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Abstract. In this paper we propose new solution methods for designing tag sets for use in universal
DNA arrays. First, we give integer linear programming formulations for two previous formalizations of
the tag set design problem, and show that these formulations can be solved to optimality for instance
sizes of practical interest by using general purpose optimization packages. Second, we note the benefits of
periodic tags, and establish an interesting connection between the tag design problem and the problem
of packing the maximum number of vertex-disjoint directed cycles in a given graph. We show that
combining a simple greedy cycle packing algorithm with a previously proposed alphabetic tree search
strategy yields an increase of over 40% in the number of tags compared to previous methods.

1 Introduction

Recently developed universal DNA tag arrays [7, 13, 15] offer a flexible and cost-effective alternative
to custom-designed DNA arrays for performing a wide range of genomic analyses. A universal tag
array consists of a set of DNA strings called tags, designed such that each tag hybridizes strongly
to its own antitag (Watson-Crick complement), but to no other antitag. A typical assay based
on universal tag arrays performs Single Nucleotide Polymorphism (SNP) genotyping using the
following steps [4, 9]: (1) A set of reporter oligonucleotide probes is synthesized by ligating antitags
to the 5′ end of primers complementing the genomic sequence immediately preceding the SNP. (2)
Reporter probes are hybridized in solution with the genomic DNA under study. (3) Hybridization of
the primer part (3′ end) of a reporter probe is detected by a single-base extension reaction using the
polymerase enzyme and dideoxynucleotides fluorescently labeled with 4 different dyes. (4) Reporter
probes are separated from the template DNA and hybridized to the universal array. (5) Finally,
fluorescence levels are used to determine which primers have been extended and learn the identity
of the extending dideoxynucleotides.

Tag set design involves balancing two conflicting requirements: on one hand we would like a
large number of tags to allow assaying a large number of biochemical reactions, on the other hand
we would like the tags to work well for a wide range of assay types and experimental conditions.

Ben Dor et al. [3] have previously formalized the problem by imposing constraints on antitag-
to-tag hybridization specificity under a hybridization model based on the classical 2-4 rule, and
have proposed near-optimal heuristics. In Section 3 we give an integer linear programming (ILP)
formulation for this problem and its variant in which tags are required to have equal length [14].
Empirical results in Section 5 show that these ILP formulations have extremely small integrality
gap, and can be solved to optimality for instance sizes of practical interest by using general purpose
optimization packages.

Previous works on tag set design [3, 14] require for substrings that may form a nucleation
complex and initiate cross hybridization not to be repeated within any selected tag. This constraint
simplifies analysis, but is not required for ensuring correct tag functionality – what is required is for
such substrings not to appear simultaneously in two different tags. To our knowledge, no previous
work has assessed the impact that adding this constraint has on tag set size. In this paper we
propose two algorithms for designing tag sets while relaxing this constraint. The first one is a
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modification of the alphabetic tree search strategy in [13, 14], The second algorithm stems from
the observation that periodic tags, particularly those with a short period, use the least amount
of “resources” and lead to larger tag sets, where the limited resources are in this case minimal
substrings that can form nucleation complexes (for formal models see Section 2). In Section 4 we
establish an interesting connection between the tag design problem and the problem of packing the
maximum number of vertex-disjoint directed cycles in a given graph, and propose a simple greedy
algorithm for the latter one. Results in Section 5 show that combining the greedy cycle packing
algorithm with alphabetic tree search strategy yields an increase of over 40% in the number of tags
compared to previous methods.

The rest of the paper is organized as follows. In Section 2, we describe the hybridization model,
give formal problem formulations for several variants of the tag set design problem, and briefly
review previous work. In Section 3, we give integer program formulations for the problem variant in
[3] and its variant in which tags are required to have equal length [14]. In Section 4, we describe the
algorithms for problem variants in which potential nucleation complexes can be appear multiple
times as substrings of a tag, and prove that packing the maximum number of vertex-disjoint directed
cycles in a given graph is APX-hard. Finally, we give experimental results in Section 5 and conclude
with some open problems in Section 6.

