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ABSTRACT

With an ever-increasing amount of available data on protein–protein interaction (PPI) net-
works and research revealing that these networks evolve at a modular level, discovery of
conserved patterns in these networks becomes an important problem. Although available
data on protein–protein interactions is currently limited, recently developed algorithms have
been shown to convey novel biological insights through employment of elegant mathemat-
ical models. The main challenge in aligning PPI networks is to define a graph theoretical
measure of similarity between graph structures that captures underlying biological phe-
nomena accurately. In this respect, modeling of conservation and divergence of interactions,
as well as the interpretation of resulting alignments, are important design parameters. In
this paper, we develop a framework for comprehensive alignment of PPI networks, which
is inspired by duplication/divergence models that focus on understanding the evolution of
protein interactions. We propose a mathematical model that extends the concepts of match,
mismatch, and gap in sequence alignment to that of match, mismatch, and duplication
in network alignment and evaluates similarity between graph structures through a scor-
ing function that accounts for evolutionary events. By relying on evolutionary models, the
proposed framework facilitates interpretation of resulting alignments in terms of not only
conservation but also divergence of modularity in PPI networks. Furthermore, as in the
case of sequence alignment, our model allows flexibility in adjusting parameters to quan-
tify underlying evolutionary relationships. Based on the proposed model, we formulate PPI
network alignment as an optimization problem and present fast algorithms to solve this
problem. Detailed experimental results from an implementation of the proposed framework
show that our algorithm is able to discover conserved interaction patterns very effectively,
in terms of both accuracies and computational cost.
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1. INTRODUCTION

Increasing availability of experimental data relating to biological sequences, coupled with efficient
tools such as BLAST and CLUSTAL, have contributed to fundamental understanding of a variety of
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biological processes (Altschul et al., 1997; Thompson et al., 1994). These tools are used for discovering
common subsequences and motifs, which convey functional, structural, and evolutionary information.
Recent developments in molecular biology have resulted in a new generation of experimental data that
bear relationships and interactions between biomolecules (Hartwell et al., 1999). An important class of
molecular interaction data is in the form of protein–protein interaction (PPI) networks. These networks
provide the experimental basis for understanding modular organization of cells, as well as useful information
for predicting the biological function of individual proteins (Titz et al., 2004). High-throughput screening
methods such as two-hybrid analysis (Ito et al., 2001), mass spectrometry (Ho et al., 2002), and TAP
(Gavin et al., 2002) provide large amounts of data on the interactome of an increasing number of species.

Recent studies suggest that PPI networks evolve at a modular level (Wuchty et al., 2003), and conse-
quently, understanding conserved substructures through comparative analysis of these networks can provide
basic insights into a variety of biochemical processes. As is the case with sequences, key problems on
graphs derived from biomolecular interactions include aligning multiple graphs (Dandekar et al., 1999;
Koyutürk et al., 2005; Sharan et al., 2004, 2005; Tohsato et al., 2000), finding frequently occurring sub-
graphs in a collection of graphs (Hu et al., 2005; Koyutürk et al., 2004; Sharan et al., 2005), discovering
highly conserved subgraphs in a pair of graphs, and finding good matches for a subgraph in a database of
graphs (Kelley et al., 2004). A class of comparative analysis techniques explore the problem of identifying
conserved topological motifs in different species (Lotem et al., 2004; Wuchty et al., 2003). These studies
reveal that many topological motifs are significantly conserved within and across species and proteins that
are organized in cohesive patterns tend to be conserved to a higher degree.

A publicly available tool, PathBLAST, adopts the ideas in sequence alignment to PPI networks to dis-
cover conserved protein pathways across species (Kelley et al., 2003, 2004). By restricting the alignment to
pathways, i.e., linear chains of interacting proteins, this algorithm simplifies the problem, while preserving
the biological implication of discovered patterns. PathBLAST accounts for gaps and mismatches by allow-
ing nonrepeated jumps and matching of nonorthologous proteins, based on the notion that the orthologous
counterpart of a pair of interacting proteins in one species will likely be indirectly interacting in the other
(Kelley et al., 2003). Pinter et al. (2005) align metabolic pathways based on subtree homeomorphism, ob-
serving that this model not only simplifies the problem by avoiding cycles, but also can describe variations
in metabolic pathways effectively.

In addition to pathways and trees, a more general pattern structure is in the form of subgraphs induced
by a group of proteins. Such subgraphs may provide insight into the conservation of functional modules
and protein complexes, since these building blocks of cellular processes manifest themselves as dense
or highly connected subgraphs in the PPI network (Bader and Hogue, 2003; Tornow and Mewes, 2003).
Indeed, in a recent study, Sharan et al. (2004) show that cross-species network comparison in terms
of general subgraphs provides novel biological insights through incorporation of knowledge about two
different networks. Specifically, they identify conserved complexes in bacteria and yeast by constructing
an orthology graph with nodes that correspond to pairs of orthologous proteins, one from each species. The
edges of the orthology graph are weighted according to a probabilistic framework that compares null and
conserved complex models based on log likelihood, which takes into account the conservation and density
of interactions. The idea of constructing product graphs by joining orthologous nodes is also applied to
the comparative analysis of PPI networks that belong to multiple species (Sharan et al., 2005).

Based on the understanding of the structure of PPI networks that are available for several species,
theoretical models that focus on understanding the evolution of protein interactions have been developed
(Chung et al., 2003; Eisenberg and Levanon, 2003; Pastor-Satorras et al., 2003; Vázquez et al., 2003; Wag-
ner, 2003). Among these, the duplication/divergence model has been shown to be promising in explaining
the power-law nature of PPI networks (Vázquez et al., 2003). In this paper, we propose a framework
for alignment of PPI networks based on these evolutionary models. As in Kelley et al. (2003, 2004) and
Sharan et al. (2004, 2005), we construct product graphs by matching pairs of orthologous nodes. In con-
trast to Sharan et al. (2004), however, our framework is based on concepts of matches, mismatches, and
duplications, and edges are weighted in order to reward or penalize these evolutionary events. This can be
viewed as an extension of the concept of alignment in the sequence domain to that in network domain.
Hence, our model provides a general framework that allows selection of parameters based on existing
information about the conservation and divergence of proteins and their interactions, which can be refined
in the light of a diverse range of mathematical models for network evolution (Berg et al., 2004; Fraser
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et al., 2002; Kunin et al., 2004; Pastor-Satorras et al., 2003; Qin et al., 2003; Wuchty, 2004). We reduce
the resulting alignment problem to a graph-theoretic optimization problem and propose efficient heuristics
to solve this problem. Experimental results based on an implementation of our framework show that the
proposed algorithm is able to discover conserved interaction patterns very effectively. Another important
difference between the proposed method and existing conserved network identification algorithms is that,
by adapting the concepts of evolutionary models to comparative network analysis, our model allows inter-
pretation of the divergence of functional modules through protein duplications and elimination/emergence
of interactions. The proposed algorithm can also be adapted to finding matches for a subnet query in a
database of PPI networks. The source code of the software and results on the pairwise alignment of PPI
networks that belong to a variety of organisms are available at www.cs.purdue.edu/homes/koyuturk/mawish/.

