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ABSTRACT

We describe a novel method for efficient reconstruction of phylogenetic trees, based on sequences
of whole genomes or proteomes, whose lengths may greatly vary. The core of our method is a
new measure of pairwise distances between sequences. This measure is based on computing the
average lengths of maximum common substrings. It is intrinsically related to information theoretic
tools (Kullback-Leibler relative entropy). We present an algorithm for efficiently computing these
distances. In principle, the distance of two � long sequences can be calculated in O(�) time. We
implemented the algorithm, using suffix arrays. The implementation is fast enough to enable
the construction of the proteome phylogenomic tree for hundreds of species, and the genome
phylogenomic forest for almost two thousand viruses. An initial analysis of the results exhibits
a remarkable agreement with “acceptable phylogenetic and taxonomic truth”. To assess our
approach, it was compared to the traditional (single gene or protein based) maximum likelihood
method. It was compared to implementations of a number of alternative approaches, including two
that were previously published in the literature, and to the published results of a third approach.
Comparing their outcome and running time to ours, using a “traditional” trees and a standard tree
comparison method, our algorithm improved upon the “competition” by a substantial margin.
The simplicity and speed of our method allows for a whole genome analysis with the greatest
scope attempted so far. We describe here five different applications of the method, which not
only show the validity of the method, but also suggest a number of novel phylogenetic insights.

Key words: Phylogenomics, whole genome and proteome phylogenetic, tree reconstruction,
compressibility, distance matrix.

1. INTRODUCTION

The elucidation of the evolutionary history of extinct and extant species is a major scientific
quest, dating back to Darwin (Darwin, 1859) and before. Early approaches were based on
morphological and palaeontological data, but with the advent of molecular biology, the emphasis
has shifted to molecular (amino acid and nucleotide) sequence data. Rapid sequencing technologies
have produced the genome sequences of over 200 cellular organisms, and many more projects are
underway (NCBI Genome Entrez [18]) . Full genomes contain huge amounts of sequence data
that should undoubtedly be useful in constructing phylogenetic trees. However, this insight is not
yet reflected in the practice of phylogenetic trees reconstruction. The vast majority of published
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works are based on a single gene or protein. Most others are based on combining a few gene trees
to a species tree (Ma et al., 2000) , on quartet methods (Raul et al., 2004; Ben-Dor et al., 1998)
, or on super tree methods (Bininda-Emonds, 2004) .

There are many compelling reasons to consider whole genomes or proteomes as a basis for
phylogenetic reconstruction, and in some contexts, such methods are essential. One example are
the viruses, where different families often have very few genes in common, and it is undesirable to
base the whole phylogenetic reconstruction on one or very few genes. Traditional methods (such as
maximum parsimony or maximum likelihood) are thus inapplicable for viruses, and whole genome
methods are naturally called for.

An alternative method that incorporates global, genome wide information, is building trees
based on gene order. Here, the goal is to find the shortest sequence of rearrangements between two
genomes, and to use it for tree reconstruction. This approach has been used for quite some time,
initially employing heuristics (Downie and Palmer, 1992). In 1995, Hannanelly and Pevzner
(Hannenhalli and Pevzner, 1995) made a breakthrough, finding a polynomial time algorithm
for the problem of computing the inversion distance. Following numerous improvements and
refinements, it is now possible to compute the inversion distance “metric” for a large number of
species. Usually, the major emphasis is on finding the shortest inversion sequence rather than
on deducing a tree. This may explain why practically this method was used for constructing
trees with less than two dozen taxa. A number of trees based on inversion distances have been
constructed, e.g. (Moret et al., 2001; Bourque and Pevzner, 2002; Downie and Palmer, 1992), but
their biological significance is still under investigation. Furthermore, before the inversion distance
methods can be applied, an identification of the “genetic units” (usually genes) under study is
required in each genome. A mapping of each unit to its counterpart in the other genome should
follow. So far, these stages are done manually, and not automatically. By way of contrast, no
such manual preprocessing is needed in our approach, which is based on the sequence itself.

In this work we apply string algorithms, rooted in information theoretic tools, to construct
phylogenies that are based on complete genomes or proteomes. These methods are essentially
distance methods: The first step is to compute all the pairwise “distances” between species. Our
“distance” is intuitively appealing, and we also show it is closely related to information theoretic
tools. We exhibit information-theoretical tools and results that justify this measure in case the
strings were generated by unknown Markov processes. Specifically, our distance is related to the
relative compressibility (Cover and Thomas, 1991) of two Markov induced distributions. Given
two strings, our method computes a quantity, which is close to the relative compressibility, without
knowing the parameters of the Markov processes. Since DNA and proteins sequences can reason-
ably be modeled as a Markovian random process (Durbin et al., 1998), the use of this measure is
natural and may explain the success of our approach. Furthermore, it should be emphasized that
the algorithm employs string operations that can be applied to any set of sequences, regardless
of its origin. This situation is similar to the Lempel–Ziv compression algorithm (Lempel and Ziv,
1976; Lempel and Ziv, 1977), whose properties were proved under the assumption of an underlying
finite state Markovian source, but is then applicable to sequences of any source.

Our algorithm takes O(�) steps to compute the distance between two � long genomes. This
runtime is fast enough to compute the

(
n
2

)
pairwise distances between n species for a moderate

to large n. We then apply a distance-based phylogenetic reconstruction method such as neighbor
joining, NJ (Saitou and Nei, 1987), to build a tree from the n×n distance matrix. The efficiency
of our algorithm enables us to generate trees for all n = 191 cellular organisms whose complete
proteomes were published in the NCBI database (NCBI Genome Entrez [18]). These include
Archea, Bacteria, and Eukaryotes. A forest of phylogentic trees for n = 1, 865 viruses has also
been constructed.

