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Abstract

Interaction networks, consisting of agents linked by theirinteractions, are ubiquitous accross many disciplines
of modern science. Many methods of analysis of interaction networks have been proposed, mainly concentrating on
node degree distribution or aiming to discover clusters of agents that are very strongly connected between themselves.
These methods are principally based on graph-theory or machine learning.

We present a mathematically simple formalism for modellingcontext-specific information propagation in interac-
tion networks based on random walks. The context is providedby selection of sources and destinations of information
and by use of potential functions that direct the flow towardsthe destinations. We also use the concept of dissipation
to model the aging of information as it diffuses from its source.

Using examples from yeast protein-protein interaction networks and some of the histone acetyltransferases in-
volved in control of transcription, we demonstrate the utility of the concepts and the mathematical constructs intro-
duced in this paper.
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1 Introduction

Interaction networks are abundant and have recently gainedsignificant publicity in many diverse modern disciplines
such as electronics (Canchoet al., 2001), sociology (Wasserman and Faust, 1994; Newman, 2004) and epidemiology
(Barthelemyet al., 2005). In its simplest form, an interaction network consists of a collection of entities (or agents),
where two agents are linked if they interact in some way. For example, in an acquaintance network (Amaralet al.,
2000), the agents represent persons and two persons are linked together if they know each other while the Wold-
wide Web network consists of web pages with links between pages (Broderet al., 2000). Mathematically, networks
correspond exactly to graphs (or multigraphs), with agentsas vertices and links as edges, which can be weighted
and/or directed depending on the exact application being modeled. The key to analysis of interaction networks is the
assumption of information transitivity: information can flow through or can be exchanged via paths of interactions.

Biology in post-genomic era also contains numerous examples of molecular networks (Galitski, 2004). Metabolic
networks have been modeled by representing metabolites as nodes and chemical reactions as links: two metabo-
lites are linked if they participate in the same reaction (Maand Zeng, 2003). Genetic networks have genes as nodes
with two genes being linked if they interact through directed transcriptional regulation (Guelzimet al., 2002). Protein-
protein interaction networks have proteins as nodes, with the links representing physical interactions (binding) between
proteins (Pellegriniet al., 2004). Large scale high-throughput studies in model organisms such asSaccharomyces
cerevisiae(baker’s yeast) (Itoet al., 2001; Uetzet al., 2000),Drosophilla melanogaster(fruit-fly) (Giot et al., 2003),
Caenorhabditis elegans(roundworm) (Liet al., 2004) and humans (Stelzlet al., 2005; Rualet al., 2005), provided
extensive datasets of protein-protein interactions, stored in publicly-available databases such as the Database of Inter-
acting Proteins (DIP) (Xenarioset al., 2002; Salwinskiet al., 2004). Unfortunately, there is very little consistency be-
tween the protein-protein interaction data coming from different high-throughput experiments (Sprinzaket al., 2003)
and significant effort has been expended in devising ways to discover false positives and false negatives (Suthramet al.,
2006). This problem is not restricted to protein-protein interactions: microarray data also contains non-negligiblein-
consistencies (Miklos and Maleszka, 2004) .

Numerous approaches have been proposed for analysis of biological and, in particular, protein-protein interac-
tion networks (Aittokallio and Schwikowski, 2006). However, due to space restrictions, we will refer to just a few.
Most algorithms aim to discover ‘functional modules’ (Hartwell et al., 1999), representing well connected clusters
of nodes with the same or similar function, by using clustering techniques from graph theory and/or machine learn-
ing (Steffenet al., 2002; Spirin and Mirny, 2003; Rives and Galitski, 2003; Pereira-Lealet al., 2004; Nabievaet al.,
2005; Xionget al., 2005; Chuaet al., 2006; Chen and Yuan, 2006; Hwanget al., 2006). Very frequently, these tech-
niques make use of additional experimental data which is notpresent in the network structure itself. For example,
methods for discovery of complexes from protein-protein interaction networks often refer to the data from dataset
from different species (Kelleyet al., 2003; Sharanet al., 2005a,b), microarray expression studies (Steffenet al., 2002;
Chen and Yuan, 2006), or human-curated functional classifications (Nabievaet al., 2005; Chuaet al., 2006).

Our approach to analyzing interaction networks is very different, relying solely on the network structure. We model
diffusion of information through the network by discrete-time random walks moving from the nodes representing the
sources of information to their destinations. The choice ofsources and destinations provides thecontext of analysis
with the nodes most affected by information flow being calledInformation Transduction Modules. We use two modes
of diffusion, dual to each other, which we call absorbing andemitting, with our absorbing mode directly corresponding
to deeply investigated absorbing Markov chains (Kemeny andSnell, 1976). Random walks and corresponding Markov
chains are one of the subjects of spectral graph theory (Chung, 1997) but we do not use eigenspace decomposition in
our work, instead relying on a basic matrix algebra approachsimilar to that of Kemeny and Snell (1976).

The algorithmFunctional Flowby Nabievaet al. (2005), also modeling diffusion of information from sources, is
closest to our emitting model. However, to delineate a certain biological context, we additionally direct the flow from
sources to selected destinations using potential functions and allow the information content to dissipate (evaporate)
from the network at each time step, thus modeling natural ‘aging’ of information.

Our models allow investigation of several types of biological questions from protein-protein interaction networks.
Many proteins perform their function in cooperation with other proteins through, often large, protein complexes. Thus,
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to elucidate the function of a given protein, it is useful to know the most likely members of complexes it may belong to
and their relations to each other. Additionally, if two proteins are known to have similar function, what, if any, are the
proteins they share in their respective complexes? To help answer such questions, we employ our absorbing diffusion
mode.