The rest of this paper is organized as follows: we start with a brief overview of duplication/divergence
models for the evolution of PPI networks in Section 2. In Section 3, we define the alignment problem
based on these models of evolution, formulate the problem as a graph optimization problem, and propose
efficient heuristics for the solution of the problem. We illustrate the effectiveness of the proposed framework
on comprehensive pairwise alignment of the PPI networks for three eukaryotic species in Section 4.
We conclude our discussion in Section 5.

2. THEORETICAL MODELS FOR EVOLUTION OF PPI NETWORKS

There have been a number of studies aimed at understanding the general structure of PPI networks.
These studies suggest that PPI networks can generally be modeled by power-law graphs, i.e., the relative
frequency of proteins that interact with k proteins is roughly proportional to k−γ , where γ is a network-
specific parameter (Barabási and Albert, 1999). In order to explain this power-law nature, Barabási and
Albert (1999) have proposed a network growth model based on preferential attachment, which is able to
generate networks with degree distribution similar to PPI networks. According to this model, networks
expand continuously by addition of new nodes, and these new nodes prefer to attach to well-connected
nodes when joining the network. Observing that older proteins are better connected, Eisenberg and Levanon
(2003) explain the evolutionary mechanisms behind such preference by the strength of selective pressure
on maintaining connectivity of strongly connected proteins and creating proteins to interact with them.
Furthermore, in a relevant study, it is observed that the interactions between groups of proteins that are
temporally close in the course of evolution are likely to be conserved, suggesting synergistic selection
during network evolution (Qin et al., 2003).

A common model of evolution that explains preferential attachment is the duplication/divergence model,
which is based on gene duplications (Pastor-Satorras et al., 2003; Vázquez et al., 2003; Wagner, 2001,
2003). According to this model, when a gene is duplicated in the genome, the node corresponding to the
product of this gene is also duplicated together with its interactions. An example of protein duplication
is shown in Fig. 1. A protein loses many aspects of its functions rapidly after being duplicated. This
translates to divergence of duplicated (paralogous) proteins in the interactome through elimination and

FIG. 1. Duplication/divergence model for evolution of PPI networks. Starting with three interactions between three
proteins, protein u1 is duplicated to add u′

1 into the network together with its interactions (dashed circle and lines).
Then, u1 loses its interaction with u3 (dotted line). Finally, an interaction between u1 and u′

1 is added to the network
(dashed line).
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emergence of interactions. Elimination of an interaction in a PPI network implies the loss of an interaction
between two proteins due to structural and/or functional changes. Similarly, emergence of an interaction
in a PPI network implies the introduction of a new interaction between two noninteracting proteins caused
by mutations that change protein surfaces. Examples of elimination and emergence of interactions are
also illustrated in Fig. 1. If an elimination or emergence is related to a recently duplicated protein, it is
said to be correlated; otherwise, it is uncorrelated (Pastor-Satorras et al., 2003). Since newly duplicated
proteins are more tolerant to interaction loss because of redundancy, correlated elimination is generally
more probable than emergence and uncorrelated elimination (Vázquez et al., 2003). It is also theoretically
shown that network growth models based on node duplications generate power-law distributions (Chung
et al., 2003).

Since the elimination of interactions is related to sequence-level mutations, one can expect a positive
correlation between similarity of interaction profiles and sequence similarity for paralogous proteins (Wag-
ner, 2001). Indeed, the interaction profiles of duplicated proteins tend to almost totally diverge in about
200 million years, as estimated on the yeast interactome. On the other hand, the correlation between inter-
action profiles of duplicated proteins is significant for up to 150 million years after duplication, with more
than half of interactions being conserved for proteins that are duplicated less than 50 million years back
(Wagner, 2001). Consequently, when we consider the PPI networks that belong to two separate species,
the in-paralogs will be likely to have more common interactions than out-paralogs. Here, we use the terms
in-paralog and out-paralog for proteins that are duplicated before and after speciation, respectively (Remm
et al., 2001). While comparatively analyzing the proteome and interactome, it is important to distinguish
in-paralogs from out-paralogs since the former are more likely to be functionally related. This, however,
is a difficult task since out-paralogs also show sequence similarity.

In order to accurately identify and interpret conservation of interactions, complexes, and modules across
species, we base our framework for the local alignment of PPI networks on duplication/divergence models.
While searching for highly conserved groups of interactions, we evaluate mismatched interactions and
paralogous proteins in light of the duplication/divergence model. Introducing the concepts of match (con-
servation), mismatch (emergence or elimination), and duplication, which are in accordance with widely
accepted models of evolution, we are able to discover alignments that also allow speculation about the
structure of the network in the common ancestor.

3. PAIRWISE LOCAL ALIGNMENT OF PPI NETWORKS

In light of the theoretical models of evolution of PPI networks, we develop a framework for the compar-
ison of PPI networks in two different species. We formally define a computational problem that captures
the underlying biological phenomena using matches, mismatches, and duplications. We then formulate PPI
network alignment as a graph optimization problem and propose efficient heuristics to effectively solve
this problem.

