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The analysis of the structure of populations on the basis of genetic data is essential in 
population genetics. It is used, for instance, to study the evolution of species or to correct 
for population stratification in association studies. These genetic data, normally based 
on D N A polymorphisms, may contain irrelevant information that biases the inference of 
population structure. In this paper we adapt a recently proposed algorithm, named multi-
start E M A , to be used in the inference of population structure. This algorithm is able to 
deal with irrelevant information when obtaining the (probabilistic) population partition. 
Additionally, we present a maker selection test able to obtain the most relevant markers 
to retrieve that population partition. The proposed algorithm is compared with the widely 
used S T R U C T U R E software on the basis of the fjr metric and the log-likelihood score. It 
is shown that the proposed algorithm improves the obtention of the population structure. 
Moreover, information about relevant markers obtained by the multi-start E M A can be 
used to improve the results obtained by other methods, correct for population stratification 
or even also reduce the economical cost of sequencing new samples. The software presented 
in this paper is available online at A^;//)MMy^cLeAM.esykcw6aye&/wew6er&/^Mzmam. 

1. I N T R O D U C T I O N 

r w i H E D N A POLYMORPHISMS ARE VARIATIONS IN D N A sequence along individuals within species. 

Polymorphism between individuals can arise through several different mechanisms which include 
single nucleotide changes (SNPs), deletions and insertions of nucleotides and, above all, through variable 
numbers of short nucleotide sequence repeats (microsatellites). All these polymorphisms occurred during 
the history of species and are inherited among generations. 

Worldwide human population is usually defined in terms of subjective aspects such as language, culture, 
physical appearance or geographic location. However, human populations also tend to be genetically distant. 
Genetic differences are caused by a fairly independent evolution under population genetic forces, such as 



mutation, recombination, random drift and selection. This variation within and between populations can 

be observed at genetic marker locations. Recent studies using a variety of genetic markers, have shown 

that individuals sampled worldwide fall into clusters that roughly correspond to continental lines as well 

as to self-identifying racial groups (Bamshad et al., 2003; Corander and Marttinen, 2006; Rosenberg et al., 

2002, 2005). 

The information about population structure, namely population stratification and admixture, is useful 

not only in evolutionary studies or subspecies classification (Pritchard et al., 2000b; Rosenberg et al., 

2002) but also in association studies of disease genes (Patterson et al., 2004; Price et al., 2006; Riddle 

et al., 2006; Sillanpaa et al., 2001). Association studies often use a case-control design to identify genetic 

variants related to a specific disease by comparing allele frequencies between unrelated individuals that 

are affected and those unaffected. However, the presence of population stratification can lead to spurious 

allelic association between candidate marker and a phenotype (Cardón and Palmer, 2003; Pritchard et al., 

2000a). 

From a machine learning point of view, the inference of population structure can be seen as a clustering 

process where individuals are assigned to their population of origin according to their D N A polymorphisms. 

In the literature two main clustering approaches to the inference of population structures can be found; 

distance-based methods and model-based methods. Distance-based methods use pairwise distances between 

individuals to obtain a clustering partition of the population (Bowcock et al., 1994). These methods are 

highly dependent on the selected distance measure and therefore it is very difficult to know if the obtained 

clustering partition is meaningful. O n the other hand, model-based clustering assumes that there is a 

generative probabilistic model underlying the genetic information of the individuals. Another key modeling 

assumption is linkage and Hardy-Weinberg disequilibrium. Since these models are based on probability 

theory, a large amount of methods from statistical learning, sampling theory and Bayesian statistics can 

be used. Bayesian statistical methods based on Markov chain Monte Carlo ( M C M C ) are commonly used 

for the inference of population structure. Particularly, S T R U C T U R E (Falush et al., 2003; Pritchard et al., 

2000b) is one of the most widely used algorithms based on M C M C . However, there are other proposals 

such as PARTITION (Dawson and Belkhir, 2001), B A P S 2 (Corander and Marttmen, 2006; Corander et al., 

2004), a spatial statistical model for landscape genetics proposed by Guillot et al. (2004), or the learning 

of mixtures of trees (Kollin and Koivisto, 2006). Additionally, there are other algorithms, for instance 

methods based on the E M algorithm (Dempster et al., 1977) such as P S M I X (Wu et al., 2006), or based 

on information theory (O'Rourke et al., 2005). 