Prior to our work, only about six major works for constructing trees from complete genomes or
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proteomes sequences were published. Stuart et al. (Stuart and Berry, 2003) used singular value
decomposition (SVD) of large sparse data matrices. Each proteome is represented as a vector of
tetrapeptide frequencies. The distance between two species is determined by the cosines of the
angle between the corresponding vectors. A similar idea was used by Qi et al. (Qi et al., 2004).
In their method the frequencies of amino acid K-mers in the complete proteomes of two species
determines the distance between them. In our view, the main drawback of these two methods is
their rigidity: The analysis is based on fixed length K-mers (usually 3 ≤ K ≤ 8 ). Otu et al. (Otu
et al., 2003) used Lempel-Ziv complexity as a basis of a strings’ distance. This method is closer
in nature to the one we use.

In a series of two papers, Chen et al. (Chen et al., 2000) and Li et al. (Li et al., 2001)
develop tools that are inspired by Kolmogorov complexity to compress biosequences, and then to
compute pairwise distance based on the compression outcome. Since Kolmogorov complexity is in-
computable, what their GenCompress algorithm actually uses is a generalizion of the Lempel-Ziv
algorithm (Lempel and Ziv, 1976; Lempel and Ziv, 1977). This compression algorithm report-
edly outperforms other DNA compression methods. It has been applied to construct a whole
mitochondrial genome phylogeny. It was also applied to sequences of non biological source (chain
letters, and music).

We compared our approach to those of Otu et al. and those of Qi et al. (Otu et al., 2003; Qi
et al., 2004), by implementing and applying them to the a dataset of proteomes and genomes of 75
organisms whose whole genomes and proteomes were published (NCBI Genome Entrez [18]). The
performance of the various methods has been compared using a standard measure of phylogenetic
trees comparison (the Robinson-Foulds tree distance) with respect to a “reference” maximum
likelihood tree, based on the small ribosomal subunit rRNA (Ribosomal Database Project [23]).
Our algorithm outperformed all the other ones. Compared to the best alternative method, its
improvement was 2% on genome sequences, and as much as 17% on proteome sequences. In
the next step, we checked our method on the small set of mitochondrial DNA of 34 mammalian
species that were used by Li et al. (Li et al., 2001). We compared our results to the maximum
likelihood (ML) trees for 13 genes for which a multiple sequence alignment of all the taxa in the
set is available, and also to the published results Li et al. (Li et al., 2001) for the set.

We then ran our algorithm to produce a tree of all 191 available proteome sequences, and
then to a forest of 1,865 viral genomes. The results in general were very good, exhibiting high
agreement with the accepted taxonomies. We examined some portions of this large forest (e.g.
the retroviral and the ssRNA negative-strand trees), and observed that in a vast majority of the
cases, the species classification imposed by the reconstructed phylogeny is in good agreement with
the current taxonomic knowledge. In the few cases where the exact placement disagrees with the
accepted taxonomy, there is support in the literature to this alternative placement.

The remaining of this work is organized as follows: In section 2 describe the algorithm and its
properties, and then give a brief mathematical intuition for our method. In section 3 we describe
the results of running our algorithm on real data sets: in subsection 3.1 we compare it to other
methods on 75 species, in section 3.2 we check our method on set of mitochondrial DNA of 34
species, and compare it to ML trees and the tree of Li at el. (Li et al., 2001). In subsection
3.3 we present the results of our algorithm on all 191 known proteomes, and in subsection 3.4
the results on a large set of 1, 865 viruses. Finally, Section 4 contains concluding remarks and
directions for further research.

2. MATERIALS AND METHODS

In this section we describe our main method, the average common substring (ACS) algorithm,
and its information theoretical basis. Let A and B be two strings (genomes or proteomes) of
lengths n and m respectively. For any position i in A, we identify the length �(i) of longest
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substring A(i), A(i + 1), .., A(i − 1 + �(i)) that exactly matches a substring B(j + 1), B(j +
1), .., B(j + �(i)) in B starting at some position, j. We average all these lengths �(i) to get a
measure L(A,B) =

∑n
i=1 �(i)/n. Intuitively, the larger this L(A,B) is, the more similar the

two genomes are. For a given A, to account for B’s length (longer B will tend to have larger
ACS), we “normalize” L(A,B) =

∑n
i=1 �(i)/n. Intuitively, the larger this it by log(m) to get

L(A,B)/ log(m). Now this is a similarity measure, while we are after distance: So we take the
inverse, then subtract a “correction term” that guarantees d(A,A) will always be zero, yielding
d(A,B) = log(m)/L(A,B) − log(n)/L(A,A). Notice that L(A,A) = n/2, so the correction term
equals 2 log(n)/n and converges rapidly to 0 with n → ∞. This last measure d(A,B) is not
symmetric, so we compute ds(A,B) = ds(B,A) = (d(A,B) + d(B,A))/2, which is our final ACS
measure between the two strings. In the rest of this section we will give a theoretical background
to our method, and more details about our algorithm and its implementation.