The answers to the above questions can provide the general interaction environment of one or more proteins. It is
also very instructive to identify specific modules mediating interactions between distant (in network terms) proteins.
Our emitting diffusion mode can be used to find possible candidates for members of such modules. Furthermore,
analysis of interaction modules obtained from consideringdifferent proteins in the same biological context may lead
to discovery of fundamental units of information transduction. To achieve this we developed the concept of information
interference. More concrete definitions will be presented in the body of the text.

This paper is organized as follows. Section 2 outlines the theory behind our models of information diffusion in
networks. For better readability, all the theorems and proofs, using mainly the basic concepts and results from the
matrix algebra are given in Appendix (the reader may wish to consult the standard linear algebra textbooks such as
(Hoffman and Kunze, 1971) or (Bapat and Raghavan, 1997) for background). Section 3 introduces the methods of
analysis of results obtained using the concepts of Section 2, while Section 4 presents concrete examples centered
around yeast histone acetyltransferases. We finish with discussion and conclusion in Section 5.

2 Theory

2.1 Preliminaries

We represent an interaction network as a weighted directed graphΓ = (V,E,w) whereV is a finite set of vertices of
sizen, E ⊆ V × V is a set of edges andw is a non-negative real-valued function onV × V that is positive onE,
giving the weight of each edge (the weight of non-existing edge is defined to be0). Assuming an ordering of vertices
in V , we represent a real-valued function onV as a state (column) vectorϕ ∈ R

n and the connectivity ofΓ by the
weightmatrixW whereWij = w(i, j) (the weight of an edge fromi to j). If Γ is an unweighted undirected graph,
W is the adjacency matrix ofΓ where

Wij =











2 if i = j and(i, i) ∈ E,

1 if i 6= j and(i, j) ∈ E,

0 if (i, j) 6∈ E.

(1)

Throughout this paper, we will not make distinction betweena vertexv ∈ V and its corresponding state given by a
particular ordering of vertices.

LetP denote then× n transitionmatrix ofΓ where

Pij =
Wij

∑

kWik
, (2)

that is,P is the weight matrix ofΓ normalized by row. The matrixP can be used to model random walks onΓ: for
any pair of verticesi andj, Pij gives the probability of the random walk moving from vertexi to vertexj in one time
step, which is proportional to the weightWij . Since the matrixP is stochastic (all rows sum to unity), it can also be
interpreted as the transition matrix for Markov chain on thesetV . In the following sections we will model information
diffusion as a random walk onΓ with particular starting and terminating points.

2.2 Constrained diffusion

In this section we select certain vertices as sources or sinks of information and solve for the number of times a vertex
is visited. LetS denote the set of selected vertices, letT = V \ S and letm = |T |. Assuming that the firstn −m
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states correspond to vertices inS, we write the matrixP in the canonical form:

P =

[

PSS PST

PTS PTT

]

. (3)

HerePAB denotes a matrix giving probabilities of moving fromA toB whereA,B stand for eitherS orT . The states
(vertices) belonging to the setT are calledtransient.

2.2.1 Absorption in sinks

Suppose now that the setS represents the set ofsinksof information: any information reaching a sink vertex is
absorbed and cannot not leave it. LetF(t) denote anm × (n −m) matrix such thatFij(t) is the probability that the
information originating ati ∈ T is absorbed atj ∈ S in t or fewer steps. Since information can only be absorbed once
in any states ∈ S, it follows that the information reachingj avoided all other sinks. For the same reason,Fij(t) can
be interpreted as the expected number of visits to the statej of a random walk starting ati for all times up tot.

Absorption atj after not more thant steps can be achieved in two ways: either the content reachedvertexj in the
first step, with probabilityPij or it moved to some transient vertexk in the first step and was absorbed byj from there
in at mostt− 1 steps, with probabilityPikFkj(t− 1). Therefore, we have for allt = 1, 2, . . .,

Fij(t+ 1) = Pij +
∑

k∈T

PikFkj(t), (4)

or in the matrix form
F(t+ 1) = PTS +PTTF(t). (5)

We solve for the long-term or equilibrium state, whereF(t+ 1) = F(t) = F. In this case, Equation (5) becomes

F = PTS +PTTF, (6)

or
(I−PTT )F = PTS , (7)

whereI denotes the identity matrix. IfI − PTT is invertible, letG = (I − PTT )
−1. Equation (7) then has a unique

solution
F = GPTS . (8)

2.2.2 Diffusion from sources

Now consider the dual problem whereS is a set of sources of information. Each source emits a unit ofinformation at
each time step and no information can enter any source: we assume any information entering a source vanishes. Let
H(t) denote an(n −m) ×m matrix such thatHij(t) is the total expected number of times the transient vertexj is
visited by a random walk emitted from sourcei for the time up tot.

The information emitted fromi can arrive atj at timet in two different ways: either the content was emitted from
i at timet and reachedj directly, or it was emitted at an earlier time step, was located at some transient vertex at time
t−1 and moved from there toj at timet. The former option contributesPij while the latter contributesHik(t−1)Pkj

for all k ∈ T towardsHij . Therefore, we have for allt = 1, 2, . . .,

Hij(t+ 1) = Pij +
∑

k∈T

Hik(t)Pkj , (9)

or in the matrix form
H(t+ 1) = PST +H(t)PTT . (10)
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Similarly to the previous case, we are interested in the steady state, representing the total expected number of visits,
whereH(t+ 1) = H(t) = H. In this case, Equation (10) becomes

H = PST +HPTT , (11)

or
H(I−PTT ) = PST . (12)

If I−PTT is invertible, Equation (12) has a unique solution

H = PSTG. (13)

2.2.3 Existence and interpretation of solutions

It can immediately be observed that existence of solutions to Equation (12) and Equation (7) are equivalent: they both
depend on the existence of the inverse ofI−PTT . Specifically, they are special cases of the discrete Laplace equation
onT with the Dirichlet boundary condition onS (Chung, 1997; Chung and Yau, 2000).

