleotide polymorphisms (SNPs). Millions of SNPs have been detected thus far out of an estimated
total of ten million common SNPs [18].

A SNP commonly has two variants, or alleles, in the population, corresponding to two specific nucleotides
chosen from {A,C, G, T}. A haplotype is a list of alleles at contiguous sites in a local region of a single
chromosome. Assuming no recombination in this local region, a haplotype is inherited as a unit. Recall that
for diploid organisms (such as humans) the chromosomes come in pairs. Thus two haplotypes go together to
make up a genotype, which is the list of unordered pairs of alleles in a region. That is, a genotype is obtained
from a pair of haplotypes by omitting the specification of the association of each allele with one of the two
chromosomes—its phase. Common biological methods for assaying genotypes typically do not provide phase
information; phase can be obtained at a considerably higher cost [16]. It is desirable to develop automatic
methods for inferring haplotypes from genotypes and possibly other data sources (e.g., pedigrees). With a
set of inferred haplotypes in hand, associations to disease can be explored.

From the point of view of population genetics, the basic model underlying the haplotype inference problem
is a finite mixture model. That is, letting H denote the set of all possible haplotypes associated with a given
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region (a set of cardinality 2k in the case of binary polymorphisms, where k is the number of heterozygous
SNPs), the probability of a genotype is given by:

p(g) =
∑

h1,h2∈H
p(h1, h2)I(h1 ⊕ h2 = g) (1)

where I(h1 ⊕ h2 = g) is the indicator function of the event that haplotypes h1 and h2 are consistent with
g. Under the assumption of Hardy-Weinberg equilibrium (HWE), an assumption that is standard in the
literature and will also be made here, the mixing proportion p(h1, h2) is assumed to factor as p(h1)p(h2).

Given this basic statistical structure, the simplest methodology for haplotype inference is maximum
likelihood via the EM algorithm, treating the haplotype identities as latent variables and estimating the
parameters p(h) [5]. This methodology has rather severe computational requirements, in that a probability
distribution must be maintained on the (large) set of possible haplotypes, but even more fundamentally it
fails to capture the notion that small sets of haplotypes should be preferred. This notion derives from an
underlying assumption that for relatively short regions of the chromosome there is limited diversity due to
population bottlenecks and relatively low rates of recombination and mutation.

One approach to dealing with this issue is to formulate a notion of “parsimony,” and to develop algorithms
that directly attempt to maximize parsimony. Several important papers have taken this approach [1, 10, 4]
and have yielded new insights and algorithms. Another approach is to elaborate the probabilistic model,
in particular by incorporating priors on the parameters. Different priors have been discussed by different
authors, ranging from simple Dirichlet priors [15] to priors based on the coalescent process [19] to priors that
capture aspects of recombination [9]. These models provide implicit notions of parsimony, via the implicit
“Ockham factor” of the Bayesian formalism.

We also take a Bayesian statistical approach in the current paper, but we attempt to provide more explicit
control over the number of inferred haplotypes than has been provided by the statistical methods proposed
thus far, and the resulting inference algorithm has commonalities with the parsimony-based schemes.

Our approach is based on a nonparametric prior known as the Dirichlet process [6]. In the setting of
finite mixture models, the Dirichlet process—not to be confused with the Dirichlet distribution—is able to
capture uncertainty about the number of mixture components [3]. The basic setup can be explained in terms
of an urn model, and a process that proceeds through data sequentially. Consider an urn which at the outset
contains a ball of a single color. At each step we either draw a ball from the urn, and replace it with two balls
of the same color, or we are given a ball of a new color which we place in the urn, with a parameter defining
the probabilities of these two possibilities. The association of data points to colors defines a “clustering” of
the data.

To make the link with Bayesian mixture models, we associate with each color a draw from the distribution
defining the parameters of the mixture components. This process defines a prior distribution for a mixture
model with a random number of components. Multiplying this prior by a likelihood yields a posterior
distribution. Markov chain Monte Carlo algorithms have been developed to sample from the posterior
distributions associated with Dirichlet process priors [3, 14].

The usefulness of this framework for the haplotype problem should be clear—using a Dirichlet process
prior we in essence maintain a pool of haplotype candidates that grows as observed genotypes are processed.
The growth is controlled via a parameter in the prior distribution that corresponds to the choice of a new
color in the urn model, and via the likelihood, which assesses the match of the new genotype to the available
haplotypes.

To expand on this latter point, an advantage of the probabilistic formalism is its ability to elaborate the
observation model for the genotypes to include the possibility of errors. In particular, the indicator function
I(h1 ⊕ h2 = g) in Eq. (1) is suspect—there are many reasons why an individual genotype may not match
with a current pool of haplotypes, such as the possibility of mutation or recombination in the meiosis for
that individual, and errors in the genotyping or data recording process. Such sources of small differences
should not lead to the inference procedure spawning new haplotypes.

In the current paper we present, DP-Haplotyper, a statistical model for haplotype inference based on
a Dirichlet process prior and a likelihood that includes error models for genotypes. We describe a Markov
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chain Monte Carlo procedure, in particular a procedure that makes use of both Gibbs and Metropolis-Hasting
updates, for posterior inference. We present results of applying our method to the analysis of both simulated
and real genotype data, comparing to the state-of-the-art PHASE algorithm [19]. On the simulated data
our predictions are comparable to those obtained by PHASE, and superior to those obtained by the EM
algorithm. On a real dataset of [2] our results are again comparable to those of PHASE, and we outperform
two other algorithms: HAP [11, 4] and HAPLOTYPER [15]. On data from [8], which is a difficult test case
due to the small number of individuals in the sample, we outperform PHASE by a significant margin.

2 Haplotype Inference via the Dirichlet Process

The input to a phasing algorithm can be represented as a genotype matrix G with columns corresponding to
SNPs in their order along the chromosome and rows corresponding to genotyped individuals. Gi,j represents
the information on the two alleles of the i-th individual for SNP j. We denote the two alleles of a SNP
by 0 and 1, and Gi,j can take on one of four values: 0 or 1, indicating a homozygous site; 2, indicating a
heterozygous site; and ’?’, indicating missing data.1

We will describe our model in terms of a pool of ancestral haplotypes, or templates, from which each
population haplotype originates [9]. The haplotype itself may undergo point mutation with respect to its
template. The size of the pool and its composition are both unknown, and are treated as random variables
under a Dirichlet process prior. We begin by providing a brief description of the Dirichlet process and
subsequently show how this process can be incorporated into a model for haplotype inference.