3.1. The PPI network alignment problem

A PPI network is conveniently modeled by an undirected graph G(U, E), where U denotes the set of
proteins and uu′ ∈ E denotes an interaction between proteins u ∈ U and u′ ∈ U . For pairwise alignment of
PPI networks, we are given two PPI networks belonging to two different species, denoted by G(U, E) and
H(V, F ). The homology between a pair of proteins is quantified by a similarity measure that is defined as
a function S : (U ∪ V ) × (U ∪ V ) → �. For any u, v ∈ U ∪ V , S(u, v) measures the degree of confidence
in u and v being orthologous, where 0 ≤ S(u, v) ≤ 1. If u and v belong to the same species, then S(u, v)

quantifies the likelihood that the two proteins are in-paralogs. Quantity S is expected to be sparse; i.e.,
each protein is expected to have only a few potential orthologs. We discuss the methodology for deriving
similarity scores from sequence alignments in Section 3.1.3.

For PPI networks G(U, E) and H(V, F ), a protein subset pair P = {Ũ , Ṽ } is defined as a pair of
protein subsets Ũ ⊆ U and Ṽ ⊆ V . Any protein subset pair P induces a local alignment A(G, H, S, P ) =
{M, N , D} of G and H with respect to S, characterized by a set of duplications D, a set of matches M,
and a set of mismatches N . The biological analog of a duplication is the duplication of a gene in the
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course of evolution. Each duplication is associated with a score that reflects the divergence of function
between the two proteins, estimated using their similarity. A match corresponds to a conserved interaction
between two orthologous protein pairs, which is rewarded by a match score that reflects our confidence in
both protein pairs being orthologous. A mismatch, on the other hand, is the lack of an interaction in the
PPI network of one organism between a pair of proteins whose orthologs interact in the other organism.
A mismatch may correspond to the emergence of a new interaction or the elimination of a previously
existing interaction in one of the species after the split, or an experimental error. Thus, mismatches are
penalized to account for the divergence from the common ancestor. We provide formal definitions for
these three concepts to construct a basis for the formulation of local alignment as an optimization problem.
Note that although PPI networks are undirected graphs, interactions are regarded as ordered pairs in the
following definitions for convenience; i.e., for an interaction uu′ ∈ E, there is also an interaction u′u ∈ E,
which is essentially the same interaction.

Definition 1. Local Alignment of PPI Networks. Given protein interaction networks G(U, E),
H(V, F ), let functions �G(u, u′) and �H (v, v′) denote the distance between two corresponding pro-
teins in the interaction graphs G and H , respectively. Given a pairwise similarity function S defined over
the union of their protein sets U ∪V , and a distance cutoff �̄, any protein subset pair P = (Ũ , Ṽ ) induces
a local alignment A(G, V, S, P ) = {M, N , D}, where

M = {u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0,

((uu′ ∈ E ∧ �H (v, v′) ≤ �̄) ∨ (vv′ ∈ F ∧ �G(u, u′) ≤ �̄))}, (1)

N = {u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0,

((uu′ ∈ E ∧ �H (v, v′) > �̄) ∨ (vv′ ∈ F ∧ �G(u, u′) > �̄))}, (2)

D = {u, u′ ∈ Ũ : S(u, u′) > 0} ∪ {v, v′ ∈ Ṽ : S(v, v′) > 0}. (3)

Each match M ∈ M, mismatch N ∈ N , and duplication D ∈ D are associated with scores µ(M), ν(N),
and δ(D), respectively.

Following the definition of match and mismatch, while assessing the conservation of interactions, we
take into account not only direct but also indirect interactions. If two proteins directly interact with each
other in one organism and their orthologs are reachable from each other via at most �̄ interactions in the
other, we consider this a match. Conversely, a mismatch corresponds to the situation in which two proteins
cannot reach each other via �̄ interactions in one network while their orthologs directly interact in the
other. This approach is motivated by two observations. First, proteins that are linked by a short alternate
path are more likely to tolerate losing their interaction because of relaxation of evolutionary pressure.
Second, high-throughput methods such as TAP (Gavin et al., 2002) identify complexes that are associated
with a single central protein, and these complexes are recorded in the interaction database as star networks
with the central protein serving as a hub. Therefore, all proteins that are part of a particular complex can
be viewed as interacting by setting �̄ = 2.

3.1.1. Scoring match, mismatch, and duplications. For scoring matches and mismatches, we define the
similarity between two protein pairs as follows:

S(uu′, vv′) = S(u, v)S(u′, v′) (4)

where S(uu′, vv′) quantifies the likelihood that the interactions between u and v, and u′ and v′ are
orthologous. Consequently, a match that corresponds to a conserved pair of orthologous interactions is
rewarded as follows:

µ(uu′, vv′) = µ̄S(uu′, vv′). (5)

Here, µ̄ is the match coefficient that is used to tune the relative weight of matches against mismatches and
duplications, based on the evolutionary distance between the species that are being compared.
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A mismatch may correspond to the functional divergence of either interacting partner after speciation.
It might also be due to a false positive or negative in one of the networks that is caused by incompleteness
of data or experimental error (Titz et al., 2004). However, considering indirect interactions as matches
compensates for the second case to a certain extent. According to Wagner (2001), after a duplication
event, duplicate proteins that retain similar functions in terms of being part of similar processes are likely
to be part of the same subnet. Moreover, since conservation of proteins in a particular module is correlated
with interconnectedness (Wuchty et al., 2003), we expect that interacting partners that are part of a common
functional module will at least be linked by short alternative paths. Based on these observations, we penalize
mismatches for possible divergence in function as follows:

ν(uu′, vv′) = −ν̄S(uu′, vv′). (6)

As for match score, mismatch penalty is also normalized by a coefficient ν̄ that determines the relative
weight of mismatches w.r.t. matches and duplications.