In information theory, it is well known that if a string has been generated by a finite state
Markov process, then asymptotically, the minimum number of bits needed to describe the string,
equal the source entropy times the string’s length (Cover and Thomas, 1991). If a string has been
generated by a Markovian process, there are compression algorithms, like Lempel-Ziv (Sayood,
2000), which asymptotically achieve the optimal compression ratio. A natural way to measure
the distance between two strings is the amount of bits needed in order to describe one sequence,
given the other. Using a dictionary that was generated for optimally compressing one string,
to optimally compress the other string, asymptotically achieves this ratio. For two independent
identically distributions (i.i.d) probability distributions, p(x) and q(x), this measure is defined as:

D̃(p||q) = −
∑

x∈X

p(x) log q(x) = −Ep(log q(X)) (1)

For a pair of Markovian probability distributions a natural extension of the definition is as fol-
lowing:

D̃(p||q) = lim
n→∞− 1

n

∑

xn∈Xn

p(xn) log q(xn) = −Ep(log q(X)) (2)

In general D̃ is not a metric. For example D̃(p||q) �= D̃(q||p), and the triangle inequality may not
hold.

By (Wyner, 1993; Farach et al., 1994; Wyner and Wyner, 1995), if A,B are a pair of strings
generated by a pair of Markovian distributions p and q, then the quantity d(A,B) computed by
our ACS algorithm converges to D̃(q||p) (as the length of the strings goes to infinity). Since
D̃(p||q) = −Ep(log q(X)) is a natural distance measure between Markovian distributions, this
gives a theoretical basis for using ACS.

We remark that in addition to the ACS estimate of D̃(p||q) = Ep(log q(X)), we have also
used estimators for the divergence, or KL relative entropy (Cover and Thomas, 1991), D(p||q) =
−Ep(log q(X)) − H(p), and used it as a distance measure. Empirically, this proved inferior to
using D̃(p||q).

Given a set of DNA or amino acid sequences, our algorithm computes the pairwise distances
for this set according to our ACS based metric, ds(A,B). We can efficiently perform the subse-
quence search by using suffix trees (Weiner, 1973). Creating the generalized suffix tree for two
sequences of lengths �1, �2 requires O(�1 + �2) time. It is created once for each pair of sequences
and allows to compute the ACS distance of these two sequences in O(�1 + �2) time. After this is
done, this tree is discarded. All in all, comparing m sequences of length up to � to each other,
takes O(m2 · �) time. In practice, we have chosen suffix arrays as the data structure in our imple-
mentation. The suffix array is a lexicographically sorted array of the suffixes of a string. We used
the “lightweight suffix array” implementation (Burkhardt and Krkkinen, 2003). In this case too,
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creating the suffix array for each sequence requires O(� · log(�)) time for a sequence of length �.
However, as the suffix array provides a sorted array of the suffixes of the sequence, it allows to
search for each subsequence in O(log(�)) time. Thus pairwise comparing all m sequences of length
up to �, takes O(m2 · � · log(�)) time. The main advantage of using suffix arrays is the smaller
constant in the space requirements.

In terms of space complexity, each suffix array requires O(�) space, and an additional O(�/
√

log �)
is required in the construction stage and then reclaimed. The suffix arrays are stored in the sec-
ondary memory (disk) and loaded to primary memory only when needed for a pairwise comparison
session. Since entries of the distance matrix can be calculated independently, the process can easily
be parallelized, yielding a substantial acceleration of the running time.

3. RESULTS AND DISCUSSION

We also developed and implemented a different, new method. In this method we use the
relative compressibility between two probability mass functions of K-mers (fixed K) in the two
genomes. It is faster and simpler than our ACS method, but proved inferior in practice. We
compared our ACS method to methods that were suggested in other works. The first method is
a LZ-based (Cover and Thomas, 1991; ; Nelson, 1989; Lempel and Ziv, 1976; Lempel and Ziv,
1977), where the distance between two strings is inferred by the compressibility of one string given
the other string’s dictionary, using the LZ algorithm. This method is due to Otu et al. (Otu
et al., 2003). The second method is by Qi et al. (Qi et al., 2004). In this method, first the vector
of K-mer frequencies in each genome is calculated, and then the scalar products of the vectors
are used to generate a distance measures. We implemented these two methods, and used these
implementations in our comparisons.

The methods have been applied to sets of genomic and proteomic sequences. For species
with multiple chromosomes the genomic sequence is a concatenation of all the chromosomes
with delimiters, recognized as end points, by the algorithms. The proteomic sequences are a
concatenation of all the known amino-acid sequences for an organism, also with delimiters. All
the sequences have been obtained from the NCBI Genome database (NCBI Genome Entrez [18])
in FASTA format (.fna and .faa files).

In this section we describe the results of running our algorithm on three sets of sequences. The
first dataset has 75 species, and we used both genome and the proteome sequences. We used this
dataset to checked all the other suggested reconstruction methods including two of the leading
methods from the literature. Our algorithm outperformed all the alternative ones. The second
dataset include the complete mtDNA sequences of 34 mammals, for this dataset we compared our
performances to the performances of maximum likelihood, and to the published results of another
leading method. We also ran it on two larger datasets: The first contains all known proteomes
(191 species), the second includes the genomes of 1, 865 viruses.

3.1. Comparison to Other Methods
We compared the trees that was constructed by our and other methods to a “traditional tree”, gen-
erated from the sequences of the small ribosomal database project (RDP) (Ribosomal Database
Project [23]). The “traditional tree”, obtained from the data in RDP release 8.1 , is the maximum
likelihood tree for the aligned set of small ribosomal subunit rRNA.