Even when high-throughput technologies offer the possibility of measuring a large number of polymor­

phisms simultaneously, it has sometimes been observed, for certain ancestry inference procedures, that 

accuracy of inference does not necessarily increase as markers are accumulated. Indeed, in an increasing 

number of species, the number of markers from which allele frequencies are available exceeds those 

required for accurate assignments. However, it is possible to find robust clustering patterns by using a panel 

with only a part of the markers that are available (Rosenberg, 2005; Rosenberg et al., 2003; Turakulov 

and Easteal, 2003). Thus, not only may the accuracy and efficiency of the population inference method 

be improved but also the genotyping cost reduced. Nevertheless, there is not a clear criteria to select the 

set of markers needed to obtain a robust clustering partition. Furthermore, the fact that not all the makers 

available are needed, suggests that there is redundant information and/or makers that are not relevant 

to cluster the individuals into their population of origin. This redundant and irrelevant information may 

damage the ability of the clustering methods to infer the population structure. 

In this work, w e adapt the multi-start Expectation Model Averaging (multi-start E M A ) algorithm (Santafé 

et al., 2006) to infer the structure of a population. The multi-start E M A is a recently proposed algorithm 

which approximates Bayesian model averaging for clustering based on the naive Bayes model, which is 

a simple Bayesian network successfully used in many other biological problems (Barash and Friedman, 

2002). 

Naive Bayes model assumes that allele frequencies of any two markers are independent once the 

population of origin is known. Additionally, the Bayesian model averaging method used to learn the 

naive Bayes model underlying the population structure takes model uncertainty into account. That is, it 

takes into account the uncertainty about the usefulness of including and excluding each marker from the 

clustering model. This process incorporates a kind of implicit feature selection in the model and it can 

be used to niter out those genetic markers which are considered irrelevant for obtaining the population 
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FIG. 1. Selective naive Bayes structures with two marker loci: each marker can be dependent on or independent of 
the clustering assignment, C. That is, each marker can be considered relevant or irrelevant for clustering purposes. 

structure. The information about relevant markers may be useful in many other genetic studies. Hence, 

w e also purpose a two-step test based on mutual information that can be used to retrieve this information 

from the clustering model. 

2. METHODS 

The marker loci are denoted by % = {Z%,..., Z„) and the cluster variable, C, represents the population 

grouping of the # polyploid individuals D = { % ^ % ^ } . Since w e would like to use the proposed 

method with human genetic data, from now on w e assume diploid data. Therefore, the Zth individual of 

the population is characterized by a genetic markers, % ^ = (x[ \ ..., x|/) and each marker Z¡, with 

/ = 1 n, contains information for two alleles xj- ̂  = {x¿ \ xj- ̂' *}. Capital letters, Z¡, represent a 

marker locus and small letters, x¡, denote a specific allele value for the marker locus. 

The model underlying the population structure is assumed to be a naive Bayes. However, the learning 

process performed by the multi-start E M A includes a kind of implicit selection of relevant marker loci 

in the model. W e say that it is an implicit selection because all the markers are included in the naive 

Bayes model learned by the multi-start E M A , but the learning process gives rise to the fact that not all the 

markers have the same significance when obtaining the population structure. 

2 J. E M A afgonfAm 

The aim of the algorithm is to obtain a clustering model that provides a posterior distribution over the 

dataset and thus, allows to infer the population structure of the individuals under study. For this purpose, 

w e adapt the E M A algorithm originally proposed in Santafé et al. (2006) to deal with polyploid* and 

missing data. Thus, w e provide a useful and realistic tool for the inference of population structure. 