While aligning PPI networks, the motivation is to identify conserved patterns of interactions between
orthologous proteins. For assessing the likelihood of orthology between proteins, the similarity score defined
above relies on sequence homology. However, out-paralogs, which are proteins that are duplicated before
the species split and hence cannot be considered orthologs, often show sequence similarities as well (Remm
et al., 2001). Since duplicated proteins rapidly lose their interactions, it is more likely that in-paralogs,
i.e., the proteins that are duplicated after a split, will share more interacting partners than out-paralogs
do (Wagner, 2001). Therefore, penalizing mismatches implicitly favors real orthologs by penalizing the
out-paralogs for each interaction that is lost after duplication. Furthermore, we employ sequence similarity
as a means for distinguishing in-paralogs from out-paralogs. This is based on the observation that sequence
similarity provides a crude approximation for the age of duplication (Wagner, 2003). With the expectation
that recently duplicated proteins, which are more likely to be in-paralogs, show more significant sequence
similarity than older paralogs, we define duplication score as follows:

δ(u, u′) = δ̄(S(u, u′) − d̄). (7)

Here d̄ is the cut-off for being considered in-paralogs. If S(u, u′) > d̄, suggesting that u and u′ are likely
to be in-paralogs, the duplication is rewarded by a positive score. If S(u, u′) < d̄, on the other hand, the
proteins are considered out-paralogs; therefore, the duplication is penalized.

3.1.2. Alignment score and the optimization problem. The above formulation of match, mismatch, and
duplication translates the problem of distinguishing orthologs and in-paralogs from out-paralogs to an
optimization problem that accounts for the tradeoff between conservation of sequences and interactions.
This enables accurate identification of conserved interactions between ortholog protein pairs, while allowing
us to define the pairwise local alignment for interspecies comparison of PPI networks as an optimization
problem.

Definition 2. Alignment Score and PPI Network Alignment Problem. Given PPI networks G

and H , the score of alignment A(G, H, S, P ) = {M, N , D} is defined as

σ(A) =
∑

M∈M
µ(M) +

∑

N∈N
ν(N) +

∑

D∈D
δ(D). (8)

The PPI network alignment problem is one of finding all maximal protein subset pairs P such that
σ(A(G, H, S, P )) is locally maximal, i.e., the alignment score cannot be improved by adding individual
proteins to or removing proteins from P .

We aim to find local alignments with locally maximal score (drawing an analogy to sequence alignment
(Smith and Waterman, 1981), high-scoring subgraph pairs).

We illustrate the concepts of match, mismatch, and duplication using a simple example. Consider the
two interaction networks G and H shown in Fig. 2a. The alignment induced by the protein subset pair
Ũ = {u1, u2, u3, u4} and Ṽ = {v1, v2, v3} is shown in Fig. 2b, where we set �̄ = 1. The only duplication
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FIG. 2. (a) An instance of the pairwise local alignment problem. The proteins that have nonzero similarity scores
(i.e., are potentially orthologous), are shaded the same. Note that S does not necessarily induce a disjoint grouping of
proteins in practice. (b) A local alignment induced by the protein subset pair {u1, u2, u3, u4} and {v1, v2, v3}. Ortholog
and paralog proteins are vertically aligned. Existing interactions are shown by solid lines; missing interactions that have
an existing ortholog counterpart are shown by dotted lines. Solid interactions between two aligned proteins in separate
species correspond to a match; one solid, one dotted interaction between two aligned proteins in separate species
correspond to a mismatch. Proteins in the same species that are on the same vertical line correspond to duplications.

in this alignment is (u1, u2). If this alignment is chosen to be a “good” one, then, based on the existence of
this duplication in the alignment, if S(u2, v1) < S(u1, v1), we can speculate that u1 and v1 have evolved
from the same gene in the common ancestor, while u2 is an in-paralog that emerged from duplication
of u1 after split. The match set consists of interaction pairs (u1u1, v1v1), (u1u2, v1v1), (u1u3, v1v3), and
(u2u4, v1v2). Observe that v1 is mapped to both u1 and u2 in the context of different interactions. This is
associated with the functional divergence of u1 and u2 after duplication. Furthermore, the self-interaction
of v1 in H is mapped to an interaction between paralogous proteins in G.

The mismatch set is composed of (u1u4, v1v2), (u2u2, v1v1), (u2u3, v1v3), and (u3u4, v3v2). The inter-
action u3u4 in G is left unmatched by this alignment, since the only possible pair of proteins in Ṽ that
are orthologous to these two proteins are v3 and v2, which do not interact in H . One conclusion that can
be derived from this alignment is the elimination or emergence of this interaction in one of the species
after the split. The indirect path between v3 and v2 through v1 may also serve as a basis for the tolerance
to the loss of this interaction. Indeed, if we set �̄ = 2, then this pair of a direct and an indirect interaction
would be considered a match. However, if we include v4 in Ṽ as well, then the induced alignment is
able to match u3u4 and v3v4. This strengthens the likelihood that this interaction existed in the common
ancestor. However, v4 comes with another duplication since it is paralogous to v2. Hence, if S(v2, v4) > d̄,
the alignment that includes v4 will be favored over the present one. However, if S(v2, v4) < d̄, then v4
must compensate for the duplication penalty with the strength of its matching interactions in order to be
included in the alignment.

3.1.3. Estimation of similarity scores. The similarity score S(u, v) quantifies the likelihood that pro-
teins u and v are orthologous. We approximate this likelihood using the BLAST (Altschul et al., 1997)
E-value taking existing ortholog databases as point of reference. Let O be the set of all orthologous protein
pairs derived from COG (Tatusov et al., 2000), or any other ortholog database. For proteins u and v with
BLAST E-value E(u, v) < Ẽ, we approximate the probability of u and v being orthologous by

S(u, v) = P(E(u, v) < Ẽ|Ouv) = |{u′v′ ∈ O : E(u′, v′) < Ẽ}|
|O| (9)

where Ouv represents the event that u and v are orthologous. If we assume that the probability of a protein
pair being orthologous (P(Ouv)) is a monotonically decreasing function of the E-value, then this quantity
provides a measure of the likelihood that two proteins with E-value Ẽ are orthologous.
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3.2. Alignment graph and the maximum-weight induced subgraph problem

It is possible to represent information regarding matches and mismatches between two PPI networks
using a single alignment graph. This graph is a modified version of the graph Cartesian product that
takes orthology into account. Assigning appropriate weights to the edges of the alignment graph, the local
alignment problem defined in the previous section can be reduced to an optimization problem on this
alignment graph. We define the following alignment graph:

Definition 3. Alignment Graph. For a pair of PPI networks G(U, E), H(V, F ), and protein similarity
function S, the corresponding weighted alignment graph G(V, E) is computed as follows:

V = {v = {u, v} : u ∈ U, v ∈ V and S(u, v) > 0}. (10)

In other words, we have a node in the alignment graph for each pair of ortholog proteins. Each edge
vv′ ∈ E, where v = {u, v} and v′ = {u′, v′}, is assigned weight

w(vv′) = µ(uu′, vv′) + ν(uu′, vv′) + δ(u, u′) + δ(v, v′). (11)

Here, µ(uu′, vv′) = 0 if (uu′, vv′) /∈ M, and similarly for mismatches and duplications.