2.1 Dirichlet process mixtures

Rather than present the Dirichlet process in full generality, we focus on the specific setting of mixture models,
and make use of an urn model to present the essential features of the process. For a fuller presentation, see,
e.g., [12]. We assume that data x arise from a mixture distribution with mixture components p(x|φ). We
assume the existence of a base measure G0(φ), which is one of the two parameters of the Dirichlet process.
(The other is the parameter τ , which we present below). The parameter G0(φ) is not the prior for φ, but is
used to generate a prior for φ, in the manner that we now discuss.

Consider the following process for generating samples {x1, x2, . . . , xn} from a mixture model consisting
of an unspecified number of mixture components, or equivalence classes:

• The first sample x1 is sampled from a distribution p(x|φ1), where the parameter φ1 is sampled from
the base measure G0(φ).

• The ith sample, xi, is sampled from the distribution p(x|φci), where:

– The equivalence class of sample i, ci, is drawn from the following distribution:

p(ci = cj for some j < i|c1, . . . , ci−1) =
ncj

i− 1 + τ
(2)

p(ci 6= cj for all j < i|c1, . . . , ci−1) =
τ

i− 1 + τ
, (3)

where nci is the occupancy number of class ci—the number of previous samples belonging to class ci.

– The parameter φci associated with the mixture component ci is obtained as follows:

φci = φcj

if ci = cj for some j < i (i.e., ci is a
populated equivalence class),

φci ∼ G0(φ) if ci 6= cj for all j < i (i.e., ci is a new
equivalence class).

1Although we focus on binary data here, it is worth noting that our methods generalize immediately to non-binary data,
and accommodate missing data.
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Eqs. (2) and (3) define a conditional prior for the equivalence class indicator ci of each sample during
a sequential sampling process. They imply a self-reinforcing property for the choice of equivalence class of
each new sample—previously populated classes are more likely to be chosen. The parameter φk for the k-th
mixture component, p(·|φk), has an interpretation which is problem-specific. In the case of Gaussian mix-
tures, this parameter defines the mean and covariance matrix of each mixture component. In the haplotype
inference problem, φk defines underlying genetic parameters for a population. In particular, in the model we
describe below, we let φk := {A(k), θ(k)}, where A(k) := [A(k)

1 , ..., A(k)

J ] is a founding haplotype configuration,
or ancestral template, for genetic loci t = [1, ..., J ], and where θ(k) is the mutation rate of this founder.

It is important to emphasize that the process that we have discussed generates a prior distribution. We
now embed this prior in a full model that includes a likelihood for the observed data. In Section 3 we develop
Markov chain Monte Carlo inference procedures for this model.

2.2 DP-Haplotyper: a Dirichlet Process Mixture Model for Haplotypes

We now present a probabilistic model, DP-haplotyper, for the generation of haplotypes in a population and
for the generation of genotypes from these haplotypes. We assume that each individual’s genotype is formed
by drawing two random templates from an ancestral pool, and that these templates are subject to random
perturbation. To model such perturbations we assume that each locus is mutated independently from its
ancestral state with the same error rate. Finally, we assume that we are given noisy observations of the
resulting genotypes. The model is displayed as a graphical model in Figure 1.

Hi1
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C i1

C i0

γτ

...Hi  ,2 Hi  ,J0 0
Hi  ,10

...Hi  ,2 Hi  ,J1 1
Hi  ,11
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A J
(k)

A
(k)

A 1
(k)

∞

...

θ(k)

I
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Figure 1: The graphical model representation of the haplotype model with a Dirichlet process prior. Circles represent the state
variables, ovals represent the parameter variables, and diamonds represent fixed parameters. The dashed boxes denote sets of
variables corresponding to the same ancestral template, haplotype, and genotype, respectively. The solid boxes correspond to
i.i.d. replicates of sets of variables, each associated with a particular individual, or ancestral template, respectively.

Let J be an ordered list of loci of interest. For each individual i, we denote his/her paternal haplotype by
Hi0 := [Hi0,1, . . . , Hi0,J ] and maternal haplotype by Hi1 := [Hi1,1, . . . , Hi1,J ]. We denote a set of ancestral
templates as A = {A(1), A(2), . . .}, where A(k) := [A(k)

1 , . . . , A(k)

J ] is a particular member of this set.
In our framework, the probability distribution of the haplotype variable Hit , where the sub-subscript

t ∈ {0, 1} indexes paternal or maternal origin, is modeled by a mixture model with an unspecified number
of mixture components, each corresponding to an equivalence class defined by the choice of a particular
ancestor. For each individual i, we define the equivalence class variables Ci0 and Ci1 for the paternal and
maternal haplotypes, respectively, to specify the ancestral origin of the corresponding haplotype. The Cit

are the random variables corresponding to the equivalence classes of the Dirichlet process. The base measure
G0 of the Dirichlet process is a joint distribution on ancestral haplotypes A and mutation parameters θ,
where the latter captures the probability that an allele at a locus is identical to the ancestor at this locus.
We let G0(A, θ) ≡ p(A)p(θ), and we assume that p(A) is a uniform distribution over all possible haplotypes.
We let p(θ) be a beta distribution, Beta(αh, βh), and we choose a small value for βh/(αh+βh), corresponding
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to a prior expectation of a low mutation rate.
Given Cit

and a set of ancestors, we define the conditional probability of the corresponding haplotype
instance h := [h1, . . . , hJ ] to be:

p(Hit
= h|Cit

= k,A = a, θ)
= p(Hit

= h|A(k) = a, θ(k) = θ)