The E M A is a greedy iterative algorithm that learns a naive Bayes model as a result of a Bayesian model 

averaging over all the possible selective naive Bayes models (see Figure 1 below for a graphical description 

of selective naive Bayes models). The method itself is an adaptation of the well-known E M algorithm 

(Dempster et al., 1977) that allows us to extend efficient model averaging techniques for supervised 

classification (Dash and Cooper, 2004) to clustering problems. Each iteration of the E M A algorithm 

comprises two steps: Expectation (E) and Model Averaging ( M A ) steps. At iteration f, the parameters of 

the model ® ^ = (0.%, 0¿]_,) denote the frequency of every allele t at marker Z¡ in a population y, 0.%, 

and the prior probability of each population y, 0 ¿ \ . In order to calculate these parameters, the algorithm 

takes into account the possibility that any marker Z¡ can be relevant or irrelevant for the inference of the 

population structure. In the calculations, the frequency at marker Z¡ of the allele t in population y when 

marker Z¡ is considered relevant is represented as # # - However, if it is considered irrelevant, w e take into 

consideration the overall frequency of allele t, represented as #_*. The E M A algorithm is based on the 



decomposability of model averaging calculations that can be performed by making two main assumptions. 

O n the one hand, the allele frequencies are assumed to follow a Dirichlet distribution with parameters (%/* 

if the marker Z¡ is considered relevant for the inference of population structure or (%_* if it is considered 

irrelevant. Similarly, the prior probability over populations also follows a Dirichlet distribution with «c-; 

parameters. O n the other hand, w e assume that # # , for any population y and allele t, is independent of 

¿%'jt with / ̂  f', and similarly for #_* and ¿%f_*. This is known as parameter independence assumption. 

The E M A algorithm successively performs the E and M A steps until the difference between the parameter 

set of the models calculated in two consecutive iterations is less than a given parameter, f. The first 

parameter set, @(°\ is usually taken at random. Eor a better understanding of the E M A algorithm, w e 

describe in more detail the E and M A steps at each iteration f. 

2JJ. E jfgp. This step includes the main modification with respect to the original algorithm. This 

modification allows the use of the E M A algorithm with polyploid and missing data. Intuitively, w e can 

see this step as a probabilistic assignment of each individual to each population on the basis of the 

current model parameters @ ^ . Actually, this step computes, given the current model parameters @ ^ \ 

the expected number of individuals from a population y that present allele t at the ¿th marker when the 

marker is considered relevant for clustering purposes, E ( A ^ | ® ^ ) , or irrelevant E(_#i_*|@^), and the 

expected number of individuals classified into population y, E(#c-y|$$^)-

Z = l 

E(#c-.,|e^) = ̂ ]f(^|%o,eM) (i) 
Z = l 

W e abuse the notation by using c^ and %/ *, with g = 1,2, to denote the fact that the cluster variable 

C takes the y th value and marker Z¡ takes the tin value for the genetic copy A* respectively. Although w e 

avoid the use of superscript Z in order to clarify the notation, the information contained in c^ and %.' ̂  is 

assumed to belong to the Zth individual. Moreover, for a simpler notation, when w e write %, w e assume that 

each marker Z¡ takes its tin allele value. Note that, both copies of the genetic information for each marker, 

x, = {%**, %*"*:}, are taken into account for the calculation of E ( % t | e M ) %%! E ( # _ * | e M ) . ^ ^ 

original E M A algorithm, as missing values were not allowed, the values of E(#¿_*|@^) were constant 

throughout the iterations of the algorithm. However, the current modification proposed in this paper allows 

the presence of missing data and therefore not only the value of E ( A ^ | ® ^ ) and E ( % - ; | ® ^ ) but also 

E(#j_*|@^) may change at each iteration. Prom now on, D ^ denotes the dataset after the E step at the 

fth iteration of the algorithm. 

2J.2. M A afgp. In this step, the E M A algorithm calculates a new set of parameters, ®('+^, for 

the model by averaging over all the selective naive Bayes models. These calculations are given by the 

following equation: 

,(c 

a) 



where S denotes a speciñc selective naive Bayes model that sets which markers are considered relevant 

for clustering purpose and which are not. 

The general idea of an efficient model averaging over selective naive Bayes is that Equation (2) can 

be approximated in terms that only depend on each marker (Z¡) or on each marker and the population 

membership (Z¡ and C ) . 

O n the one hand, part 1 in Equation (2) can be approximated by the mazfmwm a poafgnon (MAP) 

parameter configuration: 

= é»_,n% (3) 
¡ = 1 

where 0 & and 0^_, denote the M A P parameter configuration for a selective naive Bayes structure S. 