Note that the alignment graph is conceptually equivalent to the global alignment graph of Kelley et al.
(2003) and the orthology graph of Sharan et al. (2004), with slight differences in formulation. In all
models, the nodes of the alignment/orthology graph is constructed from any pair of potentially orthologous
proteins in the two networks. On the other hand, in the above-defined alignment graph, all evolutionary
information is encoded into edge weights through the concepts of matches, mismatches, and duplications.

Consider the PPI networks in Fig. 2a. To construct the corresponding alignment graph, we first compute
the product of these two PPI networks to obtain five nodes that correspond to five ortholog protein pairs. We
then insert an edge between two nodes of this graph if the corresponding proteins interact in both networks
(match edge), interact in only one of the networks (mismatch edge), or at least one of them is paralogous
(duplication edge), resulting in the alignment graph of Fig. 3a. Note that the weights assigned to these
edges, which are shown in the figure, are not constant, but are functions of their incident nodes. Observe
that the edge between {u1, v1} and {u2, v1} acts a match and duplication edge at the same time, allowing
analysis of the conservation of self-interactions of duplicated proteins. This construction of the alignment
graph allows us to formulate the alignment problem as a graph optimization problem defined below.

FIG. 3. (a) Alignment graph corresponding to the instance of Fig. 2a. Note that match scores, mismatch penalties
and duplication scores are functions of incident nodes, which is not explicitly shown in the figure for simplicity.
(b) Subgraph induced by node set Ṽ = {{u1, v1}, {u2, v1}, {u3, v3}, {u4, v2}}, which corresponds to the alignment
shown in Fig. 2b.
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Definition 4. Maximum Weight Induced Subgraph Problem (MaWISh). Given graph G(V, E) and
a constant ε, find a subset of nodes, Ṽ ∈ V such that the sum of the weights of the edges in the subgraph
induced by Ṽ is at least ε, i.e., W(Ṽ) = ∑

v,v′∈Ṽ w(vv′) ≥ ε.

Not surprisingly, this problem is equivalent to the decision version of the local alignment problem defined
in the previous section, as formally stated in the following theorem:

Theorem 1. Given PPI networks G, H , and a protein similarity function S, let G(V, E, w) be the
corresponding alignment graph. If Ṽ is a solution to the maximum weight induced subgraph problem
on G(V, E, w), then P = {Ũ , Ṽ } induces an alignment A(G, H, S, P ) with σ(A) = W(Ṽ), where
Ũ = {u ∈ U : ∃v ∈ V s.t. {u, v} ∈ Ṽ} and Ṽ = {v ∈ V : ∃u ∈ U s.t. {u, v} ∈ Ṽ}.

Proof. Follows directly from the construction of alignment graph.

The induced subgraph that corresponds to the local alignment in Fig. 2b is shown in Fig. 3b.
It can be shown that MaWISh is NP-complete by reduction from maximum-clique, by assigning unit

weight to edges and −∞ to nonedges. This problem is closely related to the maximum edge subgraph
(Feige et al., 2001) and maximum dispersion problems (Hassin et al., 1997), which are also NP-complete.
However, the positive weight restriction on these problems limits the application of existing algorithms to
the maximum weight induced subgraph problem. Nevertheless, the local PPI network alignment problem
aims to find all locally maximal alignments; consequently, locally optimal solutions of MaWISh are
sufficient. Observing the similarity between min-cut graph partitioning and MaWISh, we develop fast
heuristics based on common graph partitioning algorithms to identify locally maximal heavy subgraphs in
the alignment graph.

3.3. Algorithms for local alignment of PPI networks

In terms of protein–protein interactions, functional modules are likely to be densely connected while
being separable from other modules, i.e., a protein in a particular module interacts with most proteins in
the same module either directly or through a common module hub, while it is only loosely connected
to the rest of the network (Tornow and Mewes, 2003). Since analysis of conserved motifs reveals that
proteins in highly connected motifs are more likely to be conserved, suggesting that such dense motifs are
parts of functional modules (Wuchty et al., 2003), high-scoring local alignments are likely to correspond
to functional modules. Therefore, in the alignment graph, we can expect that proteins that belong to
a conserved module will induce heavy subgraphs, while being loosely connected to other parts of the
graph. This observation motivates the process of greedily growing a subgraph seeded at heavy nodes. This
approach is shown to perform well in discovering conserved (Sharan et al., 2004) or dense (Bader, 2003)
subnets in PPI networks.

For min-cut graph partitioning, the most commonly applied heuristics are based on starting with a
seed partition and repeatedly moving or swapping nodes with maximum gain on the objective function
(Kernighan and Lin, 1970). The key point here is that the move is performed even if it is associated
with a negative gain in order to climb over poor local optima. Observe that minimizing the total weight
of the cut edges (min-cut) in graph partitioning is equivalent maximizing the total weight of internal
edges. This is very similar to the objective function of MaWISh. The difference is that the total weight
of only one part is considered in MaWISh and node balance is not an issue. Therefore, we apply this
iterative improvement based heuristic to MaWISh in order to find locally maximal heavy subgraphs. The
initial heavy subgraph is constructed by selecting the node with maximum number of matched interactions
(i.e., a conserved hub) and adding all nodes that share a match edge with this node to the subgraph.

A sketch of this iterative improvement based algorithm for finding a single conserved subgraph on the
alignment graph is shown in Fig. 4. Each pass (i.e., the loop between lines 3–13) of this algorithm works
in linear time. In practice, we also limit the number of contiguous moves with negative gain. This allows
us to tune the locality of identified patterns.