2 Problem Formulations and Previous Work

A main objective of universal array designers is to maximize the number of tags, which directly
determines the number of reactions that can multiplexed using a single array. At the same time, tag
sets must satisfy a number of stability and non-interaction constraints [6]. The set of constraints
depends on factors such as the array manufacturing technology and the intended application. In
this section we formalize the most important stability and non-interaction constraints using the
hybridization model in [3].

Hybridization model. Hybridization affinity between two oligonucleotides is commonly charac-
terized using the melting temperature, defined as the temperature at which half of the duplexes
are in hybridized state and the other half are in melted state. However, accurate melting temper-
ature estimation is computationally expensive, e.g., estimating the melting temperature between
two non-complementary oligonucleotides using the near-neighbor model of SantaLucia [17] is an
NP-hard problem [10]. Ben-Dor et al. [3, 4] formalized a conservative hybridization model based
on the observation that stable hybridization requires the formation of an initial nucleation com-

plex between two perfectly complementary substrings of the two oligonucleotides. For nucleation
complexes, hybridization affinity is modeled using the classical 2-4 rule [18], which estimates the
melting temperature of the duplex formed by an oligonucleotide with its complement as the sum
between the number of weak bases (i.e., A and T) and twice the number of strong bases (i.e., G and
C).

The weight w(x) of a DNA string x = a1a2 . . . ak is defined as w(x) =
∑k

i=1w(ai), where
w(A) = w(T) = 1 and w(C) = w(G) = 2. Throughout this paper we assume the following c-token
hybridization model [3]: hybridization between two oligonucleotides takes place only if one oligo
contains as substring the complement of a substring of weight c or more of the other, where c is
a given constant. The complement of a string x = a1a2 . . . ak over the DNA alphabet {A, C, T, G} is
defined as x̄ = b1b2 . . . bk, where bi is the Watson-Crick complement of ak−i+1.

Hybridization stability. Current industry designs require a predetermined tag length l, e.g.,
GenFlex tag arrays manufactured by Affymetrix use l = 20 [1]. The model proposed in [3] allows
tags of unequal length and instead require a minimum tag weight of h, for a given constant h.
In this paper we consider both types of stability constraints, and use the parameter α ∈ {l, h} to
denote the specific model used for hybridization stability.



Pairwise non-interaction constraints. A basic constraint in this category is for every antitag
not to hybridize to non-complementary tags [3]. For a DNA string x and a set of tags T , let NT (x)
denote the number of tags in T that contain x as a substring. Using the c-token hybridization
model, the antitag-to-tag hybridization constraint is formalized as follows:

(C) For every feasible tag set T , NT (x) ≤ 1 for every DNA string x of weight c or more.

In many assays based on universal tag arrays it is also required to prevent antitag-to-antitag
hybridization, since the formation of such antitag-to-antitag duplexes or antitag hair-pin structures
prevents reporter probes from performing their function in the solution-based hybridization steps
[6, 14]. The combined constraints on antitag hybridization are formalized as follows

(C̄) For every feasible tag set T , NT (x)+NT (x̄) ≤ 1 for every DNA string x of weight c or more.

In the following we use the parameter β ∈ {C, C̄} to specify the type of pairwise hybridization
constraints.

Substring occurrences within a tag. Previous works on DNA tag set design [3, 14] have imposed
the following c-token uniqueness constraint in addition to constraints (C) and (C̄): a DNA string of
weight c or more can appear as a substring of a feasible tag at most once. This uniqueness constraint
has been added purely for ease of analysis (e.g., it is the key property enabling the DeBruijn
sequence based heuristics in [3]), and is not required for ensuring correct assay functionality. To
our knowledge, no previous work has assessed the impact that adding this constraint has on tag
set size. In the following we will use the parameter γ ∈ {1,multiple} to specify whether or not the
c-token uniqueness constraint is enforced.

For every α ∈ {l, h}, β ∈ {C, C̄}, and γ ∈ {1,multiple}, the maximum tag set design problem with
constraints α, β, γ, denoted MTSDP(α|β|γ), is the following: given constants c and l/h, find a tag
set of maximum cardinality satisfying the constraints.