Additionally, c% = ^ ¿ ( % # and E ( A ^ | ® ^ ) = ^ E ( A ^ | ® ^ ) , and similarly for values related to C 

where «c = ¿ , «c-;- Note that ^ determines if a marker Z¡ is dependent on or independent of C. 

Therefore, if S determines that Z¡ is independent of C, we should use 0̂ _¿ and E ( ^ _ t | @ ^ ) instead 

of 0 & and E ( % t | e M ) respecüvely in Equation (3), and substitute E ( ^ _ | @ M ) for E % | e M ) with 

O n the other hand, the marginal likelihood (part 2 in Equation (2)) can also be written in terms that 

only depend on Z¡ or on Z¡ and C. This is given by the well-known close formula for ̂ (D|^) (Cooper 

and Herskovits, 1992) adapted to our specific problem. The reader may pay attention to the fact that, 

while j9 (D | S) is resolvable in closed form when there are no missing values and the clustering assignation 

is known (the dataset is complete), in our case, D ^ is not a complete dataset, therefore we are not 

able to calculate the sufficient statistics A^& and A^-; but only approximations given the current model 

® ^ . Hence, the adaptation of Cooper and Herskovits' formula (Cooper and Herskovits, 1992) gives an 

approximation to ^ ( D ^ | ^ ) . 

fin ^ ) p,r(^ + E(^|eM)) 
U Y rw + E(̂ |eM)) Y r w 

where T(-) represents the gamma function. Of course, it is S again which establishes if (%_*, E(#¿_*|@^) 

and E(#j_|@^) should be used instead of the original ones in Equation (4). The approximation given by 

this equation in the model averaging process has been compared to a Monte Carlo approximation, which 

is a more accurate and computationally expensive technique to approximate ^ ( D | ^ ) , obtaining similar 

results (Santafé et al., 2006). 

At this point, as a consequence of parameter independence assumption, we can state that if two different 

selective naive Bayes structures set the same relationship between marker Z¡ and C (in both structures 

Z¡ is relevant or irrelevant for inferring population structure) the calculations related to marker Z¡ in 

Equations (3) and (4) are the same for both structures. This is essential for an efficient model averaging 

calculation since it allows to eliminate the dependence on S in the calculations performed in Equation (2). 

That is, using the approximations given by Equations (3) and (4) in Equation (2), and grouping these 

calculations in terms that depend on each marker Z¡, each one of these groups will contain only two kinds 

of terms: the ones that consider Z¡ relevant for clustering, p^*, and the ones that consider Z¡ irrelevant 

for clustering, /%_*. Therefore, the model averaging calculations from Equation (2) can be approximated 

as follows: 

f (<%,*|DM) py pc-j [](#-* + / W (5) 



where pc-; is the term which groups the calculations related only to the cluster variable. Thus, the resulting 

model of the model averaging process is a naive Bayes and its parameters at f + 1 step are given by: 

See Santafé et al. (2006) for complete details of the M A step. 

2.2. MwZfi-aAzrfEMA 

The E M A is a greedy algorithm that is likely to be trapped in a local optima. The results obtained by 

the algorithm depend on the random initialization of the parameters. Therefore, w e propose the use of 

a multi-start algorithm where m different runs of the algorithm with different random initializations are 

performed. In Santafé et al. (2006), different criteria to obtain the final model from the multi-start process 

are proposed. 

In our case, w e use the best choice multi-start E M A , where the best model, in terms of likelihood, 

among the m models calculated by the multi-start process, is selected to be the final model. 

2.3. Sekc#ngfAgmoaf?eZ^o/if m a r k e r ^ r p o p z d a d ^ 

The model averaging process performed by the E M A algorithm can also be seen as an implicit unsuper­

vised feature selection that is incorporated in the final model. In fact, although the E M A algorithm, and 

consequently the multi-start E M A , obtains a naive Bayes model where all the maker loci are independent 

given population assignment, the parameters of the resultant model are calculated by a model averaging 

over selective naive Bayes. Thus, these parameters should reflect the significance of each marker for the 

inference of population structure. 