To find all nonredundant heavy subgraphs, we start with the entire alignment graph and find a maximally
heavy subgraph. If this subgraph is statistically significant, we record the alignment that corresponds to
this subgraph and mark its nodes. We repeat this process by considering only unmarked nodes. Once a
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FIG. 4. Fast heuristic for finding a subset of nodes that induces a subgraph of maximal total weight on the alignment
graph.

new significant subgraph is identified, we add the previously marked nodes that are positively connected
to this subgraph one by one, unless the resulting subgraph becomes redundant. A subgraph is said to be
redundant if there exists a subgraph which contains r% of its nodes, where r is a user-defined threshold
that determines the extent of allowed overlap. This method allows identification of overlapping alignments
while avoiding redundancy. Finally, we rank all subgraphs based on their significance and report the
corresponding alignments.

3.4. Statistical significance

To evaluate the statistical significance of discovered high-scoring alignments, we compare them with a
reference model generated by a random source. In the reference model, it is assumed that the interaction
networks of the two organisms are independent of each other. In order to assess the significance of
conservation of interactions between orthologous proteins rather than the conservation of proteins itself,
we assume that the orthology relationship between protein is already established, i.e., is not generated
by a random source. To accurately capture the power-law nature of PPI networks, we assume that the
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interactions are generated randomly from a distribution characterized by a given degree sequence. (Note
that the power law nature of the graphs is not critical to our algorithm. The degree distribution can be
computed explicitly from the database of interactions). If proteins u and u′ are interacting with du and
du′ proteins, respectively, then the probability puu′ of observing an interaction between u and u′ can be
estimated as puu′ = dudu′/

∑
v∈U dv (Chung et al., 2003).

Recall that the weight of a subgraph of the alignment graph is equal to the score of the corresponding
alignment. Hence, in the reference model, the expected value of the score of an alignment induced by
Ṽ ⊆ V is E[W(Ṽ)] = ∑

v,v′∈Ṽ E[w(vv′)], where

E[w(vv′)] = µ̄S(uu′, vv′)puu′pvv′ − ν̄S(uu′, vv′)(puu′(1 − pvv′)

+ (1 − puu′)pvv′) + δ(u, u′) + δ(v, v′)
(12)

is the expected weight of an edge in the alignment graph. With the simplifying assumption of independence
of interactions, we have Var[W(Ṽ)] = ∑

v,v′∈Ṽ Var[w(vv′)], enabling us to compute the z-score to evaluate
the statistical significance of each discovered high-scoring alignment, under the normal approximation that
we assume.

While the approach described above enables quick calculation of significance without repeated simula-
tions or extensive numerical computations, it has a few shortcomings. First, the significance of an identified
pattern is estimated for the proteins involved in that conserved subgraph, rather than computing the prob-
ability of the existence of the pattern anywhere in the networks. Second, the model does not take into
account the variability in the distribution of orthologs. These cause low variability of alignment score in
the reference model, leading to overestimated z-scores, since the observed variances in alignment score are
fairly high, which indeed is statistically significant. As models and techniques for analytical assessment of
statistical significance of network structures become available, the significance of conserved subnets can
also be evaluated more reliably (Koyutürk et al., 2006).

3.5. Extensions to the model

The proposed model can be extended to account for data quality as well as algorithm parameters.

3.5.1. Accounting for experimental error. PPI networks obtained from high-throughput screening are
prone to errors in terms of both false negatives and positives (Titz et al., 2004). While the proposed
framework can be used to detect experimental errors through cross-species comparison to a certain extent,
experimental noise can also degrade the performance of the alignment algorithm. In other words, mis-
matches should be penalized for lost interactions during evolution, not for experimental false negatives.
To account for such errors while analyzing interaction networks, several methods have been developed
to quantify the likelihood of an interaction or complex co-membership between proteins (Ashtana et al.,
2004; Gilchrist et al., 2003; Jansen et al., 2003). Given the prior probability distribution for protein inter-
actions and a set of observed interactions, these methods compute the posterior probability of interactions
based on Bayesian models. Hence, PPI networks can be modeled by weighted graphs to account for
experimental error more accurately.

While the network alignment framework introduced in Section 3.1 assumes that interactions are repre-
sented by unweighted edges, it can be easily generalized to a weighted graph model as follows. Assuming
that weight �uv represents the posterior probability of interaction between u and v, we can define match
score and mismatch penalty in terms of their expected values derived from these posterior probabilities.
Therefore, for any u, u′ ∈ U and v, v′ ∈ V , we have

µ(uu′, vv′) = µ̄S(uu′, vv′)�uu′�vv′ (13)

ν(uu′, vv′) = ν̄S(uu′, vv′)(�uu′(1 − �vv′) + (1 − �uu′)�vv′). (14)

Note that match and mismatch sets are not necessarily disjoint here in contrast to the unweighted graph
model, which is a special case of this model.
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3.5.2. Alternative model components and parameters. Contracting Paralogs. An alternate approach
for handling duplications is contracting the proteins in the same species that are likely to be in-paralogs. This
approach fits into the alignment graph model since in-paralogs are expected to be consistently orthologous
to the same set of proteins in the other organism. It also reduces the computational complexity since the
number of nodes will be decreased by node contraction and the edges that correspond to duplications
will be eliminated. Contraction of nodes is also shown to be effective for multiple alignment of metabolic
pathways using graph mining (Koyutürk et al., 2004). However, clustering proteins in the same organism
to identify in-paralogs requires preprocessing to solve a difficult problem. Clustering algorithms that are
specifically designed for this purpose, such as INPARANOID (Remm et al., 2001) serve as reliable tools.
However, the resulting graphs may produce conservative alignments since the search space is narrowed
down by the clustering of proteins (Koyutürk et al., 2005). In contrast, accounting for duplications using
duplication edges provides more flexibility and uses conservation of interactions as additional information
to distinguish in-paralogs from out-paralogs, as discussed above.

Shortest-path mismatch model. In the above discussion, while we consider proteins that are linked by
at most �̄ interactions as interacting, we do not take into account the distance while penalizing mismatches.
We can extend this to a shortest-path mismatch model, defined as follows:

ν(uu′, vv′) = ν̄S(uu′, vv′)(max{�G(u, u′), �H (v, v′)} − �̄). (15)

While this model may improve the alignment algorithm, it is computationally expensive since it requires
solution of the all pairs shortest path problem on both PPI networks.