Previous work on tag set design. Ben-Dor et al. [3] formalized the c-token model for oligonu-
cleotide hybridization and studied the MTSDP(h|C|1) problem. They established a constructive
upperbound on the optimal number of tags for this formulation, and gave a nearly optimal tag
selection algorithm based on DeBruijn sequences. Similar upper bounds are established for the
MTSDP(l|C|1) and MTSDP(∗|C̄|1) problems in [14], which also extends a simple alphabetic tree
search strategy originally proposed in [13] to handle all considered problem variants.

For a comprehensive survey of hybridization models, results on the associated formulations for
the tag set design problem, and further motivating applications in the area of DNA computing, we
direct the reader to [6].

3 Integer Linear Programming Formulations for MTSDP(∗|C|1)

Before stating our integer linear program formulation, we introduce some additional notations.
Following [3], a DNA string x of weight c or more is called a c-token if all its proper suffixes

have weight strictly less than c. Clearly, it suffices to enforce constraint (C) for all c-tokens x. Let
N denote the number of c-tokens, and C = {c1, . . . , cN} denote the set of all c-tokens. The results
in [3] imply that N = Θ((1 +

√
3)c). Note that the weight of a c-token can be either c or c+1, the

latter case being possible only if the c-token starts with a strong base (G or C). We let C0 ⊆ C denote
the set of c-tokens of weight c+1 that end with a weak base, i.e., c-tokens of the form S<c− 2>W,
where W (S) denote a weak (strong) base, and <c− 2> denotes an arbitrary string of weight c− 2.
We also let C2 ⊆ C denote the set of c-tokens of weight c that end with a strong base, i.e., c-tokens
of the form <c− 2>S.

Clearly, there is at most one c-token ending at every letter of a tag. It is easy to see that each
c-token x ∈ C0 contains a proper prefix which is itself a c-token, and therefore x cannot be the first



c-token of a tag, i.e., cannot be the c-token with the leftmost ending. All other c-tokens can appear
as first c-tokens. When a c-token in C \ (C0 ∪ C2) is the first in a tag, then it must be a prefix of
the tag. On the other hand, tokens in C2 can be the first both in tags that they prefix and in tags
in which they are preceded by a weak base not covered by any c-token.

The ILP formulation for MTSDP(l|C|1) uses an auxiliary directed graph G = (V,E) with

V = {s, t} ∪ ⋃
1≤i≤N Vi, where Vi = {vki | |ci| ≤ k ≤ l}. G has a directed arc from vki to vk+1

j

for every triple i, j, k such that |ci| ≤ k ≤ l − 1 and cj is obtained from ci by appending a single
nucleotide and removing the maximal prefix that still leaves a valid c-token. Finally, G has an arc

from s to every v ∈ Vfirst, where Vfirst = {v|ci|i | ci ∈ C \ C0} ∪ {v|ci|+1
i | ci ∈ C2}, and an arc from

vli to t for every 1 ≤ i ≤ N .
We claim that, for c ≤ l, MTSDP(l|C|1) can be reformulated as the problem of finding the

maximum number of s-t paths in G that collectively visit at most one vertex vki for every i. Indeed,
let P be an s-t path and vki be the vertex following s in P . If k = |ci|, we associate to P the tag
obtained by concatenating ci with the last letters of the c-tokens corresponding to the subsequently
visited vertices, until reaching t. Otherwise, if k = |ci|+1 (which implies that ci ∈ C2) we associate
to P the two tags obtained by concatenating either A or T with ci and the last letters of subsequently
visited c-tokens. The claim follows by observing that at most one of the tags associated with each
path can be used in a feasible solution.