Given a square matrixM, the matrixI−M is often called thediscrete Laplace operatorof M. Let∆ = I−PTT

(∆ is the discrete Laplace operator ofP restricted toT ). Equation (7) can then be written as

∆F = PTS . (14)

Denote byek thek-th standard basis (column) vector of lengthn−m where(ek)j = δkj (δ here is the Kronecker’s
delta). Letfk = Fek denote thek-th column ofF and letpk = PTSek. Then, solving Equation (14) is equivalent to
solving the discrete Laplace equation

∆fk = pk (15)

for all k ∈ S. The standard basis vectorsek provide exactly theDirichlet boundary conditionson the setS (the setS
can be assumed to be a boundary ofT ).

It is also easy to see that Equation (12) can be written as

H∆ = PST . (16)

Hence, the solution to (16) is obtained by solving the discrete Laplace equation in terms of the discrete Laplace
operator of the transpose ofP.

The Green’s functionis defined to be the inverse of the Laplacian. In our case the inverse of∆ is exactly the
matrixG = (I − PTT )

−1 and hence the existence of solutions to Equations (12) and (7) is equivalent to existence
of the Green’s functions to the corresponding Laplacian. Inthe absorbing Markov chain theory (Kemeny and Snell,
1976), the matrixG is known as theFundamental matrixof the corresponding absorbing Markov chain. The entry
Gij represents the mean number of times the random walk reaches vertexj ∈ T having started in statei ∈ T .

We now present some elementary sufficient conditions for existence of the Green’s functions of the discrete Lapla-
cians of the graphs. The full proofs are given in Appendix A. For the development of the discrete Green’s functions
(for undirected graphs) in terms of the eigenvalues and eigenfunctions of the Laplacian, we refer the reader to the
paper by Chung and Yau (2000).

Proposition 2.1. Suppose thatΓ is a weighted directed graph such that for everyp ∈ T there existss ∈ S such that
there exists a directed path fromp to s. Then, the matrixI−PTT is invertible and

(I−PTT )
−1 =

∞
∑

k=0

(PTT )
k. (17)
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Proposition 2.1 thus guarantees existence of the Green’s functions if every transient vertex can be connected to a
source or sink via a directed path. If the underlying graph isundirected, this condition can be rephrased as follows:
every connected component ofV contains at least one vertex fromS.

In the context of information diffusion, the connectivity condition implies that all information entering the transient
set at any specific time must eventually leave it, either by absorption intoS whenS is a set sinks, or by dissipation
whenS represents the set of sources. We will further discuss the concept of dissipation in 2.3.

Assuming the Green’s function exists, the entries of the matricesF andH can be interpreted in several different
ways. Fundamentally, bothFij andHij represent the total expected number of times the vertexj is visited by the
information originating at the vertexi while avoiding all members of the boundary setS (the proofs are given in Ap-
pendix B.1). It is also clear, by Equation (17), thatF andH are both non-negative matrices and thatF = limt→∞ F(t)
andH = limt→∞ H(t). In addition, the rows ofF all sum to1 (Lemma B.3 in Appendix B.2) and thusFij is the
overall probability an information originating from transient vertexi is absorbed at the sinkj while avoiding all other
sinks.

If we assume that a random walk deposits a fixed amount of information content each time it visits a node, we
can interpretHij is the overall amount of information content originating from the sourcei deposited at the transient
vertexj. If Γ is an undirected graph with symmetric weight matrixW andS contains a single source, the value
of Hij is directly proportional to the degree of the transient vertex j (Appendix B.2). Hence, in this case, the total
average number of times of visits for each transient node is proportional to its degree. This is no longer true ifW is
not symmetric.

Furthermore, we can interpretFij as the sum of probabilities of paths originating at the vertex i ∈ T and terminat-
ing at the vertexj ∈ S that avoid all other nodes in the setS, andHij as the sum of probabilities of paths originating
at the vertexi ∈ S and terminating at the vertexj ∈ T , also avoiding all other nodes in the setS. Each such path
has a finite but unbounded length. However, unlikeFij ,Hij does not represent a probability because the events of the
information being located atj at the timest andt′ are not mutually exclusive (a random walk can be atj at timet and
revisit it at timet′). ForFij , the absorbing events at different times are mutually exclusive.

2.3 Information dissipation

It was mentioned previously that the requirement that everytransient node is connected to a node in the setS is
effectively equivalent to the property that all information content entering the transient set leaves it at the nodes inS.
In the present section we extend our model to allow the information to dissipate not only at those nodes but also at the
transient nodes.

Letα andβ be vectors of lengthn such that for alli ∈ V , αi > 0 andβi > 0. We form the matrix̃P with entries

P̃ij = αiβjPij , (18)

and use the new matrix to compute the matricesF̃ andH̃ by replacing the matrixP in the previous section with̃P so
that.

F̃ = G̃P̃TS . (19)

and
H̃ = P̃ST G̃. (20)

whereG̃ = (I− P̃TT )
−1, providedI− P̃TT is invertible.

The entryαi gives the proportion of the signal leaving the vertexi that is retained (we call the value of1 − αi

the outgoing dissipation coefficientof the nodei) while the entryβj gives the proportion of the signal entering the
vertexj that is retained (the value1− βj is called theincoming dissipation coefficientof the nodej). The case where
αi = βi = 1 for all i ∈ V gives back the original matrixP. Note that our definition allows entries ofα andβ that are
greater than1, corresponding to negative dissipation coefficients. Suchcoefficients lead to amplification of the signal.
However, in order for the Green’s functioñG to exist, any amplification should be balanced by dissipation.
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We now establish a sufficient condition for existence ofG̃. The proof, as well as a discussion of its generalization,
is given in Appendix A.1.