Linear duplication model. The alignment graph model forces each duplicate pair in an alignment to
be scored. For example, if an alignment contains n paralogous proteins in one species,

(
n
2

)
duplications are

scored to account for each duplicate pair. However, in the evolutionary process, each paralogous protein
is the result of a single duplication, i.e., n paralogous proteins are created in only n − 1 duplications.
Therefore, we refer to the current model as a quadratic duplication model, since the number of scored
duplications is a quadratic function of the number of duplicates. While this might be desirable as being
more restrictive on duplications, to be more consistent with the underlying biological processes, it can
be replaced by a linear duplication model. In this model, each duplicate protein is penalized only once,
based on its similarity with the paralog that is most similar to itself. This model can be incorporated into
the alignment graph model of Section 3.3 with a simple modification of the algorithm that dynamically
reassigns weights to edges that correspond to duplications.

4. EXPERIMENTAL RESULTS

4.1. Data and implementation

We implement the proposed algorithms in the C programming language and test on PPI networks
that belong to three commonly studied eukaryotic organisms. The source code of the software is avail-
able at www.cs.purdue.edu/homes/koyuturk/mawish/ along with detailed alignment results. The interaction
data is downloaded from BIND (Bader et al., 2001) and DIP (Xenarios et al., 2002) molecular interac-
tion databases. The statistics for the PPI networks of S. cerevisiae (yeast), C. elegans (nematode), and
D. melanogaster (fruit fly) are shown in Table 1.

We align all pairs of these three organisms using a fixed set of parameters to be able to compare
the results with each other. We set these parameters conservatively in order to obtain a compact set of

Table 1. Description of Aligned PPI Networks

Organism # Proteins # Interactions

S. cerevisiae 5157 18192
C. elegans 3345 5988
D. melanogaster 8577 28829
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illustrative results. For any pair of PPI networks, we set the E-value threshold adaptively based on the
estimated similarity scores so that the minimum similarity score for any pair of potential orthologs is 0.6.
In other words, two proteins that belong to two different species are considered potentially orthologous
only if they have a BLAST E-value less than 60% of ortholog pairs in COG. On the other hand, we set
d̄ = 0.9; i.e., two proteins in the same organism are considered potential in-paralogs only if they have
BLAST E-value less than 90% of protein pairs in this organism that are in the same COG. For potential
out-paralogs, we consider protein pairs that have a BLAST E-value less than 0.1 but greater than 10%
of the ortholog pairs in COG. By setting these cut-off values on similarity score, we consider only the
homologous protein pairs that have the highest positive or negative contribution on the alignment score.
This eliminates noise to a certain extent while improving the computational efficiency. However, for more
detailed analysis and discovery of loosely visible patterns, it may be necessary to relax and set these
parameters based on the evolutionary distance between the two organisms being compared.

4.2. Results and Discussion

We perform pairwise alignment of the three PPI networks by tuning the alignment parameters to µ̄ = 1.0,
ν̄ = 1.0, and δ̄ = 0.1. Detailed statistics on alignment of the three pairs of eukaryotic PPI networks are
shown in Table 2. In this table, we list the number of nodes in the alignment graph, nodes with at least
one matched edge, matches, mismatches, and duplications in both organisms. The number of matches and
the number of matched nodes are shown for two values of �̄, where only direct interactions �̄ = 1 and
indirect interactions through a single protein �̄ = 2 are considered as matches. In practice, we eliminate
all nodes that do not have any matching interactions from the alignment graph. As evident in the table,
this improves the computational performance of the algorithm significantly.

Note that the parameters are set in an ad hoc manner for all results reported in this section, by manually
adjusting the balance between normalizing parameters through repeated runs of the algorithm. A more
reliable method for adjusting these parameters is to employ a learning heuristic that tunes these parameters
in such a way that the conservation/divergence of known functional modules is captured by these param-
eters, as in the case of sequence alignment. However, this requires knowledge of biologically validated
functional modules for both species being compared. We anticipate that as such data becomes available,
an accepted set of parameters can easily be derived.

Alignment of S. cerevisiae PPI network with D. melanogaster PPI network results in identification of
412 conserved subnets. Ten of the conserved subnets with highest alignment scores are shown in Table 3.
In this table, the rank of the identified subnet among all conserved subnets, its z-score computed according
to the procedure in Section 3.4, the number of alignment nodes and corresponding number of proteins
in each organism, total number of matches, mismatches, and duplications in each organism are shown
in a row. In the subsequent row, we report the most dominant biological process identified according
to the GO annotations of the proteins that are in the conserved network, along with the percentage of
proteins that are associated with that biological process, for each organism. Similarly, sample high-scoring
conserved subnets identified by the alignment of S. cerevisiae versus C. elegans and C. elegans versus
D. melanogaster PPI networks are shown in Tables 4 and 5, respectively. In total, 83 conserved subnets
are identified on S. cerevisiae and C. elegans, and 146 are identified on C. elegans and D. melanogaster.

Table 2. Alignment Statistics for the Three Pairs of Eukaryotic Organismsa

# Matched nodes # Matches # Mismatches # Duplications
Organism

pair # Nodes �̄ = 1 �̄ = 2 �̄ = 1 �̄ = 2 �̄ = 1 Org. 1 Org. 2

SC vs CE 2746 312 1230 412 3007 40262 6107 6886
SC vs DM 15884 1730 8622 2061 42781 1054241 6107 32670
CE vs DM 11805 491 3391 455 6626 205593 6886 32670

aFor each alignment, the number of nodes in alignment graphs (# of orthologous pairs), number of nodes with at least one matched
edge, number of matches, number of mismatches, and number of duplications for both organisms are shown. Number of mismatches
for �̄ = 2 can be derived from other statistics.
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Table 3. Ten High-Scoring Conserved Subnets Identified by the Alignment of
S. Cerevisiae and D. Melanogaster PPI Networksa

Rank Score z-Score # Proteins # Matches # Mismatches # Duplications

1 15.97 6.6 18 (16, 5) 28 6 (4, 0)
Protein amino acid phosphorylation (69%)/JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 7 (3, 1)
Endocytosis (50%)/calcium-mediated signaling (50%)

5 8.22 13.5 9 (5, 3) 19 11 (1, 0)
Invasive growth (sensu Saccharomyces) (100%)/oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 (0, 1)
Ubiquitin-dependent protein catabolism (100%)/mitosis (67%)

8 6.83 12.4 6 (4, 4) 12 6 (0, 1)
Protein amino acid phosphorylation (50%, 50%)

10 6.75 13.7 10 (7, 3) 24 12 (0, 1)
Ubiquitin-dependent protein catabolism (100%)

14 5.69 8.7 11 (11, 2) 10 1 (0, 0)
Regulation of progression through cell cycle (9%, 50%)

21 4.36 6.2 9 (5, 4) 18 13 (0, 5)
Cytokinesis (100%, 50%)

22 4.22 3.9 7 (6, 6) 9 5 (1, 1)
Protein folding (67%, 17%)

30 3.76 39.6 6 (3, 5) 5 1 (0, 6)
DNA replication initiation (100%, 80%)

aThe dominant biological process for each organism, in which the majority of proteins in the conserved subnet participate is shown
in the second row.