Our ILP formulation can be viewed as a generalized version of the integer maximum flow prob-
lem in which unit capacity constraints are imposed on sets of vertices of G instead of individual
vertices. The formulation uses 0/1 variables xv and ye for every every vertex v ∈ V \ {s, t}, re-
spectively arc e ∈ E. These variables are set to 1 if the corresponding vertex or arc is visited by
an s-t path corresponding to a selected tag. Let in(v) and out(v) denote the set of arcs entering,
respectively leaving vertex v. The integer program can then be written as follows:

maximize
∑

v∈Vfirst

xv (1)

subject to

xv =
∑

e∈in(v)

ye =
∑

e∈out(v)

ye, v ∈ V \ {s, t} (2)

∑

v∈Vi

xv ≤ 1, 1 ≤ i ≤ N (3)

xv, ye ∈ {0, 1}, v ∈ V \ {s, t}, e ∈ E (4)

Constraints (2) ensure that variables ye set to 1 correspond to a set of s-t paths, and that a variable
xv is set to 1 if and only if one of these paths passes through v.1 Antitag-to-tag hybridization
constraints (C) and c-token uniqueness are enforced by (3). Finally, the objective (1) corresponds
to maximizing the number of selected tags, since the shortest prefix of a tag that is a c-token must
belong to C \ C0.

For a token ci = cjX ∈ C0, where X ∈ {A, T}, let ĉi = cj ā. Since both ci and ĉi contain cj
as a prefix, and cj can appear at most once in a feasible tag set T , it follows that at most one
of them can appear in T . Therefore, the following valid inequality can be added to the the ILP
formulation (1)–(4) to improve its integrality gap (i.e., the gap between the value of the optimum
integer solution and that of the optimal fractional relaxation):

∑

v∈Vi∪Vj

xv ≤ 1, ci ∈ C0, cj = ĉi, i < j (5)

1 Variables xv can be eliminated by replacing them with the corresponding sums of xe’s; we use them here merely
for improving readability. ILP sizes reported in Section 5 refer to the equivalent reduced formulations obtained by
eliminating these variables.



The formulation of MTSDP(l|C|1) has exactly the same objective and constraints for a slightly
different graph G. Let us define the tail weight of a c-token C, denoted tail(C), as the weight of
C’s last letter. Also, let hi = h if ci has a tail weight of 1 and hi = h + 1 if ci has a tail weight
of 2. We will require that every tag ending with token ci has total weight of at most hi; it is easy
to see that this constraint is not affecting the size of the optimum tag set. We now define the
graph G = (V,E) with V = {s, t} ∪ ⋃

1≤i≤N Vi, where Vi = {vki | w(ci) ≤ k ≤ hi}. G contains a

directed arc from vki to v
k+tail(i)
j for every triple i, j, k such that |ci| ≤ k ≤ hi − tail(ci) and cj is

obtained from ci by appending a single nucleotide and removing the maximal prefix that still leaves
a valid c-token. Finally, G contains arcs from s to every v ∈ Vfirst, where Vfirst is now equal to

{vw(ci)
i | ci ∈ C \ C0} ∪ {vw(ci)+1

i | ci ∈ C2}, plus arcs from every vki to t for every 1 ≤ i ≤ N and
hi − tail(ci) < k ≤ hi.

4 Algorithms for MTSDP(∗| ∗ |multiple)

In the following we describe two algorithms for MTSDP(l|C|multiple); both algorithms can be easily
adjusted to handle the other MTSDP(∗|∗|multiple) variants. The first algorithm (see Figure 1 for a
detailed pseudocode) is similar to the alphabetic tree search algorithms proposed for MTSDP(l|C|1)
in [14]. The algorithm performs an alphabetical traversal of a 4-ary tree representing all 4l possible
tags, skipping over subtrees rooted at internal vertices that correspond to tag prefixes including
unavailable c-tokens. The difference from the MTSDP(l|C|1) algorithm in [14] lies in the strategy
used to mark c-tokens as unavailable. While the algorithm in [14] marks a c-token C as unavailable
as soon as it incorporates it in the current tag prefix (changing C’s status back to “available” when
forced to backtrack past C’s tail), the algorithm in Figure 1 marks a c-token as unavailable only
when a complete tag is found.

Note that the alphabetic tree search algorithm produces a maximal feasible set of tags T , i.e.,
there is no tag t such that T ∪ {t} remains feasible for MTSDP(l|C|multiple). Hence, every tag of
an optimal solution must share at least one c-token with tags in T . Since every tag of T has at
most l− c/2+1 c-tokens, it follows that the alphabetic tree algorithm (and indeed, every algorithm
that produces a maximal feasible set of tags) has an approximation factor of l − c/2 + 1.