Proposition 2.2. Letα∗ = max{αi : i ∈ V } andβ∗ = max{βi : i ∈ V } and supposeα∗β∗ < 1. Then, the matrix
I− P̃TT is invertible and

(I− P̃TT )
−1 =

∞
∑

k=0

(P̃TT )
k. (21)

Proposition 2.2 makes no assumptions on the connectivity ofthe graph: the equilibrium solutions exist regardless
of the graph topology. The reason for the removal of the connectivity conditions is that a unit of information originating
anywhere in the network has a nonzero probability of being dissipated at each time step and therefore will disappear
in the long term, with a portion possibly reaching a sink in the absorbing model. The vectors of coefficientsα
andβ provide us with the ability to consider different rates of dissipation at different vertices. We demonstrate the
utility of the extended model in examples involving protein-protein interaction networks (Section 4), where we use
vertex specific dissipation to construct ‘evaporating nodes’ that dissipate most of the information coming in but allow
unrestricted outward flow.

A possible further generalization of this model is for the entries of the vectorsα andβ to be functions of the state
variable of the dynamical system instead of constants. The dynamical system in this case would become non-linear,
allowing us to model amplification or dissipation of the information depending on the time specific state of the system.

2.4 Potentials

Our models so far, including the dissipation modifications described above, model ‘free diffusion’ of information
through the network: the likelihood for the signal to move from vertexi to vertexj is proportional to the relative
weight of the edge(i, j) among all edges emanating fromi (dissipation only affects the total amount transmitted). In
order to direct the flow of information towards or away from selected nodes, we adjust the weights of edges of our
network graphΓ usingpotentials, real-valued monotone functions defined on the nodes that depend on the distances
from selected points.

Let ρ denote the path-metric on the weighted directed connected graphΓ = (V,E,w), where for alli, j ∈ V ,
ρ(i, j) denotes the sum of the reciprocals of the weights of the edgesforming the shortest directed path fromi to j.
SupposeR is a subset ofT such that for eachk ∈ R there exists a monotone potential functionθk : R → R. For each
vertexj ∈ V define thetotal potentialat j, denotedΘ(j) by

Θ(j) =
∑

k∈R

θk(ρ(j, k)). (22)

Let Γ̂ denote the new weighted directed graph(V,E, ŵ) where

Ŵij =Wij exp (−Θ(j)) . (23)

The form of Equation (23) ensures that the signal preferentially diffuses from each vertex towards the vertices adjacent
to it that have lower potential relative to other adjacent vertices.

A vertexi ∈ V is called adestinationif Θ has a minimum ati. There can be multiple destinations in a network.
The natural candidates for destinations are the members of the setS since all information entering them does not leave
them. Some transient states, with the weights of their outgoing edges adjusted to partially accumulate the signal, are
also good candidates for destinations.

LetK be a subset ofT and let0 ≤ γ ≤ 1. From the already modified grapĥΓ, we form the graphΓ′ represented
by the weight matrixW′ where

W ′
ij =











Ŵij if i 6∈ K,

γŴij if i ∈ K andi 6= j,

Ŵij + (1− γ)
∑

k 6=i Ŵik if j ∈ K andi = j.

(24)
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The effect of this modification is to turn each vertexi ∈ K, called apseudosink, into a partial sink: some proportion
of the weights of edges emanating out ofi is transferred to the edge pointing back toi. The parameterγ, representing
the proportion of information allowed to leave each pseudosink while the remainder is accumulated, is called the
pseudosink leakage coefficient. The valueγ = 1 implies no change in edge weights.

The valueγ = 0 is a special case because no directed path exists between pseudosinks and source nodes in the
resulting graphΓ′ and Proposition 2.1 does not apply. In this case, there are two possibilities leading to the existence
of the Green’s function: either set the outgoing dissipation coefficient of the pseudosinks to something less than1, or
treat the pseudosinks as parts of the boundary setS, as a ‘non-emitting source’ defined in 3.2 below.

Note that, while dissipation is applied to the transition matrix P, potentials and pseudosinks are applied to the
weight matrixW prior to normalization. Since applications of potentials and pseudosinks do not commute, potentials
are applied before pseudosinks, although pseudosinks can be potential centers (members of the setR).

3 Theoretical Methods for Analysis

In the previous section we introduced the basic concepts related to our models of diffusion of information through
networks as well as some modifications to the underlying graph and the transition matrix that lead to biologically
realistic models. After all modifications are applied, we obtain the matrices̃F andH̃, the Green’s functions arising
whereS represents sinks and sources, respectively. Here we turn tothe practical interpretation of these results, which
depend on the boundary conditions imposed on the vertices inS.

3.1 Absorbing model

In the case whereS represents sinks of information (theabsorbing model), the entries of the matrix̃F have a clear
probabilistic interpretation:̃Fij is the probability that information starting at transient vertexi reaches the sinkj while
avoiding all other sinks, taking into account the dissipation as well as the new weights induced by the potentials.
Generally, each sinkj exerts a ‘region of influence’, including the transient points with largeF̃ij . Depending on the
distributions of sinks within the network, some transient node may have ãFij small for all j: information emerging
from these points is more likely to dissipate than to reach any of the sinks.