We obtained a dataset of 75 full genome and proteome sequences. This dataset contains
archea, bacteria, and eukarya for which both genomic and proteomic sequences are available, and
that also appear in the Ribosomal Database Project. The different “competing methods” were
applied to these sequences, generating different distance matrices. Phylogenetic trees have been
constructed from the distance matrices using the Neighbor Joining algorithm (NJ) (Saitou and
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Nei, 1987) (as implemented by the NEIGHBOR program in the PHYLIP package (Felsenstein,
1993)) . We used the Robinson-Foulds measure to compare the topology (we assume all branch
lengths equal 1) of each tree to the reference, ribosomal tree. Each edge in a tree partition the
leaves, or species, to two disjoint sets. The Robinson-Fouldes (RF) method counts the number of
partitions that are not common to both trees. For two trees on n leaves, the RF “distance” is in
the range [0, 2n − 6] and is always even (Robinson and Foulds, 1981).

We implemented the Qi-Wang-Hao method (Qi et al., 2004) and the method of Otu et al.
(Otu et al., 2003) (an LZ - based method). We also implemented a K-mer based divergence
method (FLS method), an improved LZ - based method (a bit different than the method of Otu
et al.) where we try to compress one genome by the dictionary of the other, and a method which
produces a matrix with random distances (entries are independently, uniformly and identically
distributed), for comparison purposes. Furthermore, a method of comparison based solely on the
relative length of sequences has been implemented, in order to test possible correlations between
certain methods and the sequence length. The results of all the methods are summarized in Table
1. We chose K-mers of size 5 for the FLS method when the input were proteomes, and 11 when
the inputs were genomes, as these parameters gave the best results for this method.

Table 1: Comparing the ACS to other methods.
RF distance from the reference tree

Method Genomes Proteomes

Random 140 144
Length 142 142
LZ (ours) 126 114
LZ (Otu-Sayood) 118 126
FLS 120 96
Qi-Wang-Hao 110 92
Our method (ACS) 108 76

It should be observed that our ACS method improve upon all other methods for both genomes
and proteomes. But while the genome improvement compared to (Qi et al., 2004) is only about
2%, the improvement for the proteomes is about 17% (all in the RF measure with respect to the
reference tree).

3.2. A Tree Based on Mitochondrial DNA

In this subsection we demonstrate the performance of our method on a set of mitochondrial
genome proteomes. Our input contains the mitochondrial genomes and proteomes of 34 mammals.
Since the multiple alignments for 13 mitochondrial proteins of these species are available in NCBI
genomes, it allows us to compare our tree to trees that are constructed by the maximum likelihood
method (PHYLIP’s PROTML (Adachi and Hasegawa [1])) was used for the ML reconstructions).
We also compared our results to the published results of Li at el. (Li et al., 2001), which used
the same dataset as an input. The resulting tree for the genomic input sequences is described in
figure 1.

The quality of the obtained tree can be seen by viewing the splits: The correct clustering of the
primates (Pygmy Chimpanzee, Human, Gorilla, Orangutan, Ggibbon, Baboon), marsupials and
monotremes (Platypus, Wallaroo, and Opossum), rodents (House Mouse, Rat, Guinea Pig) and
Laurasiatheria (Dog, cat, Greay Seal, Harbor Seal, Hippo, White Rhino, Great Rhino, Donkey,
Horse, Pig, Sheep, Blue Whale, Finback Whale). The overall structure of the tree agrees with the
trees in Reyes at al. (Reyes et al., 2000) and in Li at el. (Li et al., 2001). Here, however the
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pig is clustered closer to the cetartiodactyls than the perisodactyls (as in (Reyes et al., 2000),
and opposed to (Li et al., 2001)), the guinea pig is close to the muridae and the laporidae (as in
(Reyes et al., 2000), and opposed to (Li et al., 2001)).

In order to quantitatively compare the trees produced using whole-genome methods to the
trees obtained using maximum likelihood with single gene sequence inputs, we have computed
the RF distances between the trees generated using the different methods, which is presented in
table 2. We used PHYLIP for the RF calculations.

A summary of the distances between the evolutionary trees built from the mammalian mtDNA
data by different methods is described in table 2. The distances in the table are RF distances.
The first 13 rows (and columns) correspond to the maximum likelihood trees for each of the 13
proteins (ATP6, ATP8, COX1, COX2, COX3, CYTB, ND1, ND2, ND3, ND4, ND4L, ND5, and
ND6). The row and column ACS correspond to the tree reconstructed by the ACS method when
the inputs were whole mt genomes. The row (and column) LI stand for the tree of Li at el. (Li
et al., 2001). The row (and column) Cons stand for the majority consensus tree of all the ML
trees. The last raw, Average, is the average of the first 13 rows (single gene ML trees). Here (as
opposed to the previous subsection) the results for the whole genomes are better than those for
the proteomes. A possible explanation is that in mtDNA there are less non-coding regions then
in the non-mitochondrial genomes. The average RF distance of the ASC tree from all the ML
trees is lower than the average distance between any ML tree and the other ML trees. Our tree
has a slightly larger average distance from all the ML trees than the tree of Li et al, and a lower
distance from the consensus tree. The results here suggest that our method usually describes the
phylogenetic truth of the complete mtDNA better than ML for any single gene. Furthermore our
method is much faster than ML method, which is known to be NP-hard (Chor and Tuller, 2005).
The accuracy of our method on mtDNA (as judged by RF distance) is comparable to the method
of Li et al., while it is simpler and much faster.