We call a tag t periodic if t is the length l prefix of an infinite string x∞, where x is a DNA
string with |x| < |t|. (Note that a periodic tag t is not necessarily the concatenation of an integer
number of copies of its period x as in the standard definition of string periodicity [12].)

The following lemma shows that tag set design algorithms can restrict the search to two simple
classes of tags.

Lemma 1. For every c and l, there exists an optimal tag set T in which every tag has the unique-

ness property or is periodic.2

Proof. Let T be an optimal tag set. Assume that T contains a tag t that does not have the
uniqueness property, and let ci1 , . . . , cik be the sequence of c-tokens occurring in t, in left to right
order. Since t does not have the uniqueness property, there exist indices 1 ≤ j < j′ ≤ ik such that
cij = cij′ . Let t′ be the tag formed by taking the first l letters of the infinite string with c-token

sequence (cij , . . . , cij′−1
)∞; note that t′ is a periodic tag. Since c-tokens cij , . . . , cij′−1

do not appear

in the tags of T \ {t}, it follows that (T \ {t}) ∪ {t′} is also optimal. Repeated application of this
operation yields the lemma. ⊓⊔

Note that a periodic tag whose shortest period has length p contains as substrings exactly p
c-tokens, while tags with the uniqueness property contain between l − c + 1 and l − c/2 + 1 c-
tokens. Therefore, of the two classes of tags in Lemma 1, periodic tags (particularly those with
short periods) make better use of the limited number of available c-tokens.
2 Note that the two classes of tags are not disjoint, since there exist periodic tags that have the uniqueness property.



Input: Positive integers c and l, c ≤ l

Output: Feasible MTSDP(l|C|multiple) solution T

Mark all c-tokens as available
For every i ∈ {1, 2, . . . , l}, Bi ← A

T ← ∅; Finished ← 0; pos ← 1
While Finished = 0 do

While the weight of B1B2 . . . Bpos < c do

pos ← pos + 1
EndWhile

If the c-token ending B1B2 . . . Bpos is available then

If pos = l then

T ← T ∪ {B1B2 . . . Bl}
Mark all the c-tokens of B1B2 . . .Bl as unavailable
pos ← [the position where the first c-token of B1B2 . . .Bl ends]
I ← {i | 1 ≤ i ≤ pos , Bi 6= G}
If I = ∅ then

Finished ← 1
Else

pos ← max{I}
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

Else

pos ← pos + 1
EndIf

Else

I ← {i | 1 ≤ i ≤ pos , Bi 6= G}
If I = ∅ then

Finished ← 1
Else

pos ← max{I}
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

EndIf

EndWhile

Fig. 1. The alphabetic tree search algorithm for MTSDP(l|C|multiple). The nextbase(·) function is defined by
nextbase(A) = T, nextbase(T) = C, and nextbase(C) = G.

Each periodic tag corresponds to a directed cycle in the graph Hc which has C as its vertex set,
and in which a token ci is connected by an arc to token cj iff ci and cj can appear consecutively in a
tag, i.e., iff cj is obtained from ci by appending a single nucleotide and removing the maximal prefix
that still leaves a valid c-token. Clearly, a vertex-disjoint packing of n cycles in Hc yields a feasible
solution for MTSDP(l|C|multiple) consisting of n tags, since we can extract at least one tag of
length l from each cycle, and tags extracted from different cycles do not have common c-tokens.
This motivates the following:

Maximum Vertex-Disjoint Directed Cycle Packing Problem: Given a directed graph G,
find a maximum number of vertex-disjoint directed cycles in G.

The next theorem shows that Maximum Vertex-Disjoint Directed Cycle Packing in
arbitrary graphs is unlikely to admit a polynomial approximation scheme. A stronger inapproxima-
bility results was recently established for arbitrary graphs by Salavatipour and Verstraete [16],
who proved that there is no O(log1−ε n)-approximation for Maximum Vertex-Disjoint Di-

rected Cycle Packing unless NP ⊆ DTIME(2polylogn). On the positive side, Salavatipour
and Verstraete showed that Maximum Vertex-Disjoint Directed Cycle Packing can be



… li lj
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xixi xixi

Ci

Fig. 2. Vertices and arcs added to G(φ) for (a) variable xi, and (b) clause li ∨ lj .

approximated within a factor of O(
√
n) via linear programming techniques, matching the best

approximation factor known for the edge-disjoint version of the problem [11].