If S′ ⊂ S is a selection of sink nodes, then
∑

j∈S′ Fij gives the total probability of information reaching the set
S′ from the vertexi, avoiding all other nodes inS. In this context, we call the nodes inS′ explicit sinks(since we
investigate the probabilities of reaching them) and the remaining nodes inS implicit sinks, the points that serve as
sinks of information but are not considered. Furthermore, if the sinks are treated as general boundary points, with
boundary values not restricted to0 and1, the entries of̃F can be interpreted as temperatures (Zhanget al., 2007).

3.2 Emitting model

WhereS represents sources (theemitting model), the entries of̃H can be interpreted as visiting times or as information
contents:H̃ij is the total information content emitted from the sourcei deposited at the transient vertexj. Information
is dissipated at all sources and the value ofH̃ij is dependent on transient dissipation coefficientsα andβ and the
potentials. For biological applications, we will considerthe case where at least one pseudosink is present in addition
to one or several sources, with the potential directing the flow towards the pseudosinks. The distribution of entries of
the i-th row of H̃ will then describe theinformation transduction module(ITM) involved in transfer of information
from i to the pseudosinks, with the nodes with largest entries being most significant.

Let ξ denote the vector of length|S| such that for alli ∈ S, ξi ≥ 0. We callξi thesource strengthof the source
i, representing the amount of information emitted fromi at each time step. In this context, we calli ∈ S anemitting
sourceif ξi > 0 and anon-emitting sourceif ξi = 0. Non-emitting sources are essentially information ‘blackholes’,
dissipating any information coming in and not emitting any.
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3.2.1 Total content

For anyi ∈ S, let ǫi denote the standardi-th row basis vector of lengthn −m, where(ǫi)j = δij . Forx > 0 define
the vectorφi by

φi = ξiǫH̃, (25)

that is,φi denotes thei-th row of H̃ multiplied byξi. Its entries give the amount of information content originating
from the sourcei of strengthξi deposited at transient vertices. The value of‖φi‖1 is then the total amount of content
originating at sourcei deposited at the transient states. In our examples in the following sections we choose the source
strengthsξ so that‖φi‖1 is the same for alli ∈ S (we call the resulting vectorsφi normalized content vectors). The
joint information contentvector, denotedτ , is defined by

τ =
∑

i∈S

φi. (26)

The vectorτ implicitly depends on the matrix̃H and the source strength vectorξ: we haveτ = ξH̃.

3.2.2 Participation ratio

Let x ∈ R
n be any vector and recall that for any0 ≤ p < ∞, theℓp-norm ofx, denoted‖x‖p, is given by‖x‖p =

(
∑

k |xk|
p
)
1/p

. Define theparticipation ratioof x, denotedπ(x) by

π(x) =
‖x‖

2
1

‖x‖
2
2

=
(
∑

k |xk|)
2

∑

k x
2
k

. (27)

Participation ratio is well known under a slightly different definition in the physics literature (Thouless, 1974). It gives
the number of components ofx whose magnitude is ‘significant’. Clearly,π is independent of the scale ofx: we have
for anyλ > 0, π(λx) = π(x). We illustrate the usage by examples.

Example 3.1. Let x = [1, 1, 1, 1, 1]. Then,π(x) = 52

5 = 5. All components are equally significant and this is
reflected in the participation ratio.

Example 3.2. Now considerx = [1, 1, 0, 0, 0]. We have,π(x) = 22

2 = 2. Only the first two components are non-zero
and are of equal magnitude.

Example 3.3. Finally, letx =
[

1, 12 ,
1
4 ,

1
8 ,

1
16

]

. We obtainπ(x) ≈ 2.8181. Here all five components are non-zero but
their magnitudes differ significantly. The participation ratio here implies that the first two components and to a large
extent the third are significant while the remaining two are much smaller.

In our biological examples, we useπ(τ ) to choose the number of the transient vertices with largest total mass to
display as a ‘significant’ subgraph, together with all sources and pseudosinks.

3.2.3 Interference

Given the vector of source strengthsξ, the entry ofτj can be interpreted as providing the total amount of information
deposited at the vertexj. It is also possible to investigate the interaction of the signals from different sources using the
concept of destructive interference.

For any vectorx ∈ R
n, let µ denote aninterference functionsuch that0 ≤ µ(x) ≤ ‖x‖1. When applied to a

vector containing information content from different sources, interference function is interpreted as removing someof
the information present due to the interaction of the various information types and returning the remaining information
content. Interference functions can take various forms depending on the nature of the types of information in each
application.
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Example 3.4. Supposex consists of two components representing information typesthat are assumed to completely
cancel out each other. In this case, the interference function takes the formµ(x) = |x1 − x2|.

Example 3.5. Whenx has more than two components, there are may possible ways to generalize the above example.
We distinguish two general modes of interference: exclusive and partial. Exclusive interference mode represents the
case where simultaneous presence of all types of information is necessary for destructive interference. For example, if
each information type carries the same weight, the interference function is:

µ(x) =
∑

k

(xk − ν) , (28)

whereν = min
k
xk.

Example 3.6. We call the partial interference the case where presence of all types of information is not necessary. It
can be modeled in many ways depending on the desired interpretation. For example, if there are three sources, we can
use complex numbers to setµ so that

µ(x) =

∣

∣

∣

∣

∣

3
∑

k=1

xk exp

(

ιkπ

3

)

∣

∣

∣

∣

∣

, (29)

whereι denotes the imaginary unit. In this case, some content is lost when any two types of signal are present but all
three must be present for complete annihilation.