In this section w e propose a two-step test that can be used to obtain information about relevant markers 

that is implicitly contained in the final naive Bayes model calculated by the multi-start E M A . This test is 

based on mutual information. It is known (Cover and Thomas, 1991) that the statistic 2A^/(Z¡, C ) , where 

/(Z¡, C ) is the mutual information between Z¡ and C, asymptotically follows a Chi-square probability 

distribution with (r¿ — l)(rc — 1) degrees of freedom. In our case, r¡ is the number of different alleles that 

a marker Z¡ can present and re the number of clusters. 

The mutual information between a marker Z¡ and the cluster variable, or the mutual information between 

two markers Z¡ and Z¡, with f ̂  f' can be calculated using the naive Bayes model obtained by the multi-

start E M A . Thus, a Chi-square test can be performed to decide which marker loci are relevant for the 

clustering process. In the first step, a test threshold ^^/ is set and a Chi-square test is used to niter out 

those markers which are considered not relevant for clustering purposes. This first step selects the relevant 

markers but the set of selected markers may contain redundant information. As a consequence, w e develop 

a second step to niter out redundant information by again using a Chi-square test with a test threshold ^^. 

In this second step the pairwise mutual information of the markers selected in the first step is calculated 

and is used to decide whether or not two markers are redundant. As described below in Figure 2, the 

two-step algorithm is used to obtain the set of markers, %^/, which are relevant to obtain the underlying 

population structure. 

The thresholds ̂ ^; and ^ d can be used to control the number of selected markers. O n the one hand, 

the higher the ̂ ^; value is, the more markers are selected as relevant for clustering. O n the other hand, as 

j?w decreases, the number of markers considered redundant increases and therefore, the final number of 

selected markers is smaller. 

2.4. .A/wm6er of cZwafer? and ggngfic ¿füfoncg 

The multi-start E M A algorithm requires the speciñeaion of the number of clusters underlying the 

population. Since the real number of groups is usually unknown, w e propose to investigate the number 

of subpopulations by evaluating runs of the algorithms with a different number of clusters. The different 

configurations for the number of clusters can be compared by using the genetic distance fgr- This genetic 

distance is a measure of the dissimilarity of genetic material between different species or individuals of 



-Xref = (-%!,---,-Xn) 

- S T E P 1 -

for% = l t o n 

remove %¿ from %ref 
end if 

end for 

- S T E P 2 -

for all X¿, X¿, with X¿, X¿, € A^r«( and * ̂  *' 
i f 2 W 7 ( X „ X * , ) < ^ _ , ) ^ _ , ^ _ ^ 

if7(X*,C)<7(X,,,C) 
remove X, from %re¿ 

else 
remove % f from %re( 

end if 
end if 

end for 

FIG. 2. Pseudo-code for marker selection algorithm. 

the same species (Reynolds et al., 1983; Weir, 1996), and it can be interpreted as the proportion of the 
total genetic variance contained in subpopulations relative to the total genetic variance. 

F&r metric is computed as F&r = - ln(l - y%7¿.J. Note that, y % ¡ ' % , is the estimator for coancestry 

coefficient usually named as 0. However, we decide not to use the classical notation for the coancestry 
coefficient since it is against the definition of the parameters for the model used to infer the population 
structure. The calculations of a, and 6, are taken from Reynolds et al. (1983) and adapted to our specific 
notation. 

a¡ 

2]Ar0c-;E Kt-E%;t -4(rc-l) 

2AT(rc-l) 1 - % ] ^ 

6» 

2E ̂ _; 1-E%Ü) 
2#-rc 

The F&r distance gives some intuition about how far the analyzed subpopulations are. Certainly, the 
quantity can range from 0 to 1 and it increases as the sample allele frequencies of individuals from different 
subpopulations diverges. Since we aim to obtain clusters which represents well differentiated populations, 
the F&r may be a good metric to evaluate the quality of the clustering partition from a biological point of 
view. Therefore, in order to decide the number of clusters, we propose to compare the mean F&r metric 
over a set of ten independent runs among experiments with several numbers of clusters. Additionally, it 
is possible to perform a Mann-Whitney test to decide if the differences in the F&r metric are statistically 
significant. Thus, we may be able to decide the proper number of clusters in the dataset. 



3. DATASET 

Data were taken from the H G D P - C E P H human genome diversity cell line panel. The diversity panel 

is a large and widely used collection of D N A samples from individuals distributed around the world. 