Theorem 1. Maximum Vertex-Disjoint Directed Cycle Packing is APX-hard even for

regular directed graphs with in-degree and out-degree of 2.

Proof. We use a reduction from theMAX-2-SAT-3 problem, similar to the one in [8]. An instance φ
of MAX-2-SAT-3 consists of a set {c1, . . . , cm} of disjunctive clauses over a ground set {x1, . . . , xn}
of variables. Each clause consists of at most 2 literals (variables or negations of variable), and each
variable appears in at most 3 clauses, counting both negated and non-negated occurrences. The
objective is to find a truth assignment that satisfies as many of the clauses as possible. It is known
that MAX-2-SAT-3 is APX-hard [2, 5].

Let mi denote the number of occurrences of variable xi in a given instance of MAX-2-SAT-3.
We construct, in polynomial time, a directed graph G(φ) as follows. For each variable xi we add
to G a directed cycle Ci of length 4mi, plus 2mi additional vertices alternatively labeled by xi and
x̄i, used to close a directed cycle of length 3 with each arc of Ci, as in Figure 2(a). For each unary
clause we pick a distinct vertex labeled by the negation of the respective literal and attach a loop
to it. Finally, for each 2-literal clause c we pick 2 vertices labeled by the negations of the literals
of c, again without reusing labeled vertices between clauses, and use a new vertex to connect them
via two length-2 cycles as in Figure 2(b). Note that, for every i, at least 2

∑n
i=1 mi of the labeled

vertices remain incident to a single cycle; we will refer to these as “free” labeled vertices.
We claim that every truth assignment that makes k clauses of φ true can be converted in

polynomial time into a set of k + 2
∑n

i=1 mi vertex disjoint cycles of G(φ), and vice-versa. Indeed,
for a given truth assignment, select (1) the 2mi length-3 cycles passing through nodes labeled by x̄i
for every variable xi that is set to true, (2) the 2mi length-3 cycles passing through nodes labeled
by x̄i for every variable xi that is set to false, and (3) the loop or length-2 cycle passing through a
labeled node corresponding to a false literal. It is easy to verify that these cycles are vertex-disjoint.

Conversely, let C be a set of k+2
∑n

i=1 mi vertex disjoint cycles of G(φ). If any of the cycles Ci

is in C, we replace it by the length-3 cycle passing through a free labeled vertex. Similarly, if any
of the cycles in C visits two of the arcs of a 3-cycle (or one of the arcs of a 2-cycle), we replace it
by the 3-cycle (respectively 2-cycle) itself. After this transformation we have a set of k+2

∑n
i=1mi

vertex-disjoint loops, 2-cycles, and 3-cycles. We say that a set of cycles is consistent if only one of
the labels xi, x̄i appear in C for every i. If C is consistent, we choose a truth assignment that makes
all literals corresponding to labels in C true. It is easy to see that at least k of the cycles in C must
be loops and 2-cycles, and clauses corresponding to these cycles are satisfied by the above truth
assignment.

Otherwise, we make C consistent by repeating the following transformation. Let i be an index
for which both xi and x̄i appear in C. Without loss of generality, assume that xi appears in only
one clause of φ (recall that, together, xi and x̄i can appear in at most 3 clauses). It follows that
there is a single loop or 2-cycle C ∈ C visiting a vertex labeled by x̄i – all other vertices labeled by



Table 1. ILP results for MTSDP(l|C|1), i.e., tag set design with specified tag length l, antitag-to-tag hybridization
constraints, and a unique copy of each c-token allowed in a tag.

l c #tags Upper Bounds LP/ILP statistics
[14] ILP LP [14] #constr #vars #non-zero LP time ILP time