=
∏

j

p(hj |aj , θ), (4)

where p(hj |aj , θ) is the probability of having allele hj at locus j given its ancestor. Eq. (4) assumes that
each locus is mutated independently with the same error rate. For haplotypes, Hit,j takes values from a set
B of alleles. We use the following single-locus mutation model :

p(hj |aj , θ) = θI(hj=aj)
( 1− θ

|B| − 1

)I(hj 6=aj)

(5)

where I(·) is the indicator function.
The joint conditional distribution of haplotype instances h = {hit

: t ∈ {0, 1}, i ∈ {1, 2, . . . , I}} and
parameter instances θ = {θ(1), . . . , θ(K)}, given the ancestor indicator c of haplotype instances and the set of
ancestors a = {a(1), . . . , a(K)}, can be written explicitly as:

p(h,θ|c,a) ∝
∏

k

[
θ(k)

]mk+αh−1
(1− θ(k)

|B| − 1

)m′
k[

1− θ(k)
]βh−1 (6)

where mk =
∑

j

∑
i

∑
t I(hit,j = ak,j)I(cit = k) is the number of alleles that were not mutated with respect

to the ancestral allele, and m′
k =

∑
j

∑
i

∑
t I(hit,j 6= ak,j)I(cit = k) is the number of mutated alleles. The

count mk = {mk, m′
k} is a sufficient statistic for the parameter θk and the count m = {mk,m′

k} is a sufficient
statistic for the parameter θ. The marginal conditional distribution of haplotype instances can be obtained
by integrating out θ in Eq. (6):

p(h|c,a) =
∏

k

R(αh, βh)
Γ(αh + mk)Γ(βh + m′

k)
Γ(αh + βh + mk + m′

k)

( 1
|B| − 1

)m′
k

(7)

where Γ(·) is the gamma function, and R(αh, βh) = Γ(αh+βh)
Γ(αh)Γ(βh) is the normalization constant associated with

Beta(αh, βh). (For simplicity, we use the abbreviation Rh for R(αh, βh) in the sequel).
We now introduce a noisy observation model for the genotypes. We let Gi = [Gi,1, . . . , Gi,J ] denote the

joint genotype of individual i at loci [1, . . . , J ], where each Gi,j denotes the genotype at locus j. We assume
that the observed genotype at a locus is determined by the paternal and maternal alleles of this locus as
follows:

p(gi,j |hi0,j , hi1,j , γ) = γI(hi,j=gi,j)[µ1(1− γ)]I(hi,j

1
6=gi,j)[µ2(1− γ)]I(hi,j

2
6=gi,j)

where hi,j , hi0,j ⊕ hi1,j denotes the unordered pair of two actual SNP allele instances at locus j; “
1

6=”
denotes set difference by exactly one element (i.e., the observed genotype is heterozygous, while the true

one is homozygous, or vice versa); “
2

6=” denotes set difference of both elements (i.e., the observed and true
genotypes are different and both are homozygous); and µ1 and µ2 are appropriately defined normalizing
constants 2. We place a beta prior Beta(αg, βg) on γ. Assuming independent and identical error models for
each locus, the joint conditional probability of the entire genotype observation g = {gi : i ∈ {1, 2, . . . , I}}

2For simplicity, we may let µ1 = µ2 = 1/V , where V is the total number of ways a single SNP haplotype hi,j and a single
SNP genotype gi,j can differ (i.e., 2 for binary SNPs). When different µ1 and µ2 are desired to penalize single- and double-
disagreement differently, one must be careful to treat the case of homozygous hi,j and heterozygous hi,j differently, because
they are related to noisy genotype observations in different manners. For example, a heterozygous hi,j (e.g., 01) can not be
related to any genotype with a double-disagreement, whereas a homozygous hi,j (e.g., 00) can (e.g., w.r.t. gi,j = 11).
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and parameter γ, given all haplotype instances is:

p(g, γ|h) =
∏

i

p(gi, γ|hi0 , hi1)

= γαg+u−1
[
1− γ

]βg+u′+u′′−1
µu′

1 µu′′
2 , (8)

where the sufficient statistics u = {u, u′, u′′} are computed as u =
∑

i,j I(hi,j = gi,j), u′ =
∑

i,j I(hi,j

1

6= gi,j),

and u′′ =
∑

i,j I(hj,i

2

6= gj,i), respectively. Note that u + u′ + u′′ = IJ . To reflect an assumption that
the observational error rate is low we set βg/(αg + βg) to a small constant (0.001). Again, the marginal
conditional distribution of g is computed by integrating out γ.

Having described the Bayesian haplotype model, the problem of phasing individual haplotypes and esti-
mating the size and configuration of the latent ancestral pool can be solved via posterior inference given the
genotype data. In Section 3 we describe Markov chain Monte Carlo (MCMC) algorithms for this purpose.

2.3 Haplotype Modeling Given Partial Pedigrees

A diploid individual carries two chromosomes, or haplotypes, one of paternal origin and one of maternal
origin. When a parent-offspring triplet (or even other close biological relatives) are (geno)typed, the ambi-
guity of haplotypes of an individual can sometimes be resolved by exploiting the dependencies among the
haplotypes of family members induced by genetic inheritance and segregation. For example, if both parents
are homozygous, i.e., g1 = a ⊕ a, g0 = b ⊕ b, and the offspring is heterogeneous, i.e., gλ10 = a ⊕ b, where
λ10 denotes the offspring of subjects “1” and “0,” then we can infer that the haplotypes of the offspring are
hλ10 = (a, b). However, inheritance of haplotypes may be more than mere faithful copying. In particular,
chromosomal inheritance could be accompanied by single-generation mutations, which alter single or mul-
tiple SNPs on the chromosomes, and recombinations, which disrupt and recombine some chromosome pairs
in gamete donors to generate novel (i.e., mosaic) haplotypes. Although genotypes of this nature do not di-
rectly lead to full resolution of each individual’s haplotypes, undoubtedly the strong dependencies that exist
among the genotype data (in contrast to the iid genotypes we studied in the last section) could be exploited
to reduce the ambiguity of the phasing. In order to exploit pedigree information, we need to introduce a
few new ingredients into the basic DP-haplotyper model described in the last section and in particular to
model the distribution of individual haplotypes in a population consisting of now partially coupled (rather
than conditionally independent) individuals (Fig. 2). We refer to this expanded model as the Pedi-haplotyper
model. Formally, we introduce a segregation random variable, Sit,j , for each one of the two SNP alleles of
each locus of an individual, to indicate its meiotic origin (i.e., from which one of the two SNP alleles of a
parent it is inherited). For example, Sit,j = 1 indicates that allele Hit,j is inherited from the maternal allele
of individual i’s t-parent (where t = 0 means father and t = 1 means mother). We denote the t-parent
of individual i by π(it), and his/her paternal (resp. maternal) allele by π0(it) (resp. π1(it)). We use the
following conditional distribution to model possible mutation during single generation inheritance:

p(hit,j |sit,j = r, hπ0(it),j , hπ1(it),j , εt) =
[
εt

]I(hit,j=hπr(it),j)[ 1− εt

|B| − 1
]I(hit,j 6=hπr(it),j), (9)

where 1 − εt is the mutation rate during inheritance, and r ∈ {0, 1} represents the choice of the paternal
or maternal alleles of a parent subject by an offspring. Note that this single generation inheritance model
allows different mutational rates for the parental and maternal alleles if desired (e.g., to reflect the difference
in gamete environment in a male or a female body), by letting ε0 and ε1 take different values, or giving them
different beta prior distributions. To model possible recombination events during single generation inheri-
tance, we assume that the list of segregation random variables, [Sit,1, . . . , Sit,J ], associated with individual
haplotype Hit forms a first-order Markov chain, with transition matrix ξ:

p(Sit,j+1 = r′|Sit,j = r) = ξrr′

=
[
ξ
]I(r=r′)[1− ξ

]I(r 6=r′)
, (10)
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Figure 2: The graphical model representation of the Pedi-haplotyper model.

where 1 − ξ is the probability of a recombination event (i.e., a swap of parental origin) at position j. This
model is equivalent to assuming that the recombination events follow a Poisson point process of rate ξ along
the chromosome. If desired, a beta prior Beta(αs, βs) can be introduced for ξ. Again, the recombination
rates in males and females can be different if desired. Considering the overall graphical topology of the
Pedi-haplotyper model, as illustrated in Figure 2, for founding members in the pedigree (i.e., those without
parental information), or half-founding members (i.e., those with information from only one of the two
parents), we assume that their un-progenitored haplotype(s) are inherited from missing ancestors, thus
following the basic haplotype model. For the haplotypes of the offspring in the pedigree, we couple them
to their parents using the single generation mutation and recombination model described in the previous
paragraphs. Thus, the Pedi-haplotyper model proposed in this section is fully generalizable to any pedigree
structure. We note that this model has some commonalities with the probabilistic model for linkage analysis
developed by Fishelson and Geiger [7].

3 Markov chain Monte Carlo for Haplotype Inference

In this section, we describe a Gibbs sampling algorithm for exploring the posterior distribution under our
DP-haplotyper model, including the latent ancestral pool. We also present a Metropolis-Hastings variant of
this algorithm that appears to mix better in practice.

3.1 A Gibbs Sampling Algorithm

Recall that the Gibbs sampler draws samples of each random variable from a conditional distribution of
that variable given (previously sampled) values of all the remaining variables. The variables needed in our
algorithm are: Cit , the index of the ancestral template of a haplotype instance t of individual i; A(k)

j , the
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allele pattern at the jth locus of the kth ancestral template; Hit,j , the tth allele of the SNP at the jth locus
of individual i; and Gi,j , the genotype at locus j of individual i (the only observed variables in the model).
All other variables in the model—θ and γ—are integrated out. The Gibbs sampler thus samples the values
of Cit

, A(k)
j and Hit,j . Conceptually, the Gibbs sampler alternates between two coupled stages. First, given

the current values of the hidden haplotypes, it samples the cit and subsequently a(k)
j , which are associated

with the Dirichlet process prior. Second, given the current state of the ancestral pool and the ancestral
template assignment for each individual, it samples the hit,j variables in the basic haplotype model. In the
first stage, the conditional distribution of cit

is:

p(cit = k |c[−it],h,a)

∝ p(cit
= k |c[−it])

∫
p(hit

|cit
= k, θk, a(k))p(θ(k)|{hi′

t′
: i′t′ 6= it, ci′

t′
= k}, a(k))dθ(k)

= p(cit
= k |c[−it])p(hit

|a(k), c,h[−it])

=

{ n[−it],k

n−1+τ p(hit
|a(k),m[−it],k) if k = ci′

t′
for some i′t′ 6= it

τ
n−1+τ

∑
a′ p(hit

|a′)p(a′) if k 6= ci′
t′

for all i′t′ 6= it
(11)

where [−it] denotes the set of indices excluding it; n[−it],k represents the number of ci′
t′

for i′t′ 6= it that are
equal to k; n represents the total number of instances sampled so far; and m[−it],k denotes the sufficient
statistics m associated with all haplotype instances originating from ancestor k, except hit . This expression
is simply Bayes theorem with p(hit

|a(k), c,h[−it],) playing the role of the likelihood and p(cit = k |c[−it])
playing the role of the prior. The likelihood p(hit |a(k),m[−it],k) is obtained by integrating over the parameter
θ(k), as in Eq. (7), up to a normalization constant:

p(hit |a(k),m[−it],k) ∝ R(αh, βh)
Γ(αh + mit,k)Γ(βh + m′

it,k
)

Γ(αh + βh + mit,k + m′
it,k

)

( 1
|B| − 1

)m′
it,k

, (12)

where mit,k = m[−it],k +
∑

j I(hit,j = a(k)
j ) and m′

it,k
= m′

[−it],k
+

∑
j I(hit,j 6= a(k)

j ), both functions of hit

(note that mit,k + m′
it,k

= nJ) 3. It is easy to see that the normalization constant is the marginal likelihood
p(m[−it],k | a(k)), which leads to:

p(hit |a(k),m[−it],k) =
Γ(αh + mit,k)Γ(βh + m′

it,k
)

Γ(αh + m[−it],k)Γ(βh + m′
[−it],k

)
Γ(αh + βh + (nk − 1)J)

Γ(αh + βh + nkJ)

( 1
|B| − 1

)J

. (13)

For p(hit |a), the computation is similar, except that the sufficient statistics m[−it],k are now null (i.e., no
previous matches with a newly instantiated ancestor):

p(hit |a) = R(αh, βh)
Γ(αh + mit)Γ(βh + m′

it
)

Γ(αh + βh + J)

( 1
|B| − 1

)m′
it

, (14)

where mit =
∑

j I(hj,it = aj) and m′
it

= J −mit,k are the relevant sufficient statistics associated only with
haplotype instance hit . The conditional probability for a newly proposed equivalence class k that is not pop-
ulated by any previous samples requires a summation over all possible ancestors: p(hit) =

∑
a′ p(hit |a′)p(a′).

