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ABSTRACT

We describe an efficient algorithm for protein backbone structure determination from solu-
tion Nuclear Magnetic Resonance (NMR) data. A key feature of our algorithm is that it finds
the conformation and orientation of secondary structure elements as well as the global fold
in polynomial time. This is the first polynomial-time algorithm for de novo high-resolution
biomacromolecular structure determination using experimentally recorded data from ei-
ther NMR spectroscopy or X-ray crystallography. Previous algorithmic formulations of this
problem focused on using local distance restraints from NMR (e.g., nuclear Overhauser ef-
fect [NOE] restraints) to determine protein structure. This approach has been shown to be
NP-hard, essentially due to the local nature of the constraints. In practice, approaches such
as molecular dynamics and simulated annealing, which lack both combinatorial precision
and guarantees on running time and solution quality, are used routinely for structure deter-
mination. We show that residual dipolar coupling (RDC) data, which gives global restraints
on the orientation of internuclear bond vectors, can be used in conjunction with very sparse
NOE data to obtain a polynomial-time algorithm for structure determination. Furthermore,
an implementation of our algorithm has been applied to six different real biological NMR
data sets recorded for three proteins. Our algorithm is combinatorially precise, polynomial-
time, and uses much less NMR data to produce results that are as good or better than
previous approaches in terms of accuracy of the computed structure as well as running time.

Key words: Nuclear Magnetic Resonance, structural biology, protein structure, residual dipolar
couplings, algorithms, computational molecular biology, NP-completeness.

1. INTRODUCTION

Protein structure is the key to understanding protein function, and is also the starting point for
structure-based drug design. One of the key tools used to study protein structure and function in solution
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is NMR spectroscopy. Traditionally, nuclear Overhauser effect (NOE) spectroscopy has been used to obtain
approximate interproton distance restraints, which, in turn, have been used for structure determination.
Due to the sparsity of the data and experimental error, however, the problem of structure determination
using experimental NOE data is NP-hard (Saxe, 1979), and rigorous approaches to structure determination
based on solving this problem, such as the distance geometry method (Crippen, 1991; Crippen and Havel,
1988), require exponential time. These lower-bound arguments are based on showing that for certain
counterexamples, distance geometry algorithms require time exponential in the size of the protein (assuming
P �= NP). Distance geometry can perform better in practice due to the use of additional restraints that are
available a priori (e.g., bond angles and lengths). However, it is interesting to ask if there is a provably
polynomial-time algorithm to determine protein structure from experimental data, since this would improve
our understanding of the data and be useful in devising practical approaches to structure determination
that come with worst-case guarantees on both running time and solution quality. The most commonly used
structure determination protocols use experimental NMR data along with techniques such as molecular
dynamics (MD) and simulated annealing (SA). These approaches, however, lack combinatorial precision,
guarantees on running time, as well as guarantees on solution quality. The interatomic distance restraints
used by distance-based structure determination algorithms must be obtained by assigning NOE data. The
NOE assignment problem asks us to determine, for every NOE restraint, the associated pair of protons in
the primary sequence. In its unassigned form, an NOE restraint gives the information that two nuclei are
approximately d Å apart (1.8 ≤ d ≤ 6) but not the identity of the two nuclei (in the primary sequence).
Automated methods can be used to quickly obtain resonance assignments, but automated NOE assignment
typically requires hours to weeks, since NOE assignment often sits in a tight inner loop of structure
refinement (e.g., aria [Nilges et al., 1997], candid [Herrmann et al., 2002], auto-structure [Huang et al.,
2003], and psad [Juszewski et al., 2004]). Furthermore, it is not uncommon to need manual intervention
(e.g., to assign side-chain NOEs [Clore, 2000]) to obtain enough distance restraints (in conjunction with
a priori restraints such as bond angles and bond lengths) to compute an accurate NMR structure. Since
our algorithm uses RDC data, it requires only a minimal set of distance restraints, and thus relaxes the
requirement for a complete assignment of NOE restraints.

In recent years, residual dipolar coupling (RDC) (Tjandra and Bax, 1997; Tolman et al., 1995) data has
been used to provide global orientational restraints on the protein structure (Fowler et al., 2000; Prestegard
et al., 2004; Tian et al., 2001). RDC data gives global orientational restraints on, for example, backbone NH
bond vectors with respect to a global coordinate frame. Additionally, RDCs can be recorded and assigned
much faster (e.g., in a few hours) than the NOEs required by traditional NMR structure determination
methods. Existing structure determination approaches do use RDCs, along with other experimental restraints
such as chemical shifts or sparse NOEs (Andrec et al., 2001; Delaglio et al., 2000; Giesen et al., 2003; Hus
et al., 2001; Rohl and Baker, 2002; Tian et al., 2001), yet remain heuristic in nature, without guarantees
on solution quality or running time. In this paper, we make the biophysically reasonable assumption that
the protein under consideration is globular and contains regular secondary structure. Globular proteins
with regular secondary structure comprise the a large fraction of proteins in nature, and are far more
abundant than fibrous proteins (e.g., collagen or coiled-coil oligomers). If we consider proteins with
regular secondary structure, this assumption implies that the secondary structure elements have length
bounded by a constant (which, for implementation purposes, is straightforward to check in linear time).
Under this assumption, previous formulations of the structure determination problem remain NP-hard. We
show that our formulation of the structure determination problem, given RDC data, sparse NOEs and
experimentally-determined secondary structure types, can be solved in polynomial time.

There is a tradition in computer science to measure the performance of an algorithm by the worst-case
asymptotic complexity of its running time as a function of input size. Globular proteins with regular
secondary structure have a natural size limitation throughout the biosphere, and NMR techniques are
similarly limited in the size of protein they can deal with. However, it is interesting to ask if there
is a provably polynomial-time algorithm to determine protein structure from experimental data. Such
an algorithm is of interest to the NMR community, since it would quantify what NMR experiments are
neccessary (existing approaches record a sufficient amount of data) for structure determination; additionally,
it would have practical implications, since structure determination is often used a subroutine in other
applications (Nilges et al., 1997; Herrmann et al., 2002; Huang et al., 2003; Juszewski et al., 2004).
Unlike previous approaches, which have either no theoretical guarantees or run in exponential time, we
show that it is possible to exploit the global nature of RDC data to develop an algorithm that runs in
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polynomial time and computes the structure that agrees best with the given experimental RDC and NOE
data. While our algorithm uses NMR data as input, it is the first polynomial-time algorithm to compute
high-resolution structures de novo using any experimentally recorded data, from either NMR spectroscopy
or X-ray crystallography.

Our formulation of the structure determination problem assumes that we are given the following ex-
perimental NMR data: (a) two RDCs of backbone internuclear vectors per residue (e.g., assigned NH
RDCs in two media or NH and CH RDCs in a single medium), (b) identified α-helices and β-sheets with
known hydrogen bonds (H-bonds) between paired strands, and (c) a few NOE distance restraints. The
implementation discussed in Section 6 uses this experimental data, and allows for missing data as well. In
contrast to NOE assignment, RDCs can be recorded and assigned on the order of hours. Additionally, it
is relatively straightforward to rapidly obtain the few (three or four), unambiguous NOEs required for our
algorithm from a standard NOESY spectrum, or by using, for example, the labeling strategy of Gardner
and Kay (1997). The secondary structure types of residues along the backbone can be determined by
NMR from experimentally-recorded scalar coupling HNHA (Cavanagh et al., 1995, pages 524–528) data,
or J-doubling (del Rio-Portílla et al., 1994) data for larger proteins (these experiments report on the φ
backbone angles). NMR chemical shifts (Marin et al., 2004; Wishart and Sykes, 1994; Wishart et al., 1991,
1992) or automated assignment (Bailey-Kellogg et al., 2000a) can also be used. Hydrogen bonds can be
determined by NMR from experimentally recorded data (Cordier et al., 1999; Wang et al., 1999), or, e.g.,
by using backbone resonance assignment programs such as Jigsaw (Bailey-Kellogg et al., 2000a). The
user of our algorithm has a choice, to record either (a) one type of backbone RDC (such as NH RDCs) in
two aligning media, or (b) two types of backbone RDCs (such as NH and CH RDCs) in a single medium.
This flexibility allows our algorithm to be applied to a wider range of proteins. NH RDCs in two media
allows the experimental RDCs to be collected on an 15N-labelled sample, which is an order of magnitude
cheaper to prepare than a doubly-labelled 15N/13C sample. However, it is not always straightforward to
find two aligning media for a protein; in this case our algorithm can also use NH and CH RDCs in a
single medium since recording an extra set of RDCs in the same medium requires only slightly more
spectrometer time. In the remainder of the paper, we present our algorithm assuming that we are given
assigned NH RDCs in two media. Our results also hold for the case of NH and CH RDCs in one medium
with slight modifications to the equations in Section 3 (Wang and Donald, 2004a). Additionally, while our
implementation requires hydrogen bond information to impose additional constraint on β-sheets, we omit
the discussion of incorporating hydrogen bond information for the sake of brevity. Our problem definition
needs to be modified only slightly to incorporate this data, and all our theoretical results still hold (see
Section 2 for references and further discussion).