10 4 7 8 8.57 9 406 1878 6004 0.13 0.71
10 5 23 28 28.00 29 1008 4600 14596 2.27 5.85
10 6 67 85 85.60 96 2434 10940 34470 11.40 98.25
10 7 196 259 259.67 328 5808 25422 79274 86.70 586.67
10 8 655 – 853.33 1194 13554 57138 175492 552.74 –

20 4 3 3 3.53 3 926 4638 15244 1.05 58.46
20 5 9 10 10.50 11 2448 12240 40076 13.72 381.33
20 6 26 29 29.87 32 6354 31860 104270 182.96 12448.61
20 7 75 – 88.00 93 16528 82662 270194 2675.68 –
20 8 213 – 257.23 275 42834 213578 697292 134525.81 –

Table 2. ILP results for MTSDP(h|C|1), i.e., tag set design with specified minimum tag weight h, antitag-to-tag
hybridization constraints, and a unique copy of each c-token allowed in a tag.

h c #tags Upper Bounds LP/ILP statistics
[14] ILP LP [3] #constr #vars #non-zero LP time ILP time

15 4 6 7 7.00 7 610 2966 9612 0.45 9.04
15 5 18 21 21.09 21 1550 7456 23998 5.66 117.62
15 6 47 63 63.20 63 3830 18322 58752 54.43 2665.39
15 7 149 192 192.00 192 9406 44416 141638 544.95 3644.85
15 8 460 – 588.00 590 22766 105746 334904 7153.87 –

28 4 3 3 3.30 3 1286 6554 21624 1.88 132.78
28 5 8 9 9.67 9 3422 17388 57122 34.66 1137.21
28 6 22 27 27.48 27 8926 45518 149492 392.42 18987.09
28 7 64 – 78.55 78 23342 118828 389834 7711.41 –
28 8 175 – – 224 60830 309118 1013244 – –

x̄i are free. Since the xi’s and x̄i’s alternate around Ci, the cycles going through vertices labeled by
x̄i can be replaced by at least the same number of 3-cycles going through vertices labeled by xi.

To complete the proof of the theorem, notice that the optimum number of satisfiable clauses,
kopt, is at least m/2, since we can repeatedly assign a variable such that at least half of the
clauses containing it are satisfied. Hence,

∑n
i=1 mi ≤ 2m ≤ 4kopt. If there exists a polynomial time

algorithm with an approximation factor of 1
1−ε

forMaximum Vertex-Disjoint Directed Cycle

Packing, we can run it on G(φ) to get a set C of at least k + 2
∑n

i=1mi ≥ 1
1−ε

(kopt + 2
∑n

i=1 mi)

vertex disjoint cycles, and then convert C as above into a truth assignment satisfying k ≥ 1+8ε
1−ε

kopt
clauses of φ. ⊓⊔

We use a simple greedy algorithm to solve Maximum Vertex-Disjoint Directed Cycle

Packing for the graph Hc: we enumerate possible tag periods in pseudo-lexicographic order, and
check for each period if all c-tokens are available for the resulting tag. We refer to this algorithm
as the greedy cycle packing algorithm, since it is equivalent to packing cycles greedily in order of
length.

5 Experimental results

Tables 1 and 2 give ILP statistics (number of constraints, number of variables, and number of non-
zero coefficients), LP and ILP runtime, and LP and ILP solution values for MTSDP(l|C|1) and
MTSDP(h|C|1). We also include the upper bounds established in [14] and [3] for these problems,
and the number of tags found by using the alphabetic tree search algorithm in [14]. We solved



Table 3. Results for MTSDP(∗|C|multiple), i.e., tag set design with antitag-to-tag hybridization constraints and
multiple copies of a c-token allowed in a tag.