Since the gamma function does not factorize over loci, computing this summation takes time that is expo-
nential in the number of loci. To skirt this problem we endow each locus with its own mutation parameter
θ(k)

j , with all parameters admitting the same prior Beta(αh, βh) 4. This gives rise to a closed-form formula

3Recall that in Section 2.2 we use the symbol mk to denote the count of matching SNP alleles in those individual haplotypes
associated with ancestor a(k) (and m′

k for those inconsistent with the ancestor a(k)). Here, we use a variant of these symbols
to denote the pair of random counts (as indicated by the additional subscript it) resulting from the original mk (or m′

k) for
individual haplotypes known to associate with a(k) plus a randomly assigned haplotype hit (whose actual associated ancestor
is unknown).

4Note that now we also need to split counts m[−it],k, mit,k and mit into site-specific counts, m[−it],k,j , mit,k,j and mit,j ,
respectively, where j denotes a single SNP site.
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for the summation and also for the normalization constant in Eq. (11). It is also, arguably, a more accurate
reflection of reality. Specifically,

p(hit
|a) =

∏

j

R(αh, βh)
Γ(αh + mit,j)Γ(βh + m′

it,j
)

Γ(αh + βh + 1)

(
1

|B| − 1

)m′
it,j

=
∏

j

(
αh

αh + βh

)I(hit,j=aj)( βh

(|B| − 1)(αh + βh)

)I(hit,j 6=aj)

. (15)

Assuming that loci are also independent in the base measure p(a) of the ancestors and that the base measure
is uniform, we have:

∑
a

p(hit
|a)p(a) =

∏

j

(∑

l∈B

p(aj = l)p(hit,j |aj = l)
)

=
∏

j

(∑

l∈B

1
|B|

(
αh

αh + βh

)I(hit,j=l)(
βh

(|B| − 1)(αh + βh)

)I(hit,j 6=l)
)

=
(

1
|B|

)J

. (16)

In this case (that each locus has its own mutation parameter), the conditional likelihood computed in Eq. (13)
is:

p(hit,j |a(k)
j ,m[−it],k,j)

=
∏

j

(
αh + m[−it],k,j

αh + βh + nk − 1

)I(hit,j=a
(k)
j )( βh + m′

[−it],k,j

(|B| − 1)(αh + βh + nk − 1)

)I(hit,j 6=a
(k)
j )

. (17)

Note that during the sampling of cit , the numerical values of cit are arbitrary, as long as they index distinct
equivalence classes.

Now we need to sample the ancestor template a(k), where k is the newly sampled ancestor index for cit .
When k is not equal to any other existing index ci′

t′
, a value for ak needs to be chosen from p(a|hit), the

posterior distribution of A based on the prior p(a) and the single dependent haplotype hit . On the other
hand, if k is an equivalence class populated by previous samples of ci′

t′
, we draw a new value of a(k) from

p(a|{hit , : cit = k}). If, after a new sample of cit , a template is no longer associated with any haplotype
instance, we remove this template from the pool. The conditional distribution for this Gibbs step is therefore:

p(a(k)|a(−k),h, c) = p(a(k)|{hit , : cit = k})
=

p({hit , : cit = k}|a(k))∑
a p({hit , : cit = k}|a(k) = a)

=
∏

j

p(mk,j |a(k)
j )∑

l∈B p(mk,j |a(k)
j = l)

. (18)
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We can sample a(k)
1 , a(k)

2 , . . . , sequentially:

p(a(k)
j |{hit,j : cit

= k}) =




1
Z p(hit,j |a(k)

j )

=
(

αh

αh+βh

)I(hit,j=a
(k)
j )( βh

(|B|−1)(αh+βh)

)I(hit,j 6=a
(k)
j )

if k is not previously instantiated
1
Z p({hit,j : cit = k}|a(k)

j )

= 1
Z

Γ(αh+mk,j)Γ(βh+m′
k,j)

Γ(αh+βh+nk)·(|B|−1)
m′

k,j

= Γ(αh+mk,j)Γ(βh+m′
k,j)/(|B|−1)

m′k,j

∑
l∈B Γ(αh+mk,j(l))Γ(βh+m′

k,j(l))/(|B|−1)
m′

k,j
(l) if k is previously instantiated,

(19)

where mk,j (respectively, m′
k,j) is the number of allelic instances originating from ancestor k at locus j that

are identical to (respectively, different from) the ancestor, when the ancestor has the pattern a(k)
j ; and mk,j(l)

(respectively, m′
k,j(l)) is the value of mk,j (respectively, m′

k,j) when a(k)
j = l. 5

We now proceed to the second sampling stage, in which we sample the haplotypes hit
. We sample each

hit,j , for all j, i and t, sequentially according to the following conditional distribution:

p(hit,j |h[−(i,j)], hit̄,j , c,a,g)
∝ p(gi|hit,j , hit̄,j ,u[−(i,j)])p(hit,j |a(k)

j ,m[−(it,j)],k)

= Rg
Γ(αg + u)Γ(βg + (u′ + u′′))

Γ(αg + βg + IJ)
[µ1]u

′
[µ2]u

′′ ×

Rh

Γ(αh + mit,k,j)Γ(βh + m′
it,k,j)

Γ(αh + βh + nk) · (|B| − 1)m′
it,k,j

,

(20)

where [−(it, j)] denotes the set of indices excluding (it, j) and mit,k,j = m[−(it,j)],k,j + I(hit,j = a(k)
j ) (and

similarly for the other sufficient statistics). Note that during each sampling step, we do not have to recompute
the Γ(·), because the sufficient statistics are either not going to change (e.g., when the newly sampled hit,j

is the same as the old sample), or only going to change by one (e.g., when the newly sampled hit,j results in
a change of the allele). In such cases the new gamma function can be easily updated from the old one.