Elephant

PygmyChimpanzee

Wallaroo

Sheep

Pig

Hippo

Cat Dog

Chimpanzee

Baboon

Armadillo

GreySeal

Donkey
Horse Cow

FinbackWhale

BlueWhale
Platypus

Opposum

Gibbon
Orangutan

Gorilla

Human

WhiteRhino

HarborSeal

FruitBat

GreatRhino

Dormouse
Squirrel

Rabbit

HouseMouse Rat

GuineaPig
Aardvark

Figure 1: The evolutional tree built from complete mammalian mtDNA of 34 taxa by the ACS
method.

3.3. A Tree Based on All Existing Proteomes

We collected all 191 available proteome sequences from the NCBI databank (NCBI Genome
Entrez [18]) as of October 2004. This dataset includes 19 proteomes of archea, 161 proteomes of
bacteria, and 11 proteomes of eukaroytes. Our tree is presented in Fig. 2, for the sake of clarity
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A6 A8 C1 C2 C3 CB N1 N2 N3 N4 NL N5 N6 ACS Li Con

A6 0 42 34 46 40 44 32 40 44 40 48 40 40 40 40 36

A8 42 0 42 48 38 46 42 40 46 42 50 44 40 42 42 38

C1 34 42 0 40 40 32 30 26 34 26 44 28 36 28 26 22

C2 46 48 40 0 48 42 36 40 40 40 50 38 44 42 40 38

C3 40 38 40 48 0 46 42 40 46 44 48 42 36 42 42 38

CB 44 46 32 42 46 0 38 34 32 34 44 30 38 30 24 26

N1 32 42 30 36 42 38 0 28 38 32 44 28 30 30 30 22

N2 40 40 26 40 40 34 28 0 38 30 40 16 32 24 24 18

N3 44 46 34 40 46 32 38 38 0 34 48 32 44 28 30 32

N4 40 42 26 40 44 34 32 30 34 0 44 28 36 28 24 28

NL 48 50 44 50 48 44 44 40 48 44 0 40 38 36 40 34

N5 40 44 28 38 42 30 28 16 32 28 40 0 32 18 18 18

N6 40 40 36 44 36 38 30 32 44 36 38 32 0 28 32 28

ACS 40 42 28 42 42 30 30 24 28 28 36 18 28 0 14 16

Li 40 42 26 40 42 24 30 24 30 24 40 18 32 14 0 18

Con 36 38 22 38 38 26 22 18 32 28 34 18 28 16 18 0

Ave 40.83 43.33 34.33 42.66 42.5 38.33 35 33.66 39.66 35.83 44.83 33.16 37.16 32 31.69 29.07

Table 2: Summary of the distances (RF calculations using TREEDIST from the PHYLIP pack-
age) between evolutionary trees built from complete mtDNA of 34 mammalian taxa by different
methods. The first 13 rows (and columns) correspond to the maximum likelihood trees for 13
mt-proteins. The rows and column ACS correspond to the tree reconstructed by the ACS method
when the inputs were the 34 mitochondria genomes. The row and column Li stand for the tree
of Li at el. ((Li et al., 2001)) when the inputs were the 34 mitochondria genomes. The row
and column Con stand for the majority consensus tree of the 13 ML trees constructed using
CONSENSE from the PHYLIP package. The row Ave stands for the average distance from every
tree to all the ML trees (excluding itself). For space (width) considerations, we abbreviated the
protein names follows: Ai stands for ATPi, Ci for COXi, CB for CY TB, NL for ND4L, and
Ni for NDi.

all the branches have the same length.
The ACS method has correctly partitioned the species into the 3 main domains: Eukaryota,

Archaea and Prokayota, with the exception of 2 archaeal species which will be discussed further.
Within the 11 eukaroyte species in the dataset, the Fungi, Eumetazoa, plants and rodents are all
correctly separated by the algorithm. This isn’t surprising, given the major differences between
the representative eukaryote genomes that have been completely sequenced to date. Thus, more
challenging and interesting is the correspondence between the results of the ACS algorithm and
the known taxonomic division within the bacterial and archeal domains. This correspondence
has been examined using the taxonomic information found in NCBI Taxonomy Database [15].
At large, the tree correctly distinguishes between most of the taxonomic groups in the dataset,
making the disagreements between the trees a fertile ground for further comparison between the
known taxonomy and the phylogeny revealed using genome comparison.

In the Archaea domain, we found a clear separation of genera represented by several species
such as the Pyrococcus and Methanosarcina. The organization of the genera into classes, orders
and families is less evident, possibly due to the relatively small number of specimen examined,
as discussed below. Two archean species seem to be “misplaced” in the tree - Nanoarchaeum
equitans (Nano.eq) and Halobacterium NRC-1 (Hb.spY12) are both mapped on the tree within a
mixture of prokaryote species. For Nanoarchaeum the reason may be the fact that it is one of a few
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Figure 2: Tree of 191 proteomes generated by the ACS method. The tree has been drawn using
DRAWTREE program of the PHYLIP package (Felsenstein, 1993).
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known archeal parasites, lacking genes for lipid, cofactor, amino acid, or nucleotide biosynthesis
(Waters et al., 2003), making it more problematic in light of our complete genome comparisons.
The Halobacterium sp.NRC-1 is the only archeal species present from the entire Halobacteria
class, which might explain the difficulty of its classification. Its is found in the tree close to other
stress-resistant species such as D.radiodurans and T.Thermophilus, belonging to the Deinococci
class.