One c-token copy Multiple c-token copies
l/h c Algorithm in [14] Tree search Cycle packing + Tree search

tags c-tokens tags c-tokens tags c-tokens % cyclic

4 3 51 14 59 17 40 100.0
5 9 146 31 165 40 140 100.0
6 26 404 53 433 72 293 98.6

l = 20 7 75 1100 124 1179 178 928 99.4
8 213 2976 281 3095 383 2411 97.1
9 600 7931 711 8230 961 7102 96.9

10 1667 20771 1835 21400 2344 19691 95.1

4 3 58 14 61 17 40 100.0
5 8 150 32 174 40 140 100.0
6 22 398 44 432 72 300 98.6

h ≥ 28 7 64 1119 118 1200 178 934 99.4
8 175 2918 239 3037 379 2405 96.6
9 531 8431 632 8622 943 6969 96.5

10 1428 21707 1570 22145 2260 19270 94.1

Table 4. Results for MTSDP(∗|C̄|multiple), i.e., tag set design with both antitag-to-tag and antitag-to-antitag
hybridization constraints and multiple copies of a c-token allowed in a tag.

One c-token copy Multiple c-token copies
l/h c Algorithm in [14] Tree search Cycle packing + Tree search

tags c-tokens tags c-tokens tags c-tokens % cyclic

4 1 17 10 35 10 25 100.0
5 4 65 17 83 23 85 100.0
6 13 200 30 241 41 171 97.6

l = 20 7 37 537 68 585 97 512 99.0
8 107 1480 147 1619 202 1268 98.0
9 300 3939 362 4124 512 3799 96.3

10 844 10411 934 10869 1204 10089 95.8

4 1 22 10 36 10 25 100.0
5 4 74 17 84 23 85 100.0
6 12 213 29 238 41 178 97.6

h ≥ 28 7 32 559 64 586 97 518 99.0
8 90 1489 135 1632 199 1238 98.0
9 263 4158 329 4314 504 3760 95.8

10 714 10837 809 11250 1163 9937 93.6

all integer programs and their fractional relaxations using the CPLEX 9.0 commercial solver with
default parameters run using a single CPU on a dual 2.8 GHz Dell PowerEdge 2600 Linux server.
Missing entries did not complete in 10 hours.

The ILP solutions can be found in practical time for small values of c, which are appropriate
for universal tag array applications, such as the emerging microfluidics-based labs-on-a-chip, where
moderate multiplexing rates are sufficient and ensuring high hybridization stringency is costly. For
all cases where the optimum could be computed, the difference between the optimal fractional and
integer solution values was smaller than 1, indicating why CPLEX can solve to optimality these ILPs
despite their size. Furthermore, ILP results confirm the extremely high quality of the upperbound
established for MTSDP(h|C|1) in [3]; the upperbound established in [14] for MTSDP(l|C|1) appears
to be somehow weaker.

Tables 3 and 4 give the results obtained for MTSDP(∗|∗|multiple) by the alphabetic tree search
algorithm in Figure 1 respectively by the greedy cycle packing algorithm (in our implementation, we
impose an upper bound of 15 on the length of the cycles that we try to pack) followed by running the
alphabetic tree search algorithm with the c-tokens occurring in the selected cycles already marked



as unavailable. Performing cycle packing significantly improves the results compared to running the
alphabetic tree search algorithm alone; as shown in the tables, most of the resulting tags are found
in the cycle packing phase of the combined algorithm.

Across all instances, the combined algorithm increases the number of tags by at least 40%
compared to the MTSDP(∗| ∗ |1) algorithm in [14]; the improvement is much higher for smaller
values of c. Quite notably, although the number of tags is increased, the tag sets found by the
combined algorithm use a smaller total number of c-tokens. Thus, these tag sets are less likely to
cross-hybridize to the primers used in the reporter probes, enabling higher tag utilization rates
during tag assignment [4, 14].

6 Conclusions

In this paper we proposed new solution methods for designing tag sets for universal DNA arrays.
We have shown that optimal solutions can be found in practical time for moderate problem sizes
by using integer linear programming, and that the use of periodic tags leads to increases of over
40% in the number of tags, with simultaneous increases in effective tag utilization rates during tag
assignment. Our algorithms use simple greedy strategies, and can be easily modified to incorpo-
rate additional practical design constraints, such as preventing the formation of hairpin secondary
structures, or disallowing specific nucleotide sequences such as runs of 4 identical nucleotides [13].

An interesting open problem is to find tight upper bounds and exact methods for the MTSDP(∗|∗
|multiple) formulations. Settling the approximation complexity of Maximum Vertex-Disjoint

Directed Cycle Packing is another interesting problem.
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