The properties of the sample of individuals were first reported by Cann et al. (2002). However, new 

genotypes have been reported since then. Specifically, w e employ a dataset included in the H G D P -

C E P H which has been used in recent studies of genetic structure of human populations (Rosenberg 

et al., 2005). The dataset contains 993 markers, including 783 microsatellites and 210 insertion/deletion 

polymorphisms corresponding to 1048 individuals from 53 different human population distributed around 

the world. Although the individuals are classified into 53 human populations or ethnic groups, they 

correspondió seven major regions: Africa, Europe, Middle East, Central/South Asia, East Asia, Oceania, 

and America. 

4. RESULTS A N D DISCUSSION 

The aim of the study is to group individuals into genetic clusters in such a way that each individual is 

given an estimated membership coefficient for each cluster. This probability can be seen as an admixture 

coefficient since each individual may have genetic information belonging to different population sources. 

The proposed algorithm is compared with the well-known S T R U C T U R E software (Ealush et al., 2003; 

Pritchard et al., 2000b), version 2.1. Both the multi-start E M A and S T R U C T U R E require a prespeciñed 

number of clusters, therefore, w e run experiments with two, three and four numbers of clusters. Since 

the obtained clustering results depend on the random initialization of the models, w e run ten executions 

of each algorithm with each number of clusters. Eor the multi-start E M A w e use a f = 0.01 and 500 

iterations in the multi-start process, m = 500. Eor S T R U C T U R E , w e use the configuration reported in 

Rosenberg et al. (2005), where an allele frequency correlated model is used. Additionally, the parameters 

are calculated using 1000 iterations after a bum-in period of 5000. 

Figure 3 shows the estimation of population structure obtained by the multi-start E M A with two, three 

and four clusters (re = 2, re = 3, and re = 4). Similarly, Figure 4 shows the results obtained by 

S T R U C T U R E . The plots were generated with D I S T R U C T (Rosenberg, 2004), where each individual is 

represented by a segment partitioned into re colored parts that represents the estimated membership of 

the individual to each one of the re clusters. Eor each number of clusters, only the best run of ten 

on the basis of the fgr measure is shown. In these experiments, the multi-start E M A tends to assign 

each individual to a cluster with a very high probability being the membership probability for the rest 

of the clusters very small. Thus, the admixture proportions detected by multi-start E M A are also very 

small. By contrast, S T R U C T U R E detects a higher level of admixture among populations. The results 

obtained by S T R U C T U R E may be biologically correct since admixture is usual in population genetics. 

However not always detected admixture proportions represents genuine contributions from corresponding 

ancestral sources since the uncertainty about the allele frequencies in two particular source populations 

may cause the overestimation of the admixture proportions (Corander and Marttinen, 2006). Moreover, 

although the admixed ancestry detected by multi-start E M A is very small, the genetic distance given 

by the fgr metric? is much higher (Tables 1 and 2). This suggests that the populations obtained by 

the multi-start E M A are genetically more distant between themselves than the populations obtained by 

S T R U C T U R E . 

O n the other hand, the population structure obtained by the multi-start E M A mainly correspond to 

major geographical regions. Nevertheless, it is surprising that most of the individuals from Uygur and 

Hazara ethnic group are classified in the same cluster as ethnic groups from East Asia even when they are 

located in Central/South Asia. Similarly, a few Mozabite individuals are clustered into a group dominated 

^Since the dataset includes two different types of polymorphisms, fgp genetic distance is calculated taking into 
account only genetic information regarding microsatellite markers and therefore, insertion/deletion polymorphisms are 
ignored. 
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FIG. 3. Inferred population structure using the multi-
start E M A . 

FIG. 4. Inferred population structure using S T R U C ­
TURE. 