In the Prokaryota domain, the Actinobacteria class (high G+C Gram-positive bacteria) is clus-
tered together with a correct separation of the majorly represented Mycobacterium (5 species) and
Corynebacterium (3 species) genera. The same holds for the Chlamydiae class and Cyanobacteria
phylum (including correct separation of Prochlorales and Chroococcales). The largely represented
Firmicutes phylum (Gram-positive bacteria) is clustered almost entirely on a single branch of the
tree, with all the species within the Clostridia and the Bacilli classes clustered together, includ-
ing divisions into orders, families and genera, which is largely in agreement with the taxonomic
knowledge. Within the Proteobacteria (purple non-sulfur bacteria), the Beta and Epsilon classes
are accurately separated. In the Alpha class the represented Rhizobiales class and Rickettsiaceae
are both monophyletic groups in the tree (but not clustered together), the small Delta class is
split, as is the large Gamma class, which is partitioned into two major branches on the tree.

Overall, the algorithm’s ability to provide a phylogeny in good agreement with the taxonomic
knowledge (which is largely based on the 16S rRNA sequences) is good at the lower levels of
genera, families and classes. The method accuracy is decreasing for higher taxonomic groups, a
common problem to the whole-genomic approach to phylogenetic inference, as has been reported
in (Qi et al., 2004). It is expected that the performance on these taxonomy groups will improve as
more genomic sequences will become available, as we have experienced with the gradual increase
in the number of species that were used in this study. It is natural that the tree construction
Neighbor Joining algorithm will perform better when supplied with more specimen from each
group.

3.4. Viruses forests

Viruses are known to be partitioned to a small number of superfamilies, according to their
nuclear acid type: DNA or RNA, double strand or single strand, positive or negative. Each of
these superfamilies is believed to have a different evolutionary origin (Origins of viruses [33]). We
used our method for generating a forest for a large viruses’ dataset. We collected 1, 865 viral
genomes, where for 1, 837 of the viruses we had prior knowledge about their superfamily. We
partitioned the viruses with known superfamily to one of following six superfamilies: dsDNA
(double stranded DNA), dsRNA (double stranded RNA), retroid (reverse transcriptase viruses),
ssDNA (single stranded DNA), ssRNA positive (positive-sense single stranded RNA viruses),
ssRNA negative (negative-sense single stranded RNA viruses), and satellite nucleic acids. We at-
tributed each virus with unknown family to the family that is closest to it, according the average
ACS distance between the members of a family and the unknown virus. Then, we applied the
ACS method and generated a tree for each of these superfamilies. We hereby describe in detail
two trees in the forest ( Fig. 3 and 4). For the sake of clarity all the branches have the same length.

3.4.1. Retroids

In this subsection we evaluate the consistency of the phylogenetic tree, constructed using the 83
viral genomes classified as Retroid viruses. The tree has been compared to the taxonomy appearing
in the NCBI Taxonomy and ICTV [12]. The partition of the viruses to the 3 main families of
reverse transcriptases : Hepadnaviridae, Caulimoviridae (Circular dsDNA reverse transcriptases)
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Figure 3: A tree of the retroid family generated using the ACS method. The common shortcut
name is used where available.
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and Retroviridae (ssRNA reverse transcriptase), has been fully supported by our tree.
Within the Hepadnaviridae family (Hepatitis B viruses) the algorithm distinguished between

the Orthohepadnavirus (mammalian) and the Avihepadnavirus (avian) genera. This included the
Ross Goose Hepatitis B virus which is currently not classified, with evidence of its belonging to the
Avihepadnavirus genus (Triyatnib et al., 2001) and the Arctic Squirrel Hepatitis virus (classified
with the Orthohepadnaviruses).

Among the Caulimoviridae family, the two main genera - the Badnaviruses (bacilliform DNA
viruses) and Caulimoviruses, are separated in full accordance with the taxonomic data. The
Cestrum Yellow Leaf Curling virus, considered a tentative member of the genus, is clustered
together with the rest of the Caulimoviruses. Another genus of the Caulimoviridae - the Petunia
Vein Clearing virus, is clustered close to the Caulimoviruses, as is the Soybean Chlorotic Mottle
virus, Peanut Chlorotic Streak virus, Cassava Vein Mosaic virus, and the Rice Tungro Bacilli-
form-like viruses. The location of these families suggests they are a possible members of the
Caulimovirus genus.

The Retroviridae Family is correctly separated according to the Orthoretrovirinae and Spumaretro-
virinae subfamilies. The sub-division of the Orthorerovirinae to the Alpha, Beta, Gamma, Delta,
and Epsilon genera also fits the taxonomic data, except for some spreading of the Gammaretro-
viruses. The widely studied Procine Endogenous retrovirus, which is currently classified as a
Mammalian Type-C virus, is classified among the Gammaretroviruses, fitting existing evidence
of its protease resembling the protease of MLV within the gamma genus (Blusch et al., 2002).
The yet unclassified Avian Endogenous Retrovirus EAV-HP clusters close to the Alpharetrovirus
family, following a sequence identity previously reported in (Sacco et al., 2000). The Lentivirus
genus members are clustered together, with a clear separation of the Primate (containing the
HIV), Avian and Bovine species of the viruses. In the Spumaretrovirinae family the Spumavirus
genus (foamy viruses) is clustered together.