3.2 A Metropolis-Hasting Sampling Algorithm

Note that for a long list of loci, a prior p(a) that is uniform over all possible ancestral template patterns
will render the probability of sampling a new ancestor infinitesimal, due to the small value of the smoothed
marginal likelihood of any haplotype pattern hit , as computed from Eq. (11). This could result in slow mixing.
An alternative sampling strategy is to use a partial Gibbs sampling strategy with the following Metropolis-
Hasting updates, which could allow more complex p(a) (e.g., non-factorizable and non-uniform) to be readily
handled. To sample the equivalence class of hit from the target distribution π(cit) = p(cit |c[−it],h,a)
described in Eq. 11, consider the following proposal distribution:

q(c∗it
= k|c[−it]) =

{
n[−it],k

n−1+τ : if k = ci′
t′

for some i′t′ 6= it
τ

n−1+τ : if k 6= ci′
t′

for all i′t′ 6= it
(21)

5Note that here the counts mk (and m′
k) vary with different possible configurations of the ancestor a(k) given h, unlike

previously in Eqs. (12)-(17), in which they vary with different possible configurations of hit given a(k).
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Then we sample a(c∗it
) from the prior p(a). For the target distribution p(cit

= k|c[−it],h,a), the proposal
factor cancels when computing the acceptance probability ξ, leaving6:

ξ(c∗it
, cit

) = min
[
1,

p(hit |ac∗it , c,h[−it])
p(hit

|acit , c,h[−it])

]
. (23)

In practice, we found that the above modification to the Gibbs sampling algorithm leads to substantial
improvement in efficiency for long haplotype lists (even with a uniform base measure for A), whereas for
short lists, the Gibbs sampler remains better due to the high (100%) acceptance rate.

3.3 A Sketch of MCMC Strategies for the Pedi-Haplotyper Model

The MCMC sampling strategy for the Pedi-haplotype model is similar to that of the basic DP-haplotyper
described above, except that we need to sample a few more variables on top of the DP-haplotyper model,
which requires collecting a few more sufficient statistics for updating the predictive distributions of these
variables. In addition to the sufficient statistics m (for the consistency between the ancestral and individual
haplotypes (i.e., the number of cases of which the ancestral and individual haplotypes agree in a single
sweep during sampling), and u (for the consistency between the individual haplotypes and genotype (i.e.,
the number of cases of which the genotype and its corresponding haplotype pair agree in a single sweep
during sampling), needed in the DP-haplotyper model, we need to update the following sufficient statistics
during each sampling step that sweeps all the random variables:

• w: the sufficient statistics of the transition probability ζ,

wrr′ =
∑

t

∑

i

∑

j

I(sit,j = r)I(sit,j+1 = r′).

If we prefer to model the recombination rates in males and females differently, then we compute wt

separately for t = 0 and t = 1.

• v: the sufficient statistics of the single generation inheritance (i.e., non-mutation) rate ε,

v =
∑

t

∑
r

∑

i

∑

j

I(hit,j = hπr(it),j)I(sit,j = r).

The ancestral template indicators associated with the founding subjects and the ancestor pool can be sampled
as in the basic DP-haplotyper model. Now we derive the additional predictive distributions needed for
collapsed Gibbs sampling for the Pedi-haplotyper model. For each predictive distribution of the hidden
variables, we integrate out the model parameters given their (conjugate) priors.

6The cancellation of the proposal in ξ can be seen from the following derivation:

q(cit |c[−it])

q(c∗it
|c[−it])

π(c∗it
)

π(cit )
=

q(cit |c[−it])

q(c∗it
|c[−it])

p(c∗it
|c[−it],h,a)

p(cit |c[−it],h,a)

=
q(cit |c[−it])

q(c∗it
|c[−it])

p(c∗it
|c[−it])p(hit |a(c∗it

)
, c,h[−it])

p(cit |c[−it])p(hit |a(cit
), c,h[−it])

=
p(hit |a(c∗it

)
, c,h[−it])

p(hit |a(cit
), c,h[−it])

, (22)
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• Sample a founding haplotype:

p(hit,j |h[−(i,j)], hit̄,j , s, c,a,g)
= p(hit,j |hit̄,j , hλ(i),j , sλ(i),j , acit ,j , gi,v[−(i,j)],u[−(i,j)],m[−(i,j)])
∝ p(hit,j , hλ(i),j , gi|hit̄,j , sλ(i),j , acit ,j ,v[−(i,j)],u[−(i,j)],m[−(i,j)])
= p(hλ(i),j |hit,j , hit̄,j , sλ(i),j ,v[−(i,j)])p(gi|hit,j , hit̄,j ,u[−(i,j)])p(hit,j |acit ,j ,m[−(i,j)])

= Rm
Γ(αm + v(hit,j))Γ(βm + v′(hit,j))
Γ(αm + βm + v(hit,j) + v′(hit,j))

×

Rg
Γ(αg + u(hit,j))Γ(βg + u′(hit,j) + u′′(hit,j))

Γ(αm + βm + IJ)
µu′

1 µu′′
2 ×

Rh
Γ(αh + m(hit,j))Γ(βh + m′(hit,j))

Γ(αh + βh + m(hit,j) + m′(hit,j)) · (|B| − 1)m′(hit,j)
, (24)

where hλ(i),j refers to the allele in the child of i that is inherited from i. For simplicity, we suppose
only one child. For the case of multiple children, the first term of Eq. (24) becomes a product of such
terms, each corresponding to one child.