Given the interference functionµ, define theinterference strength functionψ : Rn → R ∪ {∞} by

ψ(x) =

{

‖x‖1 log
(

‖x‖
1

µ(x)

)

if ‖x‖1 > 0,

0 if ‖x‖1 = 0.
(30)

By the definition ofµ
Since0 ≤ µ(x) ≤ ‖x‖1, it follows thatψ takes non-negative values (including+∞). The value ofψ is infinite

if µ(x) = 0 (perfect interference) and finite otherwise. For anm × n matrixX define the vectorσ(X) of lengthn
having the components

σi(X) = ψ(Xei) (31)

(recall thatei is the standard column basis vector and henceXei represents thei-th column ofX). We will call σ the
interference strength vector.

For our applications, the entries of the matrixX above are interpreted as information contents over some graph:
Xij is the the content of typei at the vertexj. For each nodej, theℓ1-norm in Equation (30) can be interpreted in
this context as the total information content atj and the value ofµ applied to thej-th column ofX as the information
content remaining after interference. Hence, interference strength of each node measures how much information
content was lost by interference, adjusted by the node’s joint information content.

The matrixH̃ is therefore a natural input toψ andσ, however other derived matrices can be used such asH̃

adjusted for source strength by multiplying each row by its corresponding source strengthξi. Furthermore, rows of
X can come from different̃H matrices, using different potentials or dissipation coefficients, as long as the underlying
vertex set is the same. The general purpose of interference strength is to measure the amount of interaction or overlap
between different ITMs.

4 Biological Examples

The theory and methods outlined in previous sections can be applied to any interaction network. This section will
present some examples using biological networks, more specifically, yeast protein-protein interaction networks. Since
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the interaction data obtained using many high-throughput methods is generally inconsistent (Sprinzaket al., 2003), we
use the core yeast dataset from DIP, version ScereCR20060402, consisting of 2554 proteins and 5952 interactions for
all our examples. The core dataset, obtained using the methods of Deaneet al. (2002), contains only the most reliable
interactions from the DIP dataset of all yeast protein-protein interactions.

Our examples are restricted to investigation of information transduction modules related to yeast histone acetyl-
transferases (HATs). Histones are nuclear proteins that are major components of eukaryotic chromatin (Wolffe, 1992):
eukaryotic DNA is organized as a repeating array of nucleosomes consisting of 146 bp of DNA wound around a his-
tone octamer consisting of two of each of histone proteins H2A (Hta1, Hta2 in yeast), H2B (Htb1, Htb2 in yeast), H3
(Hht1, Hht2 in yeast) and H4 (Hhf1, Hhf2 in yeast). It has beenrepeatedly demonstrated that transcription is strongly
influenced by the chromatin structure and DNA-histone interactions in particular. The regions of DNA that interact
with histones are generally unavailable for transcriptionand transcriptional activation and deactivation are connected
with chromatin alterations (Wolffe, 2001).

Histone acetyltransferases are enzymes that acetylate histones, leading to weakening of the nucleosome struc-
ture and making the DNA involved accessible to transcription factors (Struhl, 1998; Workman and Kingston, 1998).
Saccharomyces cerevisiaecontains several HATs from two major classes with a variety of biological functions and
substrate specificities (Sterner and Berger, 2000). The proteins Hat1, Gcn5, Elp3, Spt10 and Hpa2 belong to the GNAT
superfamily (Neuwald and Landsman, 1997), while Esa1, Sas2and Sas3 belong to the MYST family (Borrowet al.,
1996; Smithet al., 1998). The proteins TAF1 (TATA-binding protein associated factor), a subunit of the TFIID com-
plex, and Nut1 (Med5), a subunit of the mediator complex (Biddick and Young, 2005), have also been associated with
histone acetyltransferase activity (Mizzenet al., 1996; Lorchet al., 2000).

Unfortunately, the core dataset does not contain the relevant data for all known HATs. The HATs Hpa2 and Spt10
are not present in the core while HAT1 has interactions only with Hat2 and its substrate Hhf2. We chose to primarily
concentrate on HATs Gcn5, Esa1 and Elp3 because they are wellresearched and the interaction data is abundant. They
are all involved in transcriptional activation, unlike Sas2, which promotes silencing (Osadaet al., 2001).

Gcn5 is the best characterized of all HATs, preferentially acetylating histone H3 (Sternglanz and Schindelin, 1999).
It forms the catalytic subunit of the ADA and SAGA transcriptional activation complexes (Grantet al., 1997). In
addition to Gcn5, the SAGA complex also contains the proteins Tra1, TAF5, TAF6, TAF9, TAF10, TAF12, Hfi1
(Ada1), Ada2, Ngg1 (Ada3), Spt3, Spt7, Spt8 and Spt20 (Ada5)(Timmers and Tora, 2005). The ADA complex
contains a subset of proteins from the SAGA complex, namely Gcn5, Hfi1, Ada2, Ngg1 and Spt20, plus the adaptor
protein Ahc1 (Eberharteret al., 1999). The TAF proteins in SAGA also belong to the TFIID complex, which overall
consists of 15 subunits including a TATA-binding protein and 14 TAFs (Sanders and Weil, 2000).

Esa1 is the catalytic subunit of the NuA4 histone acetyltransferase complex essential for growth in yeast (Smithet al.,
1998; Allardet al., 1999) that catalyses acetlyaltion of the histone H4. It hasbeen established that the NuA4 complex,
containing, in addition to Esa1, the proteins Tra1, Epl1 Yng2, Eaf1, Eaf2, Eaf3, Eaf5, Eaf6, Act1, Arp4 and Yaf9,
is recruited by a variety of transcriptional complexes as a transcriptional coactivator and is involved in DNA repair
(Doyon and Cote, 2004).

Elp3 is a part of the six component elongator complex , which is associated with RNA polymerase II during
transcript elongation (Wittschiebenet al., 1999). The elongator complex also includes the proteins Iki3 (Elp1), Elp2–
4, Iki1 (Elp5) and Elp6 (Krogan and Greenblatt, 2001).