The observations above that suggest our method is a valid predictive tool in the context of
viral taxonomy, overcoming the shortcoming of various traditional methods.

3.4.1. ssRNA negative

The phylogenetic tree reconstructed using ACS for the family of ssRNA negative-strand viruses
is described in figure 4. The ssRNA negative-strand viruses have been used for several small scale
phylogeny analysis in the past (Feldmann et al., 1993; Bujnicki and Rychlewski, 2002). Few
crucial points should be taken into account in the analysis: First, several of the ssRNA negative
genomes are partitioned into two, three or more segments, which were treated separately in our
analysis. They are denote by S,M and L suffixes, indicating the Small, Medium and Large segment,
respectively. As could have been expected, it turn out that for every viral genus, the segments of
the same relative size are clustered together in our tree, indicating their common origin. Second,
the genomes, or genome segments used to perform this analysis were very small, sometimes less
the 1Kbp. Such small sequences contain relatively little information for an algorithm as the one
we used. Still, the tree which was created by our method nicely agrees with the accepted viral
taxonomy, as described below:

• Arenavirus Genus (Arenaviridae Family): Arenaviruses are rodent-borne bisegmented viruses.
The division of the Arenaviruses into Old World and New World is recognized. Bowen et al.
(Bowen et al., 1996) suggested a division of the latter into three lineages which were denoted
as A, B and C. This division has been further reinforced by phylogeny analysis based on
three genes common to the Arenaviruses (Charrel et al., 2003). Our analysis includes the
Pirital virus of the A lineage, the Junin virus, the Machupo virus, the Guanarito virus and
the Tacaribe virus from the B lineage and Lassa virus and Lymphocytic choriomeningitis
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Figure 4: A tree of the ssRNAnegative family generated using the ACS method. The common
shortcut name is used where available.
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virus from the Old World Arenaviruses. The large segments of the Arenaviruses are clus-
tered closely and maintain the division between lineage A and B as well as the clustering
of New World viruses together separately from the Old World viruses. The small segments
are also clustered closely, but do not maintain as accurately the relationship between the
lineages (although all the species in lineage B are adjacent in the tree). The Arenaviruses’
large segment and small segment are clustered together, suggesting both segments possibly
share a common ancestor.

• Bunyavirus, also known as Orthobunyavirus (Bunyaviridae family): Like all members of
Bunyaviridae family, bunyaviruses have a trisegmented genome [12]. The segments of three
bunyaviruses are included in the tree: Bunyamwera virus, La Crosse virus and Oropouche
virus. The large segments of the viruses are included in a monophyletic group and so are
the medium segments and the small segments.

• Hantavirus (Bunyaviridae): Each hantavirus is specific to a different rodent or insectivore
host. Consequently, virus phylogeny very closely reflects rodent phylogeny, implying that
hantaviruses are ancient infectious agents which have coevulated with their rodents hosts.
The hantaviruses analyzed in this work infect the rodents from the Muridea Family. The
Sin Nombre and the Andes viruses infect species from the Sigmodontinea subfamily. The
Puumala and Tula viruses infect members of theArvicolinae subfamily, and the Dobrova,
Hantaan and Seoul infect rodents from the Murinae subfamily (McCaughey and Hart, 2000).
In our tree all the large segments of hantaviruses are clustered together, and so are the
medium and small segments. Moreover, the tree maintains the phylogeny relationship of
the hosts subfamilies, clustering together the Sin Nombre and Andes viruses; the Puumala
and Tula viruses, and the Dobrova, Hantaan and Seoul. This applies to the large, medium,
and small segments.

• Nairovirus (Bunyaviridae): Two naioviruises are included in this analysis: the Dugbe virus
and the CCHF (Crimean Congo Hemorrhagic Fever). Both are clustered together among
other Bunyaviridae, furthermore the small, medium, and large segments together form a
monophyletic group. This could mean that possibly all the segments of nairoviruses have a
common origin.

• Phlebovirus (Bunyaviridae): The segments of the two phleboviruses (Rift Valley fever virus
and Uukuniemi virus) are clustered in the same region of the tree.

• Tospovirus (Bunyaviridae): The small and medium segments of the tospoviruses are all
clustered together, with an expected partition between the small and medium segments. The
small and medium subtrees maintain the same evolutionary relationship: GBNC (Groundnut
bud necrosis virus) closer to WSWV (Watermelon spotted wilt virus), and INSV (Impatiens
necrotic spot virus) closer to TSWV (Tomato spotted wilt virus). In the cluster containing
the large segment of the viruses the INSV virus is missing (the other three maintain the
above mentioned relationship), and is clustered together with Ophioviruses.

• The Paramyxoviridae family: Paramyxoviridae viruses are located in two subtrees closely
reflecting the family partition to the Paramyxovirinae subfamily and the Pneumovirinae
subfamily. The three Avulaviruses are clustered together in proximity to the Rubulaviruses,
which are in one cluster as well. The three Morbilliviruses form a monophyletic group
close to the two viruses of the newly established genus Henipavirus. Between these family
are located two unclassified Paramyxoviridae viruses: Tupaia Paramyxovirus and Mossman
virus. Their position between the Morbilliviruses and Henipavirus in our tree agree with
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their accepted phylogeny location (Miller et al., 2003). The Respiroviruses are partitioned
to two clusters: One contains the Sendai virus and the Human Parainfluenza virus 1 in
the Paramyxovirinae subtree. The second Respirovirus cluster includes the Human Parain-
fluenza virus 3 and Bovine Parainfluenza virus 3, and is clustered with all the examined
species from the Paramyxovirinae family in a different subtree. Those species include viruses
form the Pneumovirus and Metapneumovirus genera.