TABLE 1. fgf VALUES OBTAINED ON TEN RUNS OF 
THE MULTI-START E M A WITH TWO, THREE, AND FOUR 

CLUSTERS (re = 2, re = 3, AND re = 4) 

Run 1 
Run 2 
Run 3 
Run 4 
Run 5 
Run 6 
Run? 
Ron8 
Run 9 
Run 10 
Mean 
STD 

re = 2 

0.02714400 
0.02714400 
0.02714400 
0.02714400 
0.02715100 
0.02714400 
0.02714400 
0.02714400 
0.02714400 
0.02715200 
0.02714550 
0.00000317 

re = 3 

0.03193830 
0.03193830 
0.03193830 
0.03193830 
0.03156800 
0.03193830 
0.03193830 
0.03541020 
0.03193830 
0.03193830 
0.03224446 
0.00111700 

re = 4 

0.03100300 
0.02937500 
0.03463900 
0.02989200 
0.03100300 
0.03100300 
0.03100300 
0.03100300 
0.03100300 
0.03905100 
0.03189750 
0.00286500 

The mean and standard deviation values over the ten runs are also 
reported. 

by Africans. This situation may be apparently strange. However, these results obtained by the multi-start 

E M A agree with those obtained by S T R U C T U R E , where the membership coefficients of Hazara and Yaruba 

individuals are higher for the cluster dominated by East Asia individuals than for the cluster dominated by 

Central/South Asia individuals. 

4J. # w m 6 e r of cZwafer; in (Ae daAiygf 

As it was stated before, the multi-start E M A and S T R U C T U R E assume that the number of clusters, 

re, is given. However, this is not usually true in real problems. In order to select the best number of 

clusters, we evaluate the results with two, three, and four clusters. W e have also extended the experiments 

to more clusters but the multi-start E M A algorithm, in these experiments, converges to different solutions 

in separate runs when the number of clusters is higher than four. Actually, a few runs with five clusters 

TABLE 2. fgf VALUES OBTAINED ON TEN RUNS OF 
S T R U C T U R E WITH TWO, THREE, AND FOUR CLUSTERS 

(re = 2, re = 3, AND re = 4) 

Run 1 
Run 2 
Run 3 
Run 4 
Run 5 
Run 6 
Run? 
Ron 8 
Run 9 
Run 10 
Mean 
STD 

re = 2 

0.00069648 
0.00069517 
0.00069517 
0.00069517 
0.00069517 
0.00069517 
0.00069517 
0.00067972 
0.00069517 
0.00069517 
0.00069375 
0.00000000 

re = 3 

0.00315150 
0.00315350 
0.00392830 
0.00311270 
0.00315350 
0.00316680 
0.00313840 
0.00315350 
0.00315350 
0.00315350 
0.00322652 
0.00024699 

re = 4 

0.00579690 
0.00579590 
0.00579690 
0.00579690 
0.00579690 
0.00579690 
0.00579690 
0.00579690 
0.00582990 
0.00579690 
0.00580010 
0.00001047 

The mean and standard deviation values over the ten runs are also 
reported. 



yield similar results than with four clusters but a new group is created with individuals of American origin 

(data not shown). These results are also similar to those obtained by Rosenberg et al. (2002, 2005) with 

five clusters. Nevertheless, most of the runs with five and six clusters results in a partition with four clusters 

(similar to the one shown in Figure 1 with re = 4) and one or two empty clusters, respectively. Therefore, 

the multi-start E M A is detecting that there is no more than four clear clusters. 

In order to decide the number of clusters, w e use the fgr distance. Table 1 shows the fgr values 

over ten independent runs of the multi-start E M A for each number of clusters (two, three, and four). 

The best mean fgr value corresponds to the experiments with three clusters. Clustering the data into 

four groups produces, except for run 10, slightly lower fgr values than with three clusters. However, 

the difference of the fgr values with three and four clusters is not statistically very significant (the j;-

value of the Mann-Whitney test is 0.72). By the contrary, the difference between fgr values with two 

and three clusters is statistically significant (p-value = 0.00). Therefore, w e think that according to the 

multi-start E M A and the proposed metric, there are three or four clear clusters underlying the dataset. 

These results are compatible with those presented in Rosenberg et al. (2005), where the quality of the 

clustering partition is given by the clusteredness.^ Although Rosenberg et al. (2005) also consider the 

presence of more than four clusters, and the best partition, on the basis of the clusteredness, is obtained 

with only two clusters, the populations obtained with three and four clusters are considered as good 

partitions too. 