This section contains four examples of the application of our models, depicted in Figures 1–5. Subsection 4.2 de-
scribes possible complexes associated with the HATs Gcn5, Esa1 and Elp3, taken individually and in competition, that
can be inferred from the protein-protein interaction network using the absorbing model. Subsection 4.3 investigates
possible physical interaction interfaces between the MADSbox protein Mcm1 (Shore and Sharrocks, 1995) and the
HATs Esa1 and Gcn5. In this case, the emitting model is employed to discover the pathways through which Mcm1
can recruit the above HATs and whether they are recruited through the same interface. Before presenting our results
we describe the model parameters and computational techniques used.

10



4.1 Parameters and computation

4.1.1 Dissipation

For all our examples, we setαi = 1 for every nodei in our interaction network so that the outgoing flow from any
node is not dissipated. Modeling the incoming dissipation the coefficientsβi can take two values: one for ‘ordinary’
and one forevaporatingvertices. In our examples that use the absorbing model (4.2), βi is set to0.70 for ordinary
nodes and0.01 for evaporating nodes while the examples using the emittingmodel (4.3) set0.87 for ordinary nodes
and0.01 for evaporating nodes. The evaporating nodes consisted of cytoskeleton proteins Act1, Myo1, Myo2, Myo3,
Myo4, Myo5, Smy1, Smy2, Sla1, Arc40, Arp2, Rvs167, Tpm1, Tpm2, Aip1 and Las17 and histones (Hta1, Hta2,
Htb1, Htb2, Hht1, Hhf2, Htz1, Hho1).

The coefficients for the ordinary nodes were chosen using thefollowing reasoning. For the emitting model we
considered the dissipation rate that would allow the randomwalk emitted from the source to reach an ‘average’ node
along the shortest path to it with the probability slightly less than0.5, say0.49. We found that the average length of
the shortest path between two points in the yeast core dataset is 5.23 and hence our coefficient is0.49(1/5.23) = 0.872,
which is rounded to0.87. A different coefficient was needed for the absorbing examples because we were interested
in only the immediate complexes containing our selected HATs: the coefficientβi = 0.87 would lead to most of
the members of the RNA polymerase II holoenzyme to be retrieved as members of the resulting ITM. We chose to
consider the shortest paths of length2, rather than of the average length5.23. Using the same calculation as above, we
obtain0.49(1/2) = 0.7.

The reason for having evaporating nodes with larger dissipation rate is that both the cytoskeleton proteins and
the histones form extended structures in the cell and the nucleus, respectively. In our physical interaction network,
we assume that information can flow from one protein to another through an intermediate node if all three nodes are
brought close together in space and time. Information is notlikely to flow through proteins that are parts of extended
structures because proteins with completely different biological function may bind them at different locations and
at different times. Therefore, allowing significant information flow through such nodes would yield biologically
implausible results.

However, depending on the exact context of the investigation, such nodes may have an important role to play
and removing them completely from the interaction networksor assigning them to the boundary setS would not be
appropriate. Hence, we set a very high incoming dissipationrate at evaporating nodes while allowing the information
to originate from them. In terms of our models, this approachmeans that the evaporating nodes will have very small
visiting times in the emitting models and hence will not be components of any ITM. On the other hand, depending on
the exact network topology, they may be part of ITMs obtainedby the emitting model. Note that other proteins that
bind their interacting partners in a non space and time specific manner can be chosen as additional evaporating nodes;
we chose histones and cytoskeleton proteins due to their direct relevance to our selected examples.

4.1.2 Potentials

All our examples use attracting potentials centered at eachpseudosink or sink. The potential function, heuristic in
nature, is the same in every example has the the form

θk(x) =

{

a1x if 0 < x ≤ b,

a1x+ a2(x− b)2 if x > b,
(32)

wherea1 = 0.8181, a2 = 0.05, b = 2 andk is any pseudosink or a sink. The potential function shown above is
long-range, affecting the whole graph, with a linear portion for short ranges0 ≤ x ≤ 2 and quadratic for distances
larger than2. We do not expect to see qualitative changes in the results ifthe form of the potential function is modified
as long as it has the effect of attracting information towards the destination.

The sources (in the case of emitting models) and evaporatingpoints were excluded from the graph prior to calcu-
lating distances (their distances from the centers were setto an arbitrary large number) in order to exclude the paths
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passing through them from consideration. The reason for excluding the paths passing through sources was that, by
construction, the information never enters a source from a transient vertex, while the evaporating points were excluded
because most of the signal entering them is dissipated.

4.1.3 Numerical implementation

The code for computation of the results was implemented in the Python programming language, using the NumPy
and SciPy packages (Joneset al., 2001–). In particular, the computation of the matricesF̃ andG̃ (Equations (19–
20)) was performed by the embedded FORTRAN code from the UMFPACK (Davis, 2004) solver of sparse systems
of linear equations, using the Automatically Tuned Linear Algebra Software (ATLAS) (Whaley and Petitet, 2005)
implementation of Basic Linear Algebra Subprograms (BLAS). The graphical representations of the subgraphs of
interest were produced by theneatoprogram from the Graphviz graph visualization suite (Gansner and North, 2000).

4.2 HAT complexes: absorbing examples

Figure 1 shows the three subgraphs of the yeast core interaction graph consisting of the top scoring nodes according to
the absorbing model with Esa1, Gcn5 and Elp3 as single sinks,respectively. The information orginating at the proteins
shown has more than0.07 probability of being absorbed by the sink (under the influence of the potential centered at
the sink) as opposed to being dissipated. Hence, the subgraphs show the proteins that are likely to be in the same
complex with the HATs chosen as sinks.