A key building block of our algorithm makes use of exact, low-degree polynomial equations (Wang
and Donald, 2004b) that relate the experimental RDCs to the backbone (φ, ψ) dihedral angles, which
determine the protein backbone geometry. These equations, however, do not yield a unique solution for the
(φ, ψ) angles since they are low-degree (at most four) polynomials; furthermore, error in the experimentally
recorded RDCs also makes it possible that these equations are not solvable. Thus, we formulate and exactly
solve a semi-algebraic optimization problem to compute the conformation of the secondary structure
elements that optimally fits the experimental data. Since RDCs give global restraints on internuclear
vectors, the conformation of the secondary structure elements can be computed with respect to a global
coordinate frame. Thus, given the optimal conformation of secondary structure elements, we must next find
only their relative translations to compute the backbone structure. To do this, we require sparse, assigned
NOEs between successive pairs of secondary structure elements; we formulate and solve an optimization
problem which asks us to find the translation that maximizes agreement with the experimental NOE data.
Our approach to solving these optimization problems uses the theory of real closed fields (Basu et al.,
2003; Grigor’ev, 1988), which gives algorithms for deciding first-order sentences on sets of polynomial
inequalities. The running time of these algorithms is parameterized by the degree, number of variables, and
number of alternations in the input sentences; we show that our optimization problems can be formulated
such that we can find the optimal solution in polynomial time. Finally, since our algorithm is based on
low-degree polynomials that relate the experimental RDCs directly to NH vector orientations, our algorithm
is the first approach to structure determination that makes it possible to analytically quantify the effect of
experimental error on the resulting backbone structure.

We also show that an implementation based on our algorithm, given only RDCs, sparse NOEs, hydrogen
bonds, and secondary structure types, is able to quickly compute structures that are as good or better, in
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terms of RMSD accuracy, than structures produced by previous techniques using many more restraints.
Under our assumption that the protein is globular and has regular secondary structure, our algorithm runs
in polynomial time. We note that using our techniques, we can also obtain a polynomial-time algorithm
even when the secondary structure elements are allowed to be arbitrarily long; the tradeoff being that
more experimental NOEs are required (see Section 5). We have previously analyzed the running time of
an implementation of our algorithm (Wang and Donald, 2004b) when the length of a secondary structure
element is a parameter k, 1 ≤ k ≤ n. In this case, the worst-case running time is exponential in k. In
practice however, our algorithm is still quite fast in terms of expected running time; an average case
analysis (Wang and Donald, 2004a) shows that the base of exponential term in the running time is quite
small, about 1.1.

Our result is consistent with previous observations (Andrec et al., 2001; Delaglio et al., 2000; Fowler
et al., 2000; Giesen et al., 2003; Hus et al., 2001; Prestegard et al., 2004; Rohl and Baker, 2002; Tjandra
and Bax, 1997; Tian et al., 2001; Tolman et al., 1995; Wedemeyer et al., 2002) that, empirically, RDCs
increase the speed and accuracy of biomacromolecular structure determination, and formally quantitates
the the complexity-theoretic benefits of employing globally-referenced angular data on internuclear bond
vectors. In summary, our main contributions in this paper are:

1. To use low-degree polynomial equations that can be solved exactly and in constant time to give solutions
for backbone (φ, ψ) angles from experimentally-recorded RDCs.

2. The first combinatorially precise, polynomial-time algorithm for structure determination using RDCs,
secondary structure type, and very sparse NOEs.

3. The first provably polynomial-time algorithm for de novo backbone protein structure determination
solely from experimental data (of any kind).

4. An implementation of our algorithm that is as good or better in terms of accuracy and speed, but
requires much less data than, previous NMR structure determination techniques.

5. Testing and results of our algorithm on real biological NMR data.

1.1. Related work

Previously-studied theoretical formulations of the structure determination problem use local distance
restraints, e.g., NOEs, as the only constraint on the structure. We note this problem is not as straightforward
as reconstructing a set of n points from with a complete and exact distance matrix; this problem can
be solved exactly using SVD in O(n3) time. Recent work (Dong and Wu, 2002) gives an O(n)-time
algorithm for this problem. Berger et al. (1999) assume �(n2) distances are given but study the problem
of reconstructing a set of n points where some of the distances are missing or erroneous (and the errors
are not known). They give a randomized O(n log n)-time algorithm to enumerate all point sets consistent
with these distances, where the given distance matrix has at most (1/2 − ε)n errors per row. They also
showed that under a certain random error model they can correct errors of the same density in a sparse
matrix, where only β > 0 fraction of the entries in each row are given.

In practice, far fewer than
(
n
2

)
NOEs are observed experimentally: for example, even in an ideal case,

it is in general possible to obtain only about 15n = O(n) NOE-derived distance restraints. Furthermore,
it is unrealistic to assume that some NOE restraints encode perfect distances, while others are arbitrarily
corrupted; it is more realistic to assume that all of the NOE data is subject to bounded experimental error.
Thus, distance-based structure determination approaches also use a priori restraints, such as bond angles
and bond lengths, to ensure the problem is not underconstrained. A number of theoretical studies have been
undertaken to examine the relationship between distance restraints (with error) and the time complexity of
structure determination. Saxe (1979) viewed the structural model as a graph where the vertices represent
atoms and edge weights represent distance constraints. The molecule problem asks whether such a graph,
given a sparse set of edges with perfect distances, can be embedded in R

3 while preserving the edge
weights; Saxe showed that this problem is NP-hard. Hendrickson (1992, 1995) studies conditions under
which embedding such a graph is even possible, and gives (super-polynomial time) algorithms for the
problem. Crippen and Havel (1988) studied the distance geometry problem; in this problem, we must use
distance intervals, rather than scalar distance restraints, to construct a point set that satisfies the restraints
imposed by the intervals. This problem has application in NOE-based structure determination since it can
be used to find a consistent interpretation of noisy experimental NOEs. However, the NP-hardness of this
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problem follows from the results of Saxe (1979), and existing algorithms for solving the distance geometry
problem require exponential time in the worst-case (Crippen and Havel, 1988).

Traditional NMR structure determination algorithms such as Brünger (1993) and Güntert et al. (1997)
were initially designed to use NOE-derived distance restraints. Even recently developed RDC-based struc-
ture determination approaches rely on heuristic approaches such as simulated annealing or molecular
dynamics (Giesen et al., 2003; Hus et al., 2001) or a structural database (the PDB) (Delaglio et al.,
2000; Rohl and Baker, 2002) in order to compute a well-defined backbone structure. In Delaglio et al.
(2000), the computed structure is obtained using a gradient-descent approach, while in Rohl and Baker
(2002), a Monte-Carlo–based algorithm is used; both of these approaches can only guarantee that the
given objective function value achieves a local minimum. Table 2 in Section 6 gives a detailed summary of
existing methods for structure determination, including the experimental data requirements and accuracies
of the resulting structure. Finally, we note that although Wang and Donald (2004b, 2004a) provide some
building blocks for this paper, those algorithms are neither combinatorially precise nor polynomial time.
Furthermore, they do not compute loop or turn structures, which we show can be done with our algorithm
(see Sections 5 and 6).

2. PRELIMINARIES AND FORMAL PROBLEM DEFINITION

Informally, our formulation of the structure determination problem assumes that we are given the fol-
lowing experimental NMR data: (a) two RDCs of backbone vectors per residue (e.g., assigned NH RDCs
in two media or NH and CH RDCs in a single medium), (b) identified α-helices and β-sheets with known
hydrogen bonds (H-bonds) between paired strands, and (c) a few NOE distance restraints. Our goal is to
find a backbone conformation that is the best-fit to the given experimental RDCs and NOEs. Figure 1
shows the relationship between the given experimental data and protein backbone. We first discuss the
input experimental data and our approach, and then present a formal problem definition.

The equation for the RDC r associated with an internuclear bond vector v can be written (Saupe, 1968)
as a quadratic form:

r = DmaxvT Sv, (1)

where Dmax is the dipolar interaction constant, v is the bond vector of interest with respect to an arbitrary
global coordinate frame, and S is the 3 × 3 Saupe order matrix, or alignment tensor, which specifies the
orientation of the protein in the laboratory frame (i.e., magnetic field in the NMR spectrometer). Our goal
is to determine the orientation of vector v given an experimentally-recorded RDC. It is common practice
to record multiple sets of RDCs to further constrain v, and we assume that two independent sets of RDCs
have been recorded. The user of our algorithm has a choice, to record either (a) NH RDCs in two aligning
media, or (b) two RDCs per residue (e.g., NH and CH) in one medium. This flexibility allows our algorithm
to be applied to a wider range of proteins. In the remainder of the paper, we present our results assuming
that we are given assigned NH RDCs in two media. Our results also hold for the case of NH and CH
RDCs in one medium with slight modifications to the equations in Section 3 (Wang and Donald, 2004a).