• Fer-De-Lance virus is an unclassified member of the Paramyxovirinae subfamily. Previous
phylogenetic studies of the virus’ proteins indicate that it is not consistently more closely
related to any known paramyxovirus genus or species than to others. Specific protein phy-
logenies suggested that Fe-De-Lance virus was slightly closer to respiroviruses than to other
genera (Kurath et al., 2004). The Fer-De-Lance virus is indeed located in our tree in a
certain proximity to respiroviruses but is clustered together with viruses from the Rhab-
doviridae family. It had been found that Fer-De-Lance virus contains an ORF similar to
ORFs reported to encode small basic proteins in few rhabdoviruses (Kurath et al., 2004).
This might mean the Fer-De-Lance virus is evolutionary close to the Rhabdoviridae, which
explains their proximity in our tree.

• The Filoviridae family: The three members of the Filoviridae family, including the widely
studied Ebola virus, are clustered together in close proximity to a large family of Paramyx-
oviridae viruses.

• The Rhabdoviridae family: The species of the Vesiculovirus, Lyssavirus and Cytorhabdovirus
genera of the Rhabdoviridae are clustered together in one subtree. The Novirhabdovirus
genus members creates a monophyletic group which is close to the Phlebovirus of the
Bunyaviridae family. Three out of four members of the Nucleorhabdovirus genus are sit-
uated in a subtree with the fourth (MMV, Maize Mozaic virus). The only member of the
Ephemerovirus genus, BEFV: Bovine Ephemernal Fever Virus is clustered distantly from
any other member of the Rhabdoviridae genus.

• The Orthomyxoviridae family includes various influenza viruses which are all clustered to-
gether in the tree.

• The Ophiovirus genus: the ophioviruses are ssRNA negative viruses which are not part
of any of the existing families in the order. All the members of the ophiovirus genus are
situated in the tree together, close to the Tenuivirus genus. Indeed, according to ICTV [12],
the virus morphology of the ophioviruses resembles the Tenuviruses. It further mentions
that their internal nucleocapsid component is similar to that of members in the Bunyaviridae
family. This similarity can explain the proximity of the Ophioviruses to the Topsoviruses of
the Bunyaviridae family in the tree.

• The Tenuivirus genus also doesn’t belong to any of the ssRNA negative families. Two
species were analyzed in the tree: the first is Rice Grassy Stunt Virus (RiGrStun), which
consists of six segments, all of which where clustered together adjacent to the medium and
small segments of the Tospoviruses (Bunyaviridae family). The second is the Rice Stripe
Virus (RiStr), which has four segments, one of which clustered with the RiGrStun segments
and the other three in different locations among viruses from the Bunyaviridae family. This
proximity to the viruses from the Bunyaviridae family fits the ICTV record on the genus
which mentionS that Tenuiviruses share some similarities with viruses classified in the family
Bunyaviridae.

4. CONCLUSION

15



In this work we presented a novel method, the ACS algorithm, for phylogenetic reconstruction,
based on complete genome or proteome sequences. As with any new reconstruction method, its
adequacy will be determined with time, when sufficient experience is gained. Yet the several large
cases analyzed in this work indicate its high potential. The comprehensive comparisons with other
whole genome methods show that ACS is at least as good, and usually better, than all of them,
both in terms of reconstruction accuracy and of computational efficiency (speed). We used our
method for large scale phylogenetic analysis of two hundred species and two thousand viruses.
This is the first time such a large scale phylogeny is performed. It provides many new phylogenetic
insights, which can be further investigated in light of the available taxonomic knowledge.

The viral phylogenies provided by ASC allow a comprehensive view of the ancestral relation-
ships between multiple genomic elements in organisms that are currently vaguely described in
phylogenetic terms. Analysis of the obtained trees provides novel evidence for the taxonomic
placements of multiple species, in many cases augmented by the limited available morphologi-
cal details. We believe that in the future, the use of whole genome methods should assist in
rapid classification of novel viral organism, following the relatively easy sequencing of the genetic
content.

The ASC method also allows the comparison of the phylogenies constructed traditionally, using
the information derived from individual genes, and those based on whole genomes or proteomes.
This can be used for a systematic comparison of the “history” as told by the genome, to the
histories told by separate genes. Such task was carried out here with the ML trees obtained from
single mtDNA genes and the ASC whole-mtDNA tree.

We believe that our ACS approach is promising, and that its outcomes are interesting, so that
overall this is an important step in the of direction constructing whole genome or proteome phy-
logenies. The experimental results support further exploration of the proposed method. However,
this work is certainly not the last algorithmic word in this direction, and many improvements
remain to be discovered and developed.

For example, our distance matrices were generated using either proteomic or genomic data.
We believe that combining those two sources of information can improve the quality of the re-
construction. However, theoretical based approaches for combining such two different sources
of information are still missing. Two similar genomes may share many reversed subsequences
(subsequences that have direction that is reversed in one genome compared to the other) and not
only subsequences with the same orientation. Another interesting direction is to generalize our
algorithm to deal with this observation.

SUPPLEMENTARY MATERIAL

Some of the phylogenies, distance matrices used to generate the phylogenies, and the species
listing in the phylogenies are available at
http://www.cs.tau.ac.il/∼bchor/whole/GREPS.html.
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