Figure 1(a), with Esa1 as the sink, shows all the proteins from the NuA4 complex that are available in the core
dataset as highly significant. Some of the proteins from ADA and SAGA complexes can also be seen because Tra1
belongs to these complexes as well as to NuA4. The four types of histones forming the histone octamer can also be
seen interacting with Arp4. The proteins Vps51–54 on the right of Figure 1(a) belong to the Vps Fifty-three thethering
(VFT) complex, involved in vesicle assembly (Reggioriet al., 2003). The proteins Tlg1 and Ypt6 are interacting
partners of the VFT complex (Reggioriet al., 2003). The relation between VFT and NuA4 is not establishedas
these two complexes are localized in different cellular compartments: NuA4 in the nucleus and VFT in golgi-vacuole
transport vesicles. The relationship observed in Figure 1(a) results exclusively from the Yng2–Vps51 interaction,
which was orginally observed in a yeast-two-hybrid screen by Ito et al.(2000, 2001). Based on the above information,
it appears that VFT and NuA4 complexes do not interactin vivo. Note that the histones as well as actin, although
selected as evaporating points, can be seen in the figure because the outgoing flow from evaporating nodes is allowed.

In a similar fashion, Figure 1(b), with Gcn5 as the sink, shows the members of SAGA, ADA and TFIID transcrip-
tional activator complexes as well as many other transcription factors, mostly members of subcomplexes of the RNA
polymerase II holoenzyme. Also worth mentioning is Cti6, which bridges the Cyc8-Tup1 corepressor and the SAGA
coactivator to overcome repression of the GAL1 gene (Papamichos-Chronakiset al., 2002). The Cyc8 protein is also
shown while Tup1 is not, most likely because it is involved inmany other interactions away from Gcn5, bringing down
its relative significance. Figure 1(c), with Elp3 as the sink, clearly outlines the elongator complex, as well as some
members of the core RNA polymerase II complex (Rbp2–5, Rbp7,Rpc10, Rpo26) (Myer and Young, 1998).

Figure 2 shows the top scoring nodes according to the absorbing model with Esa1, Gcn5 and Elp3 as simultaneous
sinks with attracting potentials. In this case, the information originating at the depicted nodes has more than0.05 total
probability of being absorbed by any of the sinks as opposed to being dissipated.

Fewer nodes can be seen in this figure as compared to Figure 1 because the three attracting potentials are now
involved that may cancel each other out. It can be seen that the elongator complex centered around Elp3 is not
connected to the subgraph around Esa1 and Gcn5. Although allof the NuA4, SAGA, ADA and elongator complexes
belong to the RNA polymerase II holoenzyme, they do so at different times. The NuA4, ADA and SAGA complexes
have a role in initiation of transcription while the elongator complex is involved in transcript elongation (Martinez,
2002). The green (mixture of cyan and yellow) color of Tra1 isindicative of the fact that it is a subunit of both
Esa1-containing NuA4 complex and the Gcn5-containing SAGAcomplex.
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Figure 1: ITMs obtained by running the absorbing model with Esa1(a), Gcn5(b) and Elp3(c) as a sink. The shades of
grey at the nodes represent the probability of the information originating at the corresponding protein being absorbed
at the sink, the darker nodes indicating higher probability.
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Figure 2: ITM obtained by running the absorbing model with Esa1, Gcn5 and Elp3 as simultaneous sinks. The
strength of each of cyan, yellow and magenta color componentof the node shows the square root of the probability of
absorption at Esa1, Gcn5 and Elp3, respectively.

4.3 Transcription factor interaction interfaces; emitting examples

Mcm1 is a yeast transcription factor essential for cell viability. It controls many cellular functions including cell
cycle transition (Althoeferet al., 1995), mating (Meadet al., 2002) and arginine metabolism (Messenguy and Dubois,
1993), through interactions with different cofactors. It has been determined that Mcm1 acts both as an activator and a
repressor of transcription (Bruhnet al., 1992; Messenguy and Dubois, 1993) and here we explore the possible ways it
can interact with the NuA4 and SAGA HAT complexes.

Figure 3(a) shows the subgraph consisting of the22 proteins with the largest deposited information content ob-
tained by running our emitting model with Mcm1 as a source andEsa1 as a pseudosink. The number of proteins to
display (20 plus the source and the pseudosink) was chosen because the participation ratio for the information content
vector (excluding the source and the pseudosink) was20.33.

The ITM shown in Figure 3(a) gives the likely pathways of physical interaction from Mcm1 to Esa1, accord-
ing to the yeast core interaction dataset. It can be immediately observed that Esa1 is reached solely through Tra1,
which is known to be the general interaction domain of both NuA4 and SAGA HAT complexes (Allardet al., 1999;
Grantet al., 1998). Directly associated with Mcm1 are the proteins Arg80–Arg82, belonging to the ArgR complex
involved in regulation of arginine metabolism (Dubois and Messenguy, 1991). The majority of the ITM is domi-
nated by the members of the SRB mediator subcomplex of the RNApolymerase II holoenzyme (Srb2, Srb4, Srb7)
(Biddick and Young, 2005) and the TFIID, SAGA and ADA complexes. Also prominent are transcriptional activators
Gal4 and Gcn4 (Hinnebusch, 2005; Travenet al., 2006).

The subgraph image suggests two possible interaction pathways: the main (based on the intensities of deposited
information) through Srb4 and members of SAGA/ADA complex and the alternative through Ume6–TAF10–Spt7.
Ume6 is a DNA binding protein that acts as a transcriptional repressor by recruiting histone deacetylases, which
have the catalytic activity opposite to the