Given an alignment tensor, our problem specification asks us, informally, to find a conformation vector
such that its backbone (φ, ψ) angles fit the experimental RDC data as closely as possible. Additionally,
we ask that the (φ, ψ) values are as close as possible to the average (φa, ψa) angles over the PDB for
the corresponding secondary structure type. Then, after determining the conformation of the secondary
structure elements, we must translate the secondary structure elements using a set of sparse NOEs to
obtain the final backbone structure. Finding this translation requires only a constant number of NOEs for
each secondary structure element, since RDCs give an orientation of the entire protein with respect to a
global coordinate frame and thus the global orientations of the secondary structure elements are known
once their conformations have been computed. Only the relative translation for each pair of secondary
structure elements that best fit the given NOE restraints must be computed.

We now formalize the structure determination problem discussed above. First, let A denote a secondary
structure element with length c. Let D1 = (r1,1, r1,2, . . . , r1,c) and D2 = (r2,1, r2,2, . . . , r2,c) denote the
recorded RDC values in the first and second medium, respectively. Let (φi, ψi) denote the backbone
dihedral angles for the (i + 1)st residue, 1 ≤ i ≤ c− 1, and let w(φ) (resp., w(ψ)) denote the unit vector
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(cosφ, sin φ) (resp., (cosψ, sinψ)). Let Ci = (w(φ1), w(ψ1), . . . , w(φi), w(ψi)). Each conformation of
A can be specified by the orientation of the first peptide plane and the conformation vector C = Cc−1.
Finally, for any RDC r , let G(r) denote the interval [r − 1, r + 1], which represents an experimental error
range of ±1 Hz.

It has been shown that, due to experimental error and/or dynamics, experimentally-recorded RDCs
cannot in general be fit to a secondary structure element unless they are perturbed (within some error
window) (Wang and Donald, 2004b). To account for error in the experimentally recorded RDCs, we
parameterize the experimental RDCs in our objective function by defining the following sets. Let G(Dj )
denote the set G(rj,1)×G(rj,2)× . . .×G(rj,c) for two aligning media j = 1, 2. Then, for each secondary
structure element, we seek to minimize the following objective functions on the orientation of the first
peptide plane and backbone (φ, ψ) angles. Let bj,1(R) = Dmaxv1(R)T Sjv1(R) and bj,i(R, Ci−1) =
Dmaxvi (R, Ci−1)

T Sjvi (R, Ci−1) for 2 ≤ i ≤ c be the back-computed RDCs under the alignment tensor Sj .
Here, R is the rotation matrix that defines the orientation of the first peptide plane of A and vi (R, Ci−1)

is the orientation of the i th backbone NH vector, which can be specified uniquely by R and Ci−1. We
note that the first NH vector, and thus the first back-computed RDC, is defined slightly differently since
it depends only on the orientation of the first peptide plane (see Section 3 for further discussion). For
notational convenience, we will write bj,1 = bj,1(R) and bj,i = bj,i(R, Ci−1) for 2 ≤ i ≤ c and j = 1, 2.

Let (φa, ψa) denote the average values for the backbone (φ, ψ) dihedral angles for the secondary
structure type of A over the PDB. Then, let

σ(D′
1,D

′
2,R, C) =

c−1∑
i=1

‖w(φi)− w(φa)‖2 + ‖w(ψi)− w(ψa)‖2 +
c∑
i=1

((
b1,i − r1,i

)2 + (
b2,i − r2,i

)2
)
.

(2)

Our goal is to find D′
1 ∈ G(D1), D′

2 ∈ G(D2), a rotation R ∈ SO(3), and conformation C so that
σ(D′

1,D
′
2,R, C) is minimized. Note that w(φi) and w(ψi) are elements of Ci (for 1 ≤ i < c), and that

bj,i is a function of Ci−1 and R (for j = 1, 2 and 1 < i < c; bj,1 is a function of R only). All elements of
C are roots of polynomials whose coefficients are completely determined by D′

1, D′
2 and R. The minima

of Equation (2) represent the conformations for the given secondary structure element that agree best with
both the experimental RDCs and the secondary structure type. We note that as written Equation (2) is
underconstrained. Given 2 RDCs for residue i, the NH bond vector vi must lie in a finite set, defined by a
quartic monomial (Wang and Donald, 2004b). This, in turn, constrains (φi, ψi) to lie in a finite algebraic
set, defined by backbone kinematics (Wang and Donald, 2004b). Hence, the optimization1 in Equation (2)
is performed over a finite algebraic subset of a 2(c − 1)-torus (see Section 3 for further discussion).

Given conformations of the secondary structure elements, we must next compute the backbone fold by
computing the relative translations of the elements. We emphasize that our algorithm (and our formulation
of the problem) does not simply “pack” ideal helix/strand geometries. The solution structure is computed
with respect to all of the RDCs (rather than any individual RDC) using the score function σ . Therefore,
individual dihedral angles of a solved helix/strand computed by our algorithm may differ from the average
values by as much as 29◦ (see Fig. 6 of Wang and Donald [2004b, page 234]). To compute relative
translations, we require at least three Euclidean distances between three (non-collinear) nuclei between each
pair of successive secondary structure elements. NOE restraints provide this information, but are subject,
like RDCs, to experimental error. Informally, given experimentally-recorded NOE restraints between a pair
of successive secondary structure elements, we wish to find a translation between the secondary structure
elements that agree best with the NOE restraints. More formally, for each oriented pair of successive
secondary structure elements A and B, let A = {a1, a2, . . . , a�} (resp., B = {b1, b2, . . . , b�}) be the 3D

1For simplicity of analysis, we have omitted the distinction between α-helices and β-sheets in the definition of
Equation (2). The objective function for β-sheets has an extra additive term that accounts for hydrogen bonds between
β-strands and provides additional constraint on the conformation of the β-sheet. This modification for β-sheets can
be incorporated easily by the algorithm and analysis given in Section 4; this additional term in the objective function
is discussed in detail elsewhere. To handle hydrogen bond geometry in β-sheets, we use Equation (9) in Wang and
Donald (2004b, page 228) as the additional term and make use of the techniques of Lemma 4.2 to cope with the
additional term in the objective function (see Section 4.2).
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FIG. 1. The protein backbone structure illustrating RDCs used for computing bond vector orientation and backbone
φ and ψ angles. Our algorithm uses either one type of backbone RDC (such as NH RDCs) measured in two different
aligning media or two types of RDCs (such as CH and NH RDCs) measured in a single medium. The bond vectors
whose RDCs are used in our algorithm are indicated by thin arrows. In our algorithm, we use typical values for bond
length and angle as well as the peptide plane dihedral angle (ω). The orientation of NH vector in principal order frame
(POF) can be computed exactly from NH RDCs in two media by solving a quartic equation (see Section 3). For NH
RDCs in two media, the sine and cosine of the backbone φi and ψi angles can be computed from the orientation of
the two consecutive NH vectors by solving a quadratic equation. Furthermore, given Ri as well as the φi and ψi an-
gles, the orientation of peptide plane i+1 in the POF, specified by the rotation matrix, Ri+1 can be determined exactly.

coordinates of the � nuclei in A (resp., B) for which we are given distances (derived from NOE restraints)
N = (n1, n2, . . . , n�). Then, we wish to find a translation x ∈ R

3 that minimizes

σNOE (x) =
�∑
i=1

(‖ai − bi + x‖ − ni)
2 . (3)

The minima of Equation (3) represent relative translations between a successive pair of secondary structures
that agree as closely as possible with the experimental NOE restraints.

3. EQUATIONS FOR COMPUTING BACKBONE DIHEDRAL
ANGLES FROM RDCS

In this section, we present an exact, constant time (per residue) method to compute backbone dihedral
angles from RDCs in two aligning media. We show that it is possible to derive, from the physics of RDCs,
low-degree monomials (with degree at most four) whose solutions give the backbone (φ, ψ) angles. We give
statements of these results; proof sketches are given in Appendix A, and full details of the proofs and equa-
tions can be found in Wang and Donald (2004b). For simplicity we assume that the dipolar interaction con-
stant Dmax is equal to 1. By considering a global coordinate frame which diagonalizes the alignment tensor,
Equation (1) becomes:

r = Sxxx
2 + Syyy

2 + Szzz
2, (4)

where Sxx, Syy and Szz are three diagonal elements of a diagonalized Saupe matrix S (the alignment tensor),
and x, y and z are, respectively, the x, y, z−components of the unit vector v in a principal order frame
(POF) which diagonalizes S. Recall that S is a 3 × 3 symmetric, traceless matrix with five independent
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elements. Given NH RDCs in two aligning media, the associated NH vector v must lie on the intersection
of two conic curves (Skrynnikov and Kay, 2000; Wedemeyer et al., 2002). We state the two propositions
needed for Sections 3.1 and 4 below.

Proposition 3.1. Given the diagonal Saupe elements Sxx and Syy for medium 1, S′
xx and S′

yy for
medium 2, and a relative rotation matrix R12 between the POFs of medium 1 and 2, the square of the
x-component of the unit vector v satisfies a monomial quartic equation.

Proposition 3.2. Given the NH unit vectors vi and vi+1 of residues i and i + 1 and the NCα vector of
residue i, the sines and cosines of the intervening backbone dihedral angles (φ, ψ) satisfy quadratic equations.