• To sample a non-founding haplotype:

p(hit,j |h[−(i,j)], hit̄,j , s, c,a,g)
= p(hit,j |h[−(i,j)], hit̄,j , hλ(i),j , hπ(it)0,j , hπt(it),j , sit,j , sλ(i),j , gi,v[−(i,j)],u[−(i,j)])
∝ p(hit,j , hλ(i),j , gi|h[−(i,j)], hit̄,j , hπ(it)0,j , hπt(it),j , sit,j , sλ(i),j ,v[−(i,j)],u[−(i,j)])
= p(hit,j |hπ(it)0,j , hπ(it)1,j , sit,j ,v[−(i,j)])p(hλ(i),j |hit,j , hit̄,j , sλ(i),j ,v[−(i,j)])

p(gi|hit,j , hit̄,j ,u[−(i,j)])

= Rm
Γ(αm + v(hit,j))Γ(βm + v′(hit,j))
Γ(αm + βm + v(hit,j) + v′(hit,j))

×

Rg
Γ(αg + u(hit,j))Γ(βg + u′(hit,j) + u′′(hit,j))

Γ(αm + βm + IJ)
µu′

1 µu′′
2 . (25)

• Sample the segregation variable:

p(sit,j |h, s[−(i,j)], sit̄,j , c,a,g)
= p(sit,j |hit,j , hπ0(it),j , hπ1(it),j , sit,j−1, sit,j+1,v[−(i,j)],w[−(it,j)])
∝ p(hit,j |hπ0(it),j , hπ1(it),j , sit,j ,v[−(i,j)])p(sit,j−1|sit,j ,w[−(it,j)])
= p(sit,j |sit,j+1,w[−(it,j)])

= Rm
Γ(αm + v(sit,j))Γ(βm + v′(sit,j))
Γ(αm + βm + v(sit,j) + v′(hit,j))

×

Rs
Γ(αs + w00(sit,j) + w11(sit,j))Γ(βs + +w01(sit,j) + w10(sit,j))

Γ(αs + βs + |w|) ,

(26)

where |w| = ∑
r,r′ wr,r′ .

4 Experimental Results

We validated our algorithm by applying it to simulated and real data and compared its performance to that
of the state-of-the-art PHASE algorithm [19] and other current algorithms. We report on the results of both
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variants of our algorithm: The Gibbs sampler, denoted DP(Gibbs), and the Metropolis-Hasting sampler,
denoted DP(MH). Throughout the experiments, we set the hyperparameter τ in the Dirichlet process to
be roughly 1% of the population size; i.e., for a data set of 100 individuals, τ = 1. We used a burn-in of
2000 iterations (or 4000 for datasets with more than 50 individuals), and used the next 6000 iterations for
estimation.

4.1 Simulated data

In our first set of experiments we applied our method to simulated data (“short sequence data”) from [19].
This data contains sets of 2n haplotypes, randomly paired to form n genotypes, under an infinite-sites model
with parameters η = 4 and R = 4 determining the mutation and recombination rates, respectively (see [19]
for additional details). We used the first 40 datasets for each combination of individuals and sites, where
the number of individuals ranged between 10 and 50, and the number of sites ranged between 5 and 30.

DP(MH) PHASE EM
#individuals errs erri ds errs erri ds erri

10 0.060 0.216 0.051 0.046 0.182 0.054 0.424
20 0.039 0.152 0.039 0.029 0.136 0.046 0.296
30 0.036 0.121 0.038 0.024 0.101 0.027 0.231
40 0.030 0.094 0.029 0.019 0.071 0.026 0.195
50 0.028 0.082 0.024 0.019 0.072 0.025 0.167
Average 0.039 0.133 0.036 0.027 0.112 0.036 0.263

Table 1: Performance on data from [19]. The results for the EM algorithm are adapted from [19].

To evaluate the performance of the algorithms we used the following error measures: errs, the ratio
of incorrectly phased SNP sites over all non-trivial heterozygous SNPs (excluding individuals with a single
heterozygous SNP); erri, the the ratio of incorrectly phased individuals over all non-trivial heterogeneous
individuals; and ds, the switch distance, which is the number of phase flips required to correct the predicted
haplotypes over all non-trivial heterogeneous SNPs. The results are summarized in Table 1. Overall, we
perform slightly worse than PHASE on the first two measures, and similar to PHASE on the switch distance
measure (which uses 100,000 sampling steps). Both algorithms provide a substantial improvement over EM.

DP(Gibbs) DP(MH) PHASE HAP HAPLOTYPER
block id. length errs erri ds errs erri ds errs erri ds errs errs

1 14 0.223 0.485 0.229 0 0 0 0.003 0.030 0.003 0.007 0.039
2 5 0 0 0 0.007 0.026 0.007 0.007 0.026 0.007 0.036 0.065
3 5 0 0 0 0 0 0 0 0 0 0 0.008
4 11 0.143 0.262 0.128 0 0 0 0 0 0 0.015 -
5 9 0.020 0.066 0.020 0.011 0.033 0.011 0.011 0.033 0.011 0.027 0.151
6 27 0.071 0.191 0.074 0.005 0.043 0.005 0 0 0 0.018 0.041
7 7 0.005 0.018 0.005 0.005 0.018 0.005 0.005 0.018 0.005 0.068 0.214
8 4 0 0 0 0 0 0 0 0 0 0 0.252
9 5 0.029 0.097 0.029 0.012 0.032 0.012 0.012 0.032 0.012 0.057 0.152
10 4 0.007 0.025 0.007 0.007 0.025 0.007 0.008 0.025 0.008 0.042 0.056
11 7 0.010 0.034 0.005 0.005 0.017 0.005 0.011 0.034 0.011 0.033 0.093
12 5 0.010 0.037 0.020 0 0 0 0 0 0 0 0.077
Average 8.58 0.043 0.101 0.043 0.004 0.016 0.004 0.005 0.017 0.005 0.025 0.104

Table 2: Performance on the data of [2], using the block structure provided by [11]. The results of HAP and HAPLOTYPER
are adapted from [11]. Since the error rate in [11] uses the number of both heterozygous and missing sites as the denominator,
whereas we used only the non-trivial heterozygous ones, we rescaled the error rates of the two latter methods to be comparable
to ours.

4.2 Real data

We applied our algorithm to two real datasets and compared its performance to that of PHASE [19] and
other algorithms.
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DP(MH) PHASE
region length errs erri ds errs erri ds

16a 13 0.185 0.480 0.141 0.174 0.440 0.130
1b 16 0.100 0.250 0.160 0.200 0.450 0.180
25a 14 0.135 0.353 0.115 0.212 0.588 0.212
7b 13 0.105 0.278 0.066 0.145 0.444 0.092
Average 14 0.131 0.340 0.121 0.183 0.481 0.154

Table 3: Performance on the data of [8].
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(a) (b) (c)

Figure 3: The top ten ancestral templates during Metropolis-Hasting sampling for block 1 of the data of [2]. (The numbers in
the panels are the posterior means of the frequencies of each template). (a) Immediately after burn-in (first 2000 samples). (b)
3000 samples after burn-in. (c) 6000 samples after burn-in.

The first dataset contains the genotypes of 129 individuals over 103 polymorphic sites [2]. In addition
it contains the genotypes of the parents of each individual, which allows the inference of a large portion of
the haplotypes as in [4]. The results are summarized in Table 2. It is apparent that the Metropolis-Hasting
sampling algorithm significantly outperforms the Gibbs sampler, and is to be preferred given the relatively
limited number of sampling steps (∼ 6000). The overall performance is comparable to that of PHASE and
better than both HAP [11, 4] and HAPLOTYPER [15].

It is important to emphasize that our methods also provide a posteriori estimates of the ancestral pool of
haplotype templates and their frequencies. We omit a listing of these haplotypes, but provide an illustrative
summary of the evolution of these estimates during sampling (Figure 3).

The second dataset contains genotype data from four populations, 90 individuals each, across several
genomic regions [8]. We focused on the Yoruban population (D), which contains 30 trios of genotypes
(allowing us to infer most of the true haplotypes) and analyzed the genotypes of 28 individuals over four
medium-sized regions (see below). The results are summarized in Table 3. All methods yield higher error
rates on these data, compared to the analysis of the data of [2], presumably due to the low sample size. In
this setting, over all but one of the four regions, our algorithm outperformed PHASE on all three types of
error measures. A preliminary analysis suggests that our performance gain may be due to the bias toward
parsimony induced by the Dirichlet process prior. We found that the number of template haplotypes in our
algorithm is typically small, whereas in PHASE the haplotype pool can be very large (e.g., region 7b has 83
haplotypes, compared to 10 templates in our case and 28 individuals overall).

In terms of computational efficiency, we noticed that PHASE typically required 20,000 to 100,000 steps
until convergence, while our DP-based method required around 2,000 to 6,000 steps to convergence (Fig. 4a).
The posterior distribution of K, the number of ancestor haplotypes underlying the population, is sharply
peaked at a single mode (Fig. 4b).

5 Conclusions

We have proposed a Bayesian approach to the modeling of genotypes based on a Dirichlet process prior.
We have shown that the Dirichlet process provides a natural representation of uncertainty regarding the
size and composition of the pool of haplotypes underlying a population. We have developed several Markov
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Figure 4: (a) Sampling trace of the number of population haplotypes derived from the genotypes. As can be seen, the Markov
chain starts from a rather non-parsimonious estimation, and converges to a parsimonious solution after about two thousand
samples. (b) The histogram representation of the posterior distribution of the number of ancestors obtained via Gibbs sampling.

chain Monte Carlo algorithms for haplotype inference under either a basic DP mixture haplotype model
intended for an iid population, or, an extended graphical DP mixture model—the Pedi-haplotyper model—
for a population containing both iid subjects and subjects coupled by partial pedigrees. The experiments
on the basic DP mixture haplotype model show that this model leads to effective inference procedures for
inferring the ancestral pool and for haplotype phasing based on a set of genotypes. The model accommodates
growing data collections and noisy and/or incomplete observations. The approach also naturally imposes
an implicit bias toward small ancestral pools, reminiscent of parsimony methods, doing so in a well-founded
statistical framework that permits errors.

Our focus here has been on adapting the technology of the Dirichlet process to the setting of the standard
haplotype phasing problem. But an important underlying motivation for our work, and a general motivation
for pursuing probabilistic approaches to genomic inference problems, is the potential value of our model as
a building block for more expressive models. In particular, as in [9] and [13], the graphical model formalism
naturally accommodates various extensions, such as segmentation of chromosomes into haplotype blocks
and the inclusion of pedigree relationships. In Section 2.3, we have outlined a preliminary extension of the
basic Dirichlet process mixture model that incorporates pedigree relationships and briefly discussed how
to model realistic biological processes that might influence haplotype formation and diversification, such as
recombination and mutation during single generation inheritance. We recognize that many other important
issues also deserve careful attention, for example, haplotype recombinations among the ancestral haplotype
pools (so far, we assume that these ancestral haplotypes relate to modern individual haplotypes only via
mutations), aspects of evolutionary dynamics (e.g., coalescence, selection, etc.), and linkage analysis under
joint modeling of complex traits and haplotypes. We believe that the graphical model formalism we proposed
can readily accommodate such extensions. In particular, it appears reasonable to employ an ancestral
recombination hypothesis (rather than single generation recombination) to account for common individual
haplotypes that are distant from any single ancestral haplotype template, but can be matched piecewise to
multiple ancestral haplotypes. This may be an important aspect of chromosomal evolution and can provide
valuable insight into the dynamics of populational genetics in addition to point-mutation-based coalescence
theory, and can potentially improve the efficiency and quality of haplotype inference. The Dirichlet process
parameterization also provides a natural upgrade path for the consideration of richer models; in particular,
it is possible to incorporate more elaborate base measures G0 into the Dirichlet process framework—the
coalescence-based distribution of [19] would be an interesting choice. From an implementation point of view,
our model, as many other basic haplotype inference programs, can be straightforwardly wrapped into a
simple Partition-Ligation scheme (or more sophisticated HMM-based model) as in [15, 19], to phase long
sequences of SNP genotype data.
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