4.2. S e k t ^ n of neZewmf marker? 

The use of the multi-start E M A algorithm allows to select the most relevant markers needed to obtain the 

clustering partition. The number of selected markers is controlled by two parameters, ̂ ^/ and ̂ w , which 

represent the thresholds for the statistical tests, being ^ the threshold to control the selection of relevant 

markers and j;,** the threshold to control the redundancy between the selected markers. S T R U C T U R E 

software is not able to niter out irrelevant or redundant markers and the presence of this irrelevant and/or 

redundant information may damage its ability to obtain the clustering partition. In order to show how 

S T R U C T U R E software behaves in these situations and how the information about irrelevant and redundant 

markers provided by the multi-start E M A helps to obtain a better clustering partition, w e proceed as follows: 

first, w e select, for each number of clusters, the best model on the basis of the fgr metric (these are the 

models used to obtain the population partitions represented in Fig. 3). Then, w e perform a selection of the 

most relevant markers by using the maker selection algorithm where the parameter of the test ̂ ^/ varies 

in {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and f,*, in {0, 0.01, 0.05, 0.1}. Each parameter 

configuration gives rise to a different set of selected markers (Fig. 5). Finally, for each set of selected 

markers w e run ten independent executions of S T R U C T U R E and measure the mean value over the ten 

runs of the fgr metric. 

Figure 6 shows the mean fgr value for each one of the selected marker sets. A clear trend can be 

observed in the plots: marker selection using small values of ̂ ^; and ̂ w improves the fgr values obtained 

by S T R U C T U R E . Additionally, as the value of ^ increases, the number of selected markers also 

increases including more redundant information. Consequently, the mean value of the fgr metric decreases 

approaching the fgr value obtained by S T R U C T U R E with the whole set of markers. It should be noted 

that the sets of selected markers are used only to obtain the clustering partition with S T R U C T U R E , but 

the fgr metric is always calculated taking into account all the microsatellite markers. 

According to the experimental results, w e can say that the information about relevant markers im­

plicitly included in the model calculated by the multi-start E M A helps to obtain the clustering partition. 

S T R U C T U R E , as well as other algorithms for the inference of population structure, does not take into 

account the existence of irrelevant and redundant information in the dataset. Therefore, the presence of 

irrelevant and/or redundant information damages their ability to retrieve the population structure underlying 

the dataset. 

Ĉlustering quality metric that measures the extent to which individuals were estimated to belong to a single cluster 
rather than to a combination of clusters. 
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FIG. 5. Number of selected markers. 

5. CONCLUSIONS 

The inference of population structure is a very important and highly studied problem in population 

genetics. In the current paper w e describe a new approach to learn about population structure and 

assign individuals (probabilistically) to populations. This new approach uses multilocus genotype data 

and a Bayesian model averaging technique to obtain the population (probabilistic) partition and the allele 

frequencies. The method, named multi-start E M A , was originally proposed in Santafé et al. (2006), but 

in this work, it has been tailored in order to work with polyploid and missing data. Thus, w e provide a 

useful and realistic tool for the inference of population structure. 

One of the main drawbacks of the multi-start E M A , as well as other popular algorithms for the inference 

of population structure, is the fact that the number of clusters has to be fixed in advance. However, w e 

provide a method to investigate the number of groups underlying the data and thus overcome this multi-

start E M A restriction. Alternatively, the main advantage of the proposed algorithm is its skill at dealing 

with irrelevant data for clustering purposes. This irrelevant information may damage the ability of other 

methods to obtain the underlying population structure. Moreover, w e propose a marker selection algorithm 

based on mutual information which is able to obtain the most relevant markers needed to retrieve the 

population structure. 

The performance of the multi-start E M A is evaluated in a real problem and compared with S T R U C T U R E , 

which is the most widely used software for the inference of population structure. The results from the 

experiments show that the populations obtained by the multi-start E M A have higher values for the fgr 

metric than populations obtained by S T R U C T U R E . This suggests that populations obtained by the multi-

start E M A are genetically more distant than populations obtained by S T R U C T U R E . By contrast, in the 

experiments, the multi-start E M A is not able to obtain population partitions with more than four clusters. 

It may suggest that the multi-start E M A does not perform as well as S T R U C T U R E when subpopulations 

of individuals in the dataset are genetically very close. 
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FIG. 6. Evolution of fgr metric in the marker selection process. 
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