3.1. Successive computation of (φ, ψ) angles of a structure element from RDCs

Propositions 3.1 and 3.2 shows that the sines and cosines of (φ, ψ) angles can be computed exactly, and
in constant-time, from RDCs. This in turn implies that candidate conformations for the protein backbone
structure can be built using the sines and cosines of (φ, ψ) angles. Recall that w(φ) (resp., w(ψ)) denotes
the unit vector (sin φ, cosφ) (resp., (sinψ, cosψ)). There are only two independent solutions for the
(φ, ψ) angles of residue i given the NH vectors for residues i and i+1 if the orientation of the i th peptide
plane is also known. We can define the i th peptide plane by two vectors: an NH vector solved from the
quartic equation in Proposition 3.1, and an NCα vector. The rotation matrix Ri defines the relative rotation
between a POF and a coordinate system in the i th peptide plane (Fig. 1). The rotation matrix R1 defining
the first peptide plane can be determined by solving an optimization problem (see Section 4). This matrix
is denoted R in Equation (2) above; below, we let R1 = R. Let FR(Ri , φi, ψi) be an algebraic function for
computing the rotation matrix Ri+1 from φi , ψi and Ri ; that is, Ri+1 = FR(Ri , φi, ψi). FR can be easily
derived from backbone kinematics (Wang and Donald, 2004b). In summary, Propositions 3.1 and 3.2 show
that given the rotation Ri , and (φi, ψi) for residue i can be computed, exactly and in constant time, from
two low-degree polynomial equations

Fφi (r1,i , r2,i , r1,i+1, r2,i+1,Ri ) = 0 (5)

Fψi (r1,i , r2,i , r1,i+1, r2,i+1,Ri , w(φi)) = 0, (6)

where r1,i , r1,i+1 and r2,i and r2,i+1 are NH RDCs measured for residue i and i + 1 in medium 1 and 2,
respectively. The roots of Fφi (resp., Fψi ) are the vectors w(φi) (resp., w(ψi)). The algebraic function FR
has degree two with four variables. Equations (5) and (6) both have degree four and have three and four
variables, respectively. We note that analogous low-degree polynomial equations can also be derived for
NH and CH RDCs measured in a single aligning medium (Wang and Donald, 2004a).

Given experimentally-measured RDCs Zi = {r1,i , r1,i+1, r2,i , r2,i+1}, and the rotation matrix Ri , for
1 ≤ i < c, the solutions to Fφi and Fψi above define a discrete, finite, algebraic subset Yi(Zi,Ri ) of the
2-torus S1 ×S1, containing at most 16 points, in which the backbone dihedral angles (φi, ψi) must lie. By
Equations (5) and (6) for w(φi) and w(ψi), Yi(Zi,Ri ) can be computed exactly, in closed-form, and in
constant-time. Hence, the conformation C of each secondary structure element must lie in a discrete, finite,
algebraic subset of the 2(c−1)-torus (S1)2(c−1), and is defined by Y(D1,D2,R1) = 
c−1

i=1Yi(Zi,Ri ). Each
set Yi(Zi,Ri ) is described by the polynomial equations for φi (of degree four with three variables), ψi (of
degree four with four variables), and Ri (of degree two with four variables). Since the equations for (φi, ψi)
utilize the rotation Ri , Yi(Zi,Ri ) requires 2(c − 1) equations with degree O(c) in 2(c − 1)+ 4 = 2c + 2
variables. We will exploit the fact that the backbone conformation lies in a discrete, finite, algebraic set
in the next section, where we present an algorithm to find the conformation that optimizes Equation (2),
subject to the constraint Y(D1,D2,R1).

4. A POLYNOMIAL-TIME ALGORITHM FOR PROTEIN
STRUCTURE DETERMINATION

In Section 3, we presented low-degree polynomial equations that relate RDCs to backbone dihedral
angles. However, the equations for a given pair of (φ, ψ) angles depend on the corresponding experimental
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RDC values as well as the orientation of the previous peptide plane; furthermore, the equations are not
guaranteed to have a unique solution and thus there may be multiple (φ, ψ) pairs that are consistent with
the experimental RDC value; this is a consequence of the degree of the equations for Fφ and Fψ in
Section 3. Furthermore, in order to account for experimental error, we must interpret our RDCs as being
in a range rather than being a fixed value, and there is no guarantee that the entire range yields solvable
polynomials for the (φ, ψ) angles. Thus, these equations do not immediately yield a unique conformation,
and a search algorithm is needed to compute the optimal conformation inside the cross-product (Y) of the
discrete solution choices for the backbone (φ, ψ) angles. In this section we present an algorithm that uses
these equations to find the optimal conformation, with respect to the objective functions given in Section 2,
in polynomial time. Throughout the presentation of the algorithm and analysis, we will assume that our
protein has n residues and m secondary structure elements. Recall that we assumed that our protein was
globular and had regular secondary structure; this implies that m = O(n) and that c = O(1).

4.1. Algorithm

In this section, we give our algorithm for structure determination. We give a high-level description of
the algorithm, and give a detailed description of some of the key steps in Section 4.2 below. In Section 6,
we show that all these minimization steps can in fact be implemented in practice and performed efficiently
to rapidly compute accurate structures given real, experimental NMR data as input. Our algorithm consists
of three phases. We describe the first two phases, for simplicity, for a single secondary structure element.
In the first phase, we compute the alignment tensor for the protein. We assume without loss of generality
that D1 and D2 correspond to an α-helix with c ≥ 5 residues. To compute alignment tensors S1 and S2
for each medium we use SVD (Losonczi et al., 1999) to fit the RDCs to the NH vectors of an c-residue
α-helix with ideal geometry. The running time of this phase is O(c3).

In the second phase, we determine the conformation and global orientation of each secondary structure
element, and in the third phase, we determine the relative translations of the secondary structure elements to
obtain the backbone fold. We find D′

1 ∈ G(D1) and D′
2 ∈ G(D2), R, and C ∈ Y(D1,D2,R) that minimize

Equation (2), subject to Y (see Section 3.1 for definition) simultaneously by deciding, and finding a witness
for, a sentence in the first-order theory of real closed fields (Basu et al., 2003; Grigor’ev, 1988). We show
this minimization procedure is polynomial-time in Section 4.2 below.

We now describe the third phase, in which we are given sparse NOEs between successive pairs of
secondary structure elements, and must compute their relative translation. For two successive secondary
structure elements A and B, let N = (n1, n2, . . . , n�) be the Euclidean distances between � pairs of nuclei
from A and B derived from the sparse experimental NOE restraints. We compute a translation x ∈ R

3

between A and B, that minimizes Equation (3) by deciding, and finding a witness for, a sentence in
the first-order theory of real closed fields. Section 4.2 below shows how to find the translation x that
minimizes Equation (3). Computing this translation is sufficient since RDCs are global restraints and thus
all bond vectors are determined in a common coordinate frame; the second phase explicitly determines the
global orientation of secondary structure fragments. Thus, we require only that � ≥ 3 in order to compute
the correct translation between oriented secondary structure elements. The time required for this phase
is O(m) = O(n) times the cost to compute an optimal translation for each pair of secondary structure
elements. We show that the running time of the latter is polynomial in n.

4.2. Analysis of running time

In this section, we show that the key optimization steps in the algorithm of Section 4.1 can be performed
in polynomial time. At a high level, our proof relies on the observation that the objective functions being
minimized in the algorithm can be cast into sentences in the first-order theory of real closed fields. This
allows us to apply the algorithm of Chapter 14 in Basu et al. (2003) to obtain the desired minima.

There has been much study of how efficiently a first-order predicate on polynomial inequalities can be
decided. Tarski (1951) first showed that the problem was indeed decidable, although the complexity of
his algorithm is not elementary recursive. Collins (1975) gave the first reasonable worst-case time bound
for this problem. Grigor’ev and Vorobjov (1988) gave the first algorithm that was sub-doubly-exponential
in the number of variables, and a number of following results improved the complexity in various ways
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(Canny, 1993; Heintz et al., 1990; Renegar, 1992). We use a result of Basu et al. (2003), which has an
improved asymptotic running time. We now restate their result:

Theorem 1 (From Basu et al. (2003, page 507)). Let P be a first-order predicate over s polynomials
of degree at most d in k variables with coefficients bounded by 2C and a alternately quantified blocks
of k1, k2, . . . , ka variables. The truth of P , along with a witness if P is true, can be determined in
O(C · s(k1+1)...(ka+1) · dO(k1)...O(ka)) time.

We will show that, for our purposes, we only require a constant number of quantifiers over polynomials
of constant degree whose coefficients are bounded by a constant and have a constant number of variables.
In Section 4.1 we gave an algorithm which requires several objective functions to be minimized; we
formulate these objective functions as sentences in the first-order theory of real closed fields and apply
Theorem 1 to obtain the optimal parameters to these objective functions. We note that the first-order
sentences constructed in all of the lemmas in fact are guaranteed to be satisfiable, since all of our objective
functions are guaranteed to have at least one set of parameter values for which they are minimized.

Lemma 4.1. The sets of RDCs D∗
1 ∈ G(D1), D∗

2 ∈ G(D2), the rotation R∗ ∈ SO(3), and the confor-

mation C∗ ∈ Y(D∗
1 ,D

∗
2 ,R∗) that minimize Equation (2) can be found in cO(c

3) time.

Proof. Minimizing Equation (2) subject to Y (as defined in Section 3.1) is equivalent to finding
witnesses D∗

1 ∈ G(D1), D∗
2 ∈ G(D2), R∗ ∈ SO(3), and C∗ ∈ Y(D∗

1 ,D
∗
2 ,R∗) for the first-order sentence:

∃D∗
1 ∈ G(D1), ∃D∗

2 ∈ G(D2), ∃R∗ ∈ SO(3), ∃C∗ ∈ Y(D∗
1 ,D

∗
2 ,R∗) :

∀D′
1 ∈ G(D1),∀D′

2 ∈ G(D2),∀R ∈ SO(3),∀C ∈ Y(D1,D2,R) ::

σ(D∗
1 ,D

∗
2 ,R∗, C∗) ≤ σ(D′

1,D
′
2,R, C); (7)

recall that σ is defined by Equation (2) in Section 2. We now analyze the running time of solving
Equation (4.2) by applying Theorem 1. First, we observe that Equation (4.2) has degree O(c), the same
as that of Equation (2); we will also argue below that the quantified sets are all of degree O(c) as well.
Recall that we argued in Section 3 that Y has degree O(c). As stated, Equation (4.2) has the same number
of variables on the left and right hand side; we will now account for these variables. First, the set D∗

1
(resp., D∗

2 , D′
1 and D′

2) can be represented succinctly since we are only concerned with scalar error; that
is, we can simply represent r∗1,i ∈ D∗

1 (resp., r∗2,i ∈ D∗
2 , r ′1,i ∈ D′

1, r ′2,i ∈ D′
2) with a variable ε1,i with

−1 ≤ ε1,i ≤ 1 (resp., ε2,i with −1 ≤ ε2,i ≤ 1, etc.) for 1 ≤ i ≤ c. The variables ε1,i and ε2,i add c
equations of degree 1 and 2c variables to the first-order sentence, giving a total of 2c equations and 4c
variables for both sides of the inequality. The variables R∗ and R can be represented by using a quaternion
representation of rotations; a quaternion can be represented using 4 variables and a quadratic equation.
As mentioned in Section 3, the backbone (φ, ψ) angles in Y for both C∗ and C in Equation (4.2) are the
roots of the polynomial equations for the unit vectors w(φ) and w(ψ), which have degree O(c) (due to
the rotation Ri that must be applied to compute φi and ψi) and 2c variables. Since the i th NH orientation
can be written as a quartic equation (as described in Section 3), the summation in Equations (2) and (4.2)
involving bj,i , for 1 ≤ i ≤ c, j = 1, 2, has degree O(c) as well (due to the rotation Ri that must be
applied and the square in each term of the summation) and 6c variables.

Thus, we have 3c equations, 1 inequality, and blocks of 4c + 5, 2c, and 6c + 5 quantified variables.
Note that the coefficients in our polynomial inequalities are a function of the experimental RDCs and the
parameters of the alignment tensor, and that these coefficients are all bounded by constants. The maximum
degree of the inequalities is O(c), thus by Theorem 1 we can find the witnesses D∗

1 , D∗
2 , R∗, and C∗ to

Equation (4.2) in cO(c
3) ·O((3c + 1)(4c+6)(2c+2)(6c+6)) = cO(c

3) time.

Lemma 4.2. For any successive pair of secondary structure elements, we can find a translation x ∈ R
3

that minimizes Equation (3) in O(1) time.
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Proof. Consider a successive pair of secondary structure elements A and B and without loss of gen-
erality fix �, 2 ≤ � ≤ c, and the distances N = {n1, n2, . . . , n�} derived from the experimental NOE
restraints. Let A = {a1, a2, . . . , a�} (resp., B = {b1, b2, . . . , b�}) be the 3D coordinates of the � nuclei
in A (resp., B) that correspond to the distances in N . Minimizing Equation (3) is equivalent to finding a
witness x∗ such that:

∃x∗ ∈ R
3 : ∀x ∈ R

3 ::
�∑
i=1

(∥∥ai − bj + x∗∥∥ − ni
)2 ≤

�∑
i=1

(∥∥ai − bj + x
∥∥ − ni

)2
. (8)

This predicate has degree at most 4, and 2 blocks of 6 quantified variables. In this predicate, the largest
coefficient is at most the square of the maximum distance in N . We note that there is an inherent upper
bound on NOE restraints of about 6 Å, thus the coefficients are all bounded by a constant. The running
time of finding a witness x∗ for Equation (8) is then O(27·7) = O(1). (Remark: Without this bound on
the NOE distance restraints, the coefficients in the inequalities are bounded by the diameter of the protein,
which would increase the running time by a factor logarithmic in the protein diameter.)

The above lemmas show that each of the phases of the algorithm in Section 4.1 can be performed in
polynomial time. The first phase of the algorithm can be performed in O(c3), since a secondary structure
element has size at most c. By Lemma 4.1, the second phase can be performed in cO(c

3) time for each
secondary structure element, giving a total of m · cO(c3) time. The third phase runs in O(m) time, since we
can orient each successive pair of secondary structure elements in O(1) time Lemma 4.2. We then obtain
the following:

Theorem 2. The algorithm of Section 4.1 runs in mcO(c
3) time.

Since in globular proteins c = O(1) and m = O(n), the running time of our algorithm is polynomial in n.

5. LIMITATIONS AND EXTENSIONS

In this section, we discuss limitations of, and extensions to, the algorithm presented in Section 4.
Section 3 showed that it is possible to compute successive backbone dihedral angles directly from RDCs.
These equations are used in the algorithm of Section 4 to compute the optimal backbone conformations of
secondary structure elements; we show in Section 5.1 below that similar equations can be derived for loop
and turn regions of a given protein. The derivations are similar to those in Section 3, however, we are able
to show that for short loop regions it is possible to pin down the backbone (φ, ψ) angles exactly without
additional constraints (such as, e.g., secondary structure type). Section 4 showed that given secondary
structure types, RDCs and sparse NOEs, it is possible to compute the optimal backbone structure for a
globular protein with regular secondary structure in polynomial time. In Section 5.2, we show that the
algorithm of Section 4 can be modified to also handle non-globular proteins (i.e., proteins with arbitrarily
long secondary structure elements) in polynomial time, with only a constant factor increase in the number
of NOE restraints required (i.e., we still only require �(n) NOEs).

5.1. Computation of loops and turns

The algorithm for turns and loops is built upon the following two propositions:

Proposition 5.1. Given the orientation of peptide planes i and i + 2 and the backbone dihedral angle
φi , the sines and cosine of the backbone dihedral angles ψi , φi+1 and ψi+1 can be computed exactly and
in constant time.

Proof. In the following, small and capital bold letters denote, respectively, vectors (column vectors)
and matrices. All the vectors are 3D vectors and all the matrices are 3D rotation matrices. Let v1, v3 and
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w1, w3 denote, respectively, the NH and NCα vectors of peptide planes i, and i+2. From protein backbone
kinematics we have

LG1w3 = Rz(ψi)RRy(φi+1)Rx(θ3)Rz(ψi+1)cw

LG1v3 = Rz(ψi)RRy(φi+1)Rx(θ3)Rz(ψi+1)cv (9)

where R is a constant matrix, and cw and cv are two constant vectors. Given the backbone angle φi ,
the matrix L is known. The matrix G1 is the rotation matrix from the POF of RDCs to a coordinate
frame defined in the peptide plane i. From Equation (9), through algebraic manipulation we can derive the
following three simple trigonometric equations satisfied by the ψi , φi+1 and ψi+1 angles:

a1 sin φi+1 + b1 cosφi+1 = c1, a2 sinψi+1 + b2 cosψi+1 = c2, a3 sin φi + b3 cosφi = c3

where a1, b1, c1 are constants from the matrix R, and the six variables, a2, b2, c2, a3, b3, c3, are simple
trigonometric function of the φi+1 angle.

Proposition 5.2. Given the orientation and position of peptide planes i and i + 3 in a POF of RDCs,
the six backbone dihedral angles φi , ψi , φi+1, ψi+1, φi+2 and ψi+2 can be computed exactly and in
constant time.

Recall that for Equation (2), we used the observed averages φa and ψa for the backbone (φ, ψ) angles,
where φa and ψa were the average backbone dihedral angles for the secondary structure type under
consideration. For loop regions, these observed averages are not meaningful; we can, however, fit the
structure to the data and avoid steric clash. For any conformation C (as defined in Section 2), let B(C)
be the atom positions in the backbone defined by C, according to standard backbone geometry. Then, let
dx,y be the distance between the backbone atoms x, y ∈ B(C); note that there are k = O(c) atoms in this
conformation by definition, since each residue type has a constant number of atoms. Let δx,y be the sum
of the van der Waals radii of the two atoms x, y ∈ B(C), and let CO(C) be a predicate that is true if C has
steric clash and false otherwise (i.e., true if all distances dx,y for all x, y ∈ B(C) are greater than δx,y).
Finally, let F = {C | ¬CO(C)}, the set of all conformations C that do not have steric clash. Then, we wish
to compute a conformation C ∈ F such that the following objective function is minimized:

σL (D
′
1,D

′
2,R, C) =

c∑
i=1

((
b1,i − r1,i

)2 + (
b2,i − r2,i

)2
)
. (10)

Recall that this objective function also appears as the first term in Equation (2). In fact, we can use
the techniques presented in Section 4 to find a conformation without steric clash that efficiently optimizes
Equation (10) over F for a short (constant-length) loop region:

Lemma 5.1. The conformation of a loop region of length c that optimizes Equation (10), and does not
have steric clash, can be found in cO(c

3) time.

Proof. Note that the objective function is a simplified version of the one optimized in Lemma 4.1;
however we must also ensure that the witness conformation that is identified does not have steric clash. The
key observation is that CO(·) can be specified with semi-algebraic constraints, and thus we can formulate
a predicate whose truth, along with a witness, can be found in polynomial time, as in Lemmas 4.1 and 4.2.
We wish to find a witness for following predicate:

∃D∗
1 ∈ G(D1), ∃D∗

2 ∈ G(D2), ∃R∗ ∈ SO(3), ∃C∗ ∈ Y(D∗
1 ,D

∗
2 ,R∗) :

∀D′
1 ∈ G(D1),∀D′

2 ∈ G(D2),∀R ∈ SO(3),∀C ∈ Y(D1,D2,R) ::
¬CO(C∗) ∧ ¬CO(C) ∧ σL (D

∗
1 ,D

∗
2 ,R∗, C∗) ≤ σL (D

′
1,D

′
2,R, C). (11)
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First, we note that in any conformation C for which CO(C) is false, B(C) defines a set of spheres that
do not overlap. B(C) can be defined uniquely for a given conformation C, and has size O(c). Then, the
required predicate CO(·) that defines F can be written using O(c2) inequalities of degree 2; the inequalities
ensure the distances dx,y all exceed the van der Waals distances δx,y . The inequalities for minimizing σL

are identical to those given in Lemma 4.1 for minimizing the first sum term in Equation (2). Minimizing
σL requires cO(c

3) time as before. The additional O(c2) equations that ensure that steric clash does not
occur increase the base in this running time, but the exponent increases only by a factor of two, and thus
the overall running time is cO(c

3).

As before, if c = O(1), then this optimization step runs in O(1) time for each loop region; this
optimization step would be performed in the same phase of the algorithm in which the conformation
of secondary structure elements is computed. Since there are at most n loop regions, the time needed
to compute the overall backbone structure of the protein (including loop regions of constant-length) is
O(n). The computation of relative translations proceeds as before; we note that there is no increase in
asymptotic running time in this step, since even including loop regions, there are O(n) successive pairs
of conformations that must be positioned relative to one another. Thus the algorithm of Section 4 can be
modified to compute the optimal conformation of loop regions without increasing the overall asymptotic
running time. As mentioned in Section 6, we have successfully incorporated Proposition 5.2 into our
algorithm to compute the turns and loops for the protein human ubiquitin using NH and CH RDCs in a
single medium. Two short turns, Leu8–Gly10 and Gly47–Lys48, could be computed without using any
experimental RDCs, since they are less than 3 residues long (Proposition 5.2). The two loops, Glu18–Thr22
and Gly35–Glu41, connecting the helix (Leu23–Glu34) to the single sheet (consisting of five strands), can
also be computed using only NH and CH RDCs in a single medium. The conformations of these two loops
determine the relative position between the helix and sheet. The most difficult problem is the computation
of the long loop, Glu51–Lys63, connecting two β-strands in the sheet. Two long-range backbone NOE
distances, H

N
(Thr22)↔H

N
(Thr55) and H

N
(Ile23)↔Hα(Leu56), automatically-assigned based on chemical

shift alone are required for improving the accuracy of the conformation. The complete backbone structure
computed by our algorithm (Fig. 4) has a 1.45 Å backbone RMSD (computed using Cα , N, and C′ backbone
atoms) from the corresponding X-ray backbone structure (PDB ID 1UBQ) (Vijay-Kumar et al., 1987).

5.2. Non-globular proteins

In Section 4, we presented an algorithm that computes the optimal backbone structure (see Section 2
for our optimization criteria) for globular proteins with regular secondary structure. We note that it can be
checked easily, inO(n) time given the secondary structure types of residues, whether a protein is globular or
not, and whether the secondary structure elements are of constant length. The complexity of our algorithm
is parameterized by n, m and c. For our algorithm, we must have m·c ≤ n, or, more precisely,

∑m
i=1 ci = n,

where ci is the length of the i th secondary structure element. In Section 4, we let c = max{c1, c2, . . . , cm}
and handle the case where c = O(1). We note that this assumption is reasonable, since secondary structure
element length appears to be bounded by a constant as protein size grows. Figure 2 verifies this statement
for β-strands by showing a plot of protein length versus maximum β-strand length for proteins in the PDB
Finder (Hooft et al., 1996) database; a similar trend holds for α-helices.

If we wish to apply our algorithm to a protein that is not globular (as mentioned above, we can check
this in O(n) time), we can use a modified version of the algorithm from Section 4 with slight modifications
that requires additional NOE restraints. We formalize this approach with Theorem 3 below. Informally,
the idea behind the modified algorithm is to partition arbitrarily long secondary structure elements into
fragments of constant length, apply our minimization technique to find optimal conformations for these
fragments, and assemble the fragments as in the last phase of our original algorithm. The global nature
of RDCs guarantees us that the relative orientations2 of the fragments are correct after computing their
conformations. Recall that the assembly procedure required three NOEs for every successive pair of
secondary structure elements; in the modified algorithm we will require three NOEs for every successive

2See Wang and Donald (2004b, p. 234) for how the sparse NOEs can be used, within the same time bound, to
resolve the relative orientational degeneracy in one medium due to the symmetry of the dipolar operator.
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FIG. 2. A plot of β-strand lengths for proteins in the PDBFinder (Hooft et al., 1996) database; the x-axis is the
length of a protein (number of residues), and the y-axis is the maximum length of any β-strand in the given protein.

pair of fragments. In non-globular proteins, secondary structure elements can have length �(n), and thus
this approach could yield �(n) fragments and requires �(n) NOE restraints. Note that, asymptotically,
the required number of NOE restraints is not increased.

Theorem 3. For a non-globular protein with n residues, we can compute an optimal backbone structure
satisfying Equations (2) and (3) subject to the constraint Y(D1,D2,R1) in O(n) time.

Proof. Let γ be a constant, and let the protein under consideration have n residues. Our modified
algorithm works as follows. First, we partition the secondary structure elements of the protein into fragments
of length at most γ . We can now apply Lemma 4.1 to find the conformation of each of these fragments in
O(γO(γ

3)) = O(1) time, since γ = O(1). Note that every pair of these fragments has the correct relative
orientation, and to correctly determine the backbone structure, it suffices to compute the relative position
of successive pairs of fragments. To do this, we require NOE restraints between every successive pair of
the chosen fragments; this requirement is the only constraint on the fragment length γ . Furthermore, all
fragments do not need to be the same length, as long as their length is bounded by γ . We can then apply
Lemma 4.2 to each successive pair of fragments to obtain the backbone structure. There are at most n
fragments, and each application of Lemma 4.2 requires O(1) time, yielding a total running time of O(n)
to construct the backbone structure from the conformations of the computed fragments. Thus, we obtain
an overall running time of O(n).

We note the above algorithm is a strict generalization of the algorithm presented in Section 4; in other
words, the two algorithms are equivalent if we set γ = c. Given the experimental data described in
Section 1, page 1269, including the additional NOEs described in the proof of Theorem 3 above, the
algorithm presented in this section can compute the backbone structure of globular and non-globular
proteins in polynomial time. In Section 6, we present experimental results for a version of our algorithm
that also computes the intervening loop regions in the backbone structure; Section 5.1 above detailed the
equations needed to compute NH orientations in loop regions. We note that the generalized algorithm
above can also be applied in conjunction with the results in Section 5.1 above to compute the complete
backbone structure, including loops and turns, of both globular or non-globular proteins.
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6. EXPERIMENTAL RESULTS

As shown in Section 4, for globular proteins with regular secondary structure, our algorithm for structure
determination provably runs in polynomial time. While our algorithm is combinatorially precise and uses
exact algebraic numbers, to test it in practice we implemented some subroutines exactly (i.e., the closed-
form exact solutions for internuclear NH and CH bond vectors and backbone (φ, ψ) angles, and used
a discrete, combinatorial tree-search over the algebraic cross-product Y of possible solutions) and some
numerically (i.e., we used a grid search over SO(3) for the orientation of the first peptide plane and over R

3

to find translations between successive secondary structure elements) for both implementation speed and
to avoid some technical issues in approximating rational rotations (Canny et al., 1992; Donald and Xavier,
1995a, 1995b; Donald et al., 1992, pages 1–23). In practice, the implementation took about 20 minutes on
average on a single-processor Pentium-4 class machine. Table 1 gives the results of using our algorithm to
compute the backbone secondary structure elements for six real experimental data sets for three proteins.

Practical algorithms for quantifier elimination and the existential theory of real closed fields have been
efficiently implemented (Canny, 1987; Ponce and Kriegman, 1992) to find the minima of objective functions
that are similar to Equations (2) and (3). In our implementation, the second phase of the algorithm was
implemented with a systematic depth-first search along with a pruning criterion that only considers (φ, ψ)
angles that are in the algebraic subset defined by Y and in the Ramachandran region of the current
secondary structure type. While there is a long history of validating exact algorithms using implementations
that contain numerical subroutines (Böhringer et al., 1996; Brown and Donald, 2000; Canny and Donald,
1988; Donald, 1990, 1992, 1993; Erdmann, 2004; Erdmann and Lozano-Perez, 1987), these codes must
be tested on real data to verify robustness and accuracy. Our algorithm has been successfully implemented
and applied to real protein NMR data to compute the backbone substructures (oriented and translated
secondary structure elements) of three structurally distinct proteins. We first applied the algorithm to the
protein human ubiquitin using NH RDCs in two media (Wang and Donald, 2004b, 2004a) or NH and
CH RDCs in a single medium (Table 1), plus 12 hydrogen bonds and four NOE distances (Fig. 3).
For our experiments, we used the PDB assignment of secondary structure as input, although we note
that the secondary structure assignment is evident from the NMR chemical shift index (CSI) (Wishart
and Sykes, 1994) of backbone atoms. We have also applied our algorithm to compute the backbone
substructures of two other proteins, DNA-damage-inducible protein I and immunoglobulin binding protein
G, using NH RDCs in two media (or NH and CH RDCs in one medium) and sparse distance restraints. The
RMSD, computed using backbone Cα , N, and C′ atoms, between the backbone structures (excluding loop
regions) computed by our algorithm and the corresponding portions of previously-solved NMR structures
is, respectively, 1.55 Å for DNA-damage-inducible protein I and 0.96 Å for immunoglobulin binding
protein G. Note that the NMR structures we compared with are computed by MD/SA (Brünger, 1993)

Table 1. Results of Our Algorithm

Proteina
α/β

residuesb RDCsc Type of RDCsd
Hydrogen
bondse NOEsf RMSDg

Ubiquitin 39/75 78 NH in two media 12 4 1.23 Å
Ubiquitin 41/75 76 NH, CH in one medium 12 4 0.97 Å
Dini 41/81 75 NH in two media 6 9 1.55 Å
Dini 41/81 80 NH, CαC′ in one medium 6 9 1.35 Å
Protein G 29/56 53 NH in two media 9 4 0.98 Å
Protein G 33/56 61 NH, CαC′ in one medium 9 4 1.30 Å

aExperimental RDC data for ubiquitin (PDB ID: 1D3Z), Dini (PDB ID: 1GHH) and Protein G (PDB ID: 3GB1) were taken from
the Protein Data Bank (PDB).

bNumber of residues in α-helices or β-sheets, versus the total number of residues.
cThe total number of experimental RDCs (note that RDCs are missing for some residues).
dRDCS from different experimental datasets (for different bond vectors) were used.
eNumber of hydrogen bonds used.
f Number of NOEs used.
gRMSD (for Cα , N, and C′ backbone atoms) between the oriented and translated secondary structure elements (excluding loop

regions) computed by our algorithm to existing structures: ubiquitin to a high-resolution X-ray structure (PDB ID:1UBQ); Dini to
an NMR structure (PDB ID: 1GHH); and Protein G to an NMR structure (PDB ID: 3GB1).
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Table 2. Comparison with Existing Approaches

Referencea Program Techniqueb Restraints per residuec Accuracyd

Giesen et al. (2003) X-plor MD/SA 6 RDCs 1.45 Å
Hus et al. (2001) SCULPTOR MD/SA 11 RDCs, 1.00 Å
Delaglio et al. (2000) MFR Database 10 RDCs, 5 chemical shifts 1.21 Å
Rohl and Baker (2002) RosettaNMR Database/MC 3 RDCs, 5 chemical shifts 1.65 Å
Rohl and Baker (2002) RosettaNMR Database/MC 1 RDC 2.75 Å
Our algorithm — Exact equations 2 RDCs 1.45 Å

aReferences to previously-computed ubiquitin backbone structures (including loop regions).
bAlgorithmic technique.
cData requirements.
dBackbone RMSD (for Cα , N, and C′ backbone atoms) of the structure computed by our algorithm (including loops and turns)

compared to the X-ray structure (PDB ID: 1UBQ) (Vijay-Kumar et al., 1987).

using about 15 restraints per residue (including both NOE and RDC restraints). In contrast, our backbone
structures have been computed using about 2.4 restraints per residue (2 RDCs and 0.4 distance restraints
per residue). The fact that our algorithm needs very little RDC data (only two restraints per residue) is
important for high-throughput applications such as structure-based drug design. This is because, in practice,
it is difficult and time-consuming to measure more than two RDCs per residue for many proteins due to
their dynamic behavior in solution.

Finally, as mentioned in Section 5 we have successfully extended our algorithm to compute a complete
backbone structure, including turns and loops (connecting the secondary structure elements) using only NH
and CH RDCs in a single medium (i.e., only two RDCs per residue) and two unambiguous NOEs. This
algorithm, which also computes the structure of the turn and loop regions also runs in polynomial-time
for a globular protein with regular secondary structure if we assume that our globular protein has O(n)
loop and turn regions each with length c� = O(1); an overwhelming majority of globular proteins indeed
have short (constant-length) turn and loop regions (see Section 5 for further discussion). When tested on
ubiquitin, the final backbone structure computed by this algorithm has a 1.45 Å backbone RMSD (for
all backbone atoms) from the X-ray structure (Fig. 4). This accuracy is similar to that of the ubiquitin
backbone structure computed by a commonly-used heuristic approach (Giesen et al., 2003) (Table 2). The
latter is the previous best result obtained for ubiquitin structure when using six or fewer RDCs per residue.
Our accuracy is also better than the ubiquitin structure computed by Rohl and Baker (2002); they use
three RDCs per residues plus five chemical shifts per residue as input to their algorithm. Furthermore, our
algorithm is capable of handling up to 15% missing RDC data (Fig. 4).

7. CONCLUSION

In this paper, we have shown that the global nature of RDC data can be used to develop a polynomial-
time algorithm for de novo high-resolution protein structure determination. This is the first polynomial-
time algorithm for de novo high-resolution structure determination from any type of experimental data.
Furthermore, we have shown that in practice, on real biological NMR data, that our algorithm is as good
or better in terms of accuracy and speed, and requires less data than, existing NMR structure determination
techniques.

A key feature of our approach is that we establish an exact relationship between the experimental data
and the computed protein structure (i.e., Propositions 3.1 and 3.2 relate NH orientations exactly to RDCs).
For example, it is easy to compute the contribution of each NH orientation chosen by our algorithm to
the optimal value of Equation (2). Furthermore, the effect of error in an experimental RDC can also be
expressed as an exact, algebraic function of NH orientation using Proposition 3.1, which then allows us to
quantitate the effect of a single RDC on the final structure. For secondary structure elements, our algorithm
finds the NH orientations that optimize Equation (2), but it would be straightforward to treat any subset of
the RDCs as parameters in the quartic equation derived in Proposition 3.1. We can then analytically solve
for the NH orientations that satisfy Proposition 3.1 and hence “cover” the range of experimental values of
the RDCs.
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FIG. 3. Structure of ubiquitin backbone without loops. The ubiquitin backbone structure (blue) was computed by
our algorithm using 37 NH and 39 CH RDCs, 12 hydrogen bonds, and four NOEs. Our structure has an RMSD
of 0.97 Å when compared to the high-resolution X-ray structure (PDB ID: 1UBQ, in magenta) (Vijay-Kumar et al.,
1987). The depicted structures consist of residues from Met1 to Arg72, since the C-terminal four residues of ubiquitin
do not have a well-defined structure in solution.

Our algorithm and implementation can easily be extended to output a set of k conformations, for
any k, rather than a single best-fit structure. After computing the best-fit structure in polynomial time,
the existential predicates used in Lemmas 4.1 and 4.2 can be modified to find an additional distinct
conformation; this procedure can be repeated k times to find the k top-scoring structures for the given
experimental data. We note that the overall running time is increased only by a factor of k, the desired
number of conformations. (Remark: It is interesting to point out that if k = O(1), it is also relatively
straightforward to find k best-fit conformations in a manner similar to Lemma 4.1, by using a different
set of variables for each of the k distinct conformations. The total running time for both methods of
generating k conformations is O(n) for k = O(1).) Let δ0 be the combined cost (Equations (2) and (3))
of the optimal conformation returned by our algorithm. The predicates in Equations (4.2) and (8) can be
modified to represent the set Sε of structures whose combined score is at most δ0 + ε, for all ε > 0.
Therefore, Sε is also a semi-algebraic set that can be decided in polynomial-time. Thus, we can also easily

FIG. 4. Structure of ubiquitin backbone with loops. The ubiquitin backbone structure (blue) was computed by
extending our algorithm to handle loop regions along the protein backbone. The structure was computed using 59 NH
and 58 CH RDCs (117 out of 137 possible RDCs, 20 are missing), 12 H-bonds and two unambiguous NOEs. Our
structure has a backbone RMSD of 1.45 Å with the high-resolution X-ray structure (PDB ID: 1UBQ, in magenta)
(Vijay-Kumar et al., 1987).
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specify the range of total cost these k conformations allowed to span (i.e., that none of the computed
conformations exceeds the optimal cost by more than an additive factor of ε, for any ε > 0). Analogously,
the tree-search based implementation can easily be modified to return the k top scoring conformations.

Additionally, because our structure determination approach is based on an exact relationship between
experimental data and the resulting structure, it also compatible with approaches that seek to characterize the
likelihood of a computed structure, i.e., an objective figure of merit, with respect to experimental parameters
(Rieping et al., 2005). In other words, we can assign likelihoods to the NH vectors and backbone atom
positions computed by our algorithm that are based on their agreement with the input experimental RDC
and NOE data.

Furthermore, our polynomial-time backbone structure determination algorithm can be extended to com-
pute complete protein structures (including side-chains), since exact equations analogous to Equations (5)
and (6) can be derived mutatis mutandis to compute the side-chain dihedral angles χ1, χ2, . . . from experi-
mentally-recorded side-chain RDCs. In this case, the average angles φa and ψa in Equation (2) would be
replaced with side-chain rotamer angles χa,1, χa,2, . . . . Finally, our algorithm might also be extended to
speed up the structure determination of nucleic acids, since similar exact equations (from DNA and RNA
RDCs) can easily be derived to compute the backbone torsion and χ angles in nucleic acids.

APPENDIX

A. Equations for computing backbone dihedral angles from RDCs

In this section, we give a more detailed presentation of the method to compute backbone dihedral angles
from RDCs in two aligning media exactly and in constant time per residue. We show that it is possible to
derive, from the physics of RDCs, low-degree monomials (with degree at most 4) whose solutions give the
backbone (φ, ψ) angles. We sketch the proofs here; the interested reader can refer to (Wang and Donald,
2004b) for further details of the proofs and equations. As before, we assume that the dipolar interaction
constant Dmax is equal to 1. By considering a global coordinate frame which diagonalizes the alignment
tensor, Equation (1) becomes:

r = Sxxx
2 + Syyy

2 + Szzz
2, (4)

where Sxx, Syy and Szz are the three diagonal elements of a diagonalized Saupe matrix S (the alignment
tensor), and x, y and z are, respectively, the x, y, z−components of the unit vector v in a principal order
frame (POF) which diagonalizes S. Now, S is a 3 × 3 symmetric, traceless matrix with five independent
elements (Tjandra and Bax, 1997; Tolman et al., 1995). Given NH RDCs in two aligning media, the
associated NH vector v must lie on the intersection of two conic curves (Skrynnikov and Kay, 2000;
Wedemeyer et al., 2002). We show

Proposition 1. Given the diagonal Saupe elements Sxx and Syy for medium 1, S′
xx and S′

yy for medium
2 and a relative rotation matrix R12 between the POFs of medium 1 and 2, the square of the x-component
of the unit vector v satisfies a monomial quartic equation.

The following is a sketch of the proof. The methods for the computation of the seven parameters (Sxx ,
Syy , S′

xx , S′
yy and R12) and the full expressions for the polynomial coefficients and temporary variables

(a2, b2, c1, etc.) can be found in (Wang and Donald, 2004b).

Proof. Fix a backbone NH vector v along the backbone and let r and r ′ be the experimental RDCs
for v in the first and second medium, respectively. From Equation (4) we have

r = Sxxx
2 + Syyy

2 + Szzz
2, r ′ = S′

xxx
′2 + S′

yyy
′2 + S′

zzz
′2,

⎛
⎝
x′
y′
z′

⎞
⎠ = R12

⎛
⎝
x

y

z

⎞
⎠ =

⎛
⎝
R11 R12 R13
R21 R22 R23
R31 R32 R33

⎞
⎠

⎛
⎝
x

y

z

⎞
⎠
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where r is the RDC value, x, y, z are the x, y, z-components of v in a POF of medium 1, r ′ and x′, y′, z′
are the corresponding variables for medium 2. Eliminating x′, y′ and z′ we have

r2 = a2x
2 + b2y

2 + c1xy + c2xz+ c3yz (12)

r1 = a1x
2 + b1y

2 (13)

where a2 = (S′
xx − S′

zz)(R
2
11 − R2

13) + (S′
yy − S′

zz)(R
2
21 − R2

23) and c2 = 2(S′
xx − S′

zz)R11R13 + 2(S′
yy −

S′
zz)R21R23, and b2, c1, c2, c3, a1, b1 are similar constants; full details are given in Wang and Donald

(2004b).
Eliminating z from Equation (12) we obtain

d8x
4 + d7x

3y + d6x
2y2 − d5x

2 + d4xy
3 − d3xy − d2y

2 + d1y
4 + d0 = 0 (14)

where d8 = a2
2 + c2

2, and d7, d6, . . . , d0 are analogously defined; these are defined fully in Wang and
Donald (2004b). Equation (14) is a degree 8 monomial in x after direct elimination of y using Equation (13).
However, it can be reduced to a quartic equation by substitution since only the terms with the degrees of
0, 2, 4, and 8 appear in it. Introducing new variables t and u such that

x = a sin t, y = b cos t, u = cos 2t (15)

and through algebraic manipulation we finally obtain

f4u
4 + f3u

3 + f2u
2 + f1u+ f0 = 0. (16)

The full expressions for coefficients a, b and f0, f1, f2, f3, f4 are given in Wang and Donald (2004b).
Since u = 1 − 2( x

a
)2 Equation (16) is also a quartic equation in x2.

The y-component of v can be computed directly from Equation (15). Due to two-fold symmetry in the
RDC equation the number of real solutions for v is at most 8. We will refer to the bond vector between
the N and Cα atoms as the NCα vector. Given two unit vectors in consecutive peptide planes we can use
backbone kinematics to derive quadratic equations to compute the sines and cosines of the (φ, ψ) angles:

Proposition 2. Given the NH unit vectors vi and vi+1 of residues i and i + 1 and the NCα vector of
residue i the sines and cosines of the intervening backbone dihedral angles (φ, ψ) satisfy the trigonometric
equations sin (φ + a1) = b1 and sin (ψ + a2) = b2, where a1 and b1 are constants depending on vi and
vi+1, and a2 and b2 depend on vi , vi+1, sin φ and cosφ. Furthermore, exact solutions for sin(φ) and cos(φ)
can be computed from a quadratic equation by the substitution w = tan φ

2 , sin φ = 2w/(1 +w2), cosφ =
(1 − w2)/(1 + w2); equations for sinψ and cosψ can be obtained and solved exactly by a similar
substitution.

The following is a sketch of the proof. Full expressions for the polynomial coefficients and tempo-
rary variables (x1, y1, z1, x2, y2, z2, a1, b1, a2, b2) introduced in the proof are given in Wang and Donald
(2004b).

Proof. Following a procedure similar to kinematics the two NH vectors vi and vi+1 can be related by
8 rotation matrices between two coordinate systems in peptide planes i and i + 1:

vi = Rx(θ7)Ry(θ6)Rx(θ5)Rz(ψ + π)Rx(θ3)Ry(φ)Ry(θ8)Rx(θ1)vi+1. (17)

The definitions of the coordinate systems, the expressions for the rotation matrices Rx,Ry and Rz and the
definitions of the six backbone angles (θ1, θ3, θ5, θ6, θ7 and θ8) are given in Wang and Donald (2004b).
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The backbone (φ, ψ) angles are defined according to the standard convention. Given the values of these
six angles Rl = Rx(θ7)Ry(θ6)Rx(θ5) and Rr = Ry(θ8)Rx(θ1) are two 3×3 constant matrices. Define two
new vectors w1 = (x1, y1, z1) = Rl−1vi and w2 = (x2, y2, z2) = Rrvi+1 to obtain

x1 = −(cosφ cosψ + sin θ3 sin φ sinψ) x2 − cos θ3 sinψ y2 + (cosψ sin φ − cosφ sin θ3 sinψ) z2

y1 = (cosφ sinψ − sin θ3 sin φ cosψ) x2 − cos θ3 cosψ y2 − (sin φ sinψ + cosφ sin θ3 cosψ) z2

z1 = cos θ3 sin φ x2 − sin θ3 y2 + cos θ3 cosφ z2 (18)

By Equation (18) we can then obtain a simple trigonometric equation:

sin (φ + a1) = b1 (19)

where b1 = z1+y2 sin θ3√
(x2 cos θ3)

2+(z2 cos θ3)
2
, and a1 is a similar constant; see Wang and Donald (2004b) for details.

sin φ and cosφ can be computed from a quadratic equation by the substitution w = tan φ
2 , sin φ =

2w
1+w2 , cosφ = 1−w2

1+w2 . Substituting the computed sin φ and cosφ into Equation (19) we can obtain another
simple trigonometric equation:

sin (ψ + a2) = b2 (20)

sinψ and cosψ can be computed similarly from a quadratic equation where both a2 and b2 ≤ 1 are
computed from y1, x2, y2, z2, θ3 and sin φ and cosφ.
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