While most of the conserved subnets are dominated by one particular process and the dominant processes
are generally consistent across species, there also exist different processes in different organisms that are
mapped to each other by the discovered alignments. This illustrates that the comparative analysis of PPI
networks is effective in not only identifying particular functional modules, pathways, and complexes, but
also in discovering relationships between different processes in separate organisms and crosstalk between
known functional modules and pathways.

A selection of interesting conserved subnets is shown in Fig. 5. The alignments in the figure illustrate
that the alignment algorithm takes into account the conservation of interactions in addition to sequence
similarity while mapping orthologous proteins to each other. In all of the alignments shown in the figure,
the interactions of proteins that belong to the same orthologous group are highly conserved, suggesting
relatively recent duplications.

Detailed examination of the conserved subnets in S. cerevisiae and D. melanogaster shows that many of
them do correspond to functional modules. There are multiple instances of 20S proteosome (10,11). All
seven of the alpha subunits in the 20S proteosome, a subcomplex of the 26S proteosome involved in protein
degradation, are present in the alignment #10 (Groll et al., 1997). In addition, there is a subnet for the
proteosome regulatory particle (6) (Fu et al., 2001) as well as one for calcium induced pathways (2). The
method also detected a number of components involved in calcium-dependent stress-activated signaling
pathways (Cmd1, Cna1, Cna2, and Cnb1) as well as those associated with bud growth of yeast (Cmd1,
Myo2, and Myo4) in alignment #2 (Cyert et al., 2001). Many of the subnets found for yeast are overlapping,
possibly reflecting the fact that drosophila uses a functional module in various contexts.

In some cases, the self-interaction of a single protein in one organism is aligned with a clique of
interactions between its orthologs that are part of a particular module. For example, in one alignment,
five proteosome regulatory particle proteins (Rpt1, Rpt3, Rpt4, Rpt5, Rpt6) are mapped to one protein
(Rpt4) in drosophila, while in other alignments the same group of proteins are mapped to a different set
of proteins in the drosophila network. This may be due to missing interactions in one of the networks
because of incompleteness or irregularities in the interaction data, including coding of observed interactions
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Table 4. Five High-Scoring Conserved Subnets Identified by the Alignment of
S. Cerevisiae and C. Elegans PPI Networks

Rank Score z-Score # Proteins # Matches # Mismatches # Duplications

1 36.14 7.8 13 (5, 3) 65 24 (0, 3)
Ubiquitin-dependent protein catabolism (100%)/reproduction (100%)

2 8.47 6.5 20 (11, 5) 19 4 (1, 1)
Protein amino acid phosphorylation (82%, 40%)

3 6.28 10.1 8 (6, 3) 21 12 (0, 0)
Ubiquitin-dependent protein catabolism (100%, 100%)

7 3.23 4.9 7 (7, 6) 7 2 (0, 0)
Glyoxylate cycle (14%, 17%)

8 3.23 80.1 4 (3, 3) 4 1 (1, 1)
Mismatch repair (67%, 67%)

Table 5. Five High-Scoring Conserved Subnets Identified by the Alignment of
C. Elegans and D. Melanogaster PPI Networks

Rank Score z-Score # Proteins # Matches # Mismatches # Duplications

1 26.75 19.9 17 (4, 9) 52 4 (1, 4)
Thermosensory behavior (25%)/regulation of transcription from RNA polymerase II promoter (44%)

2 4.65 31.6 9 (5, 3) 8 0 (2, 1)
Translational initiation (60%, 67%)

4 4.37 10.7 11 (3, 6) 10 1 (1, 4)
Determination of adult life span (33%, 67%)

5 4.29 16.4 5 (4, 4) 6 0 (1, 1)
Regulation of transcription, DNA-dependent (50%, 25%)

6 4.00 12.2 6 (4, 6) 8 2 (0, 2)
Signal transduction (50%, 17%)

into the databases (e.g., spoke versus matrix model [Scholtens et al., 2005]). By adjusting the mismatch
and duplication coefficients, however, it is possible to make positive duplications dominate the negative
mismatches caused by these missing interactions. This may be considered as a desirable feature of our
algorithm, in the sense that it allows flexibility for trading off conservation of interactions with conservation
of proteins. However, it might also be considered a drawback, since setting the parameters in this manner
causes overrepresentation of somewhat distant proteins in one conserved subnet on another side of the
network.

Based on these results, we establish pairwise alignment of PPI networks as a tool for not only identifying
conserved modules, but also assessing functional differences and similarities of homologous proteins based
on shared and missing interactions. Moreover, alignment results provide a means for discovery of new
functional modules in relatively less studied organisms through mapping of functions at a modular level
rather than at the level of single protein homologies.

5. CONCLUSION

This paper presents a framework for local alignment of protein interaction networks. The framework is
guided by theoretical models of evolution of these networks. The model is based on discovering sets of
proteins that induce conserved subnets based on scoring match and mismatch of interactions, and dupli-
cation of proteins. An implementation of the proposed algorithm reveals that this framework is successful
in uncovering conserved substructures in protein interaction data.
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FIG. 5. Sample conserved subnets identified by the alignment algorithm. Orthologous and paralogous proteins are
either vertically aligned or connected by blue dotted lines. Existing interactions are shown by green solid lines, missing
interactions that have an orthologous counterpart are shown by red dashed lines. The rank of each alignment in the
set of alignments discovered for the respective pair of organisms is indicated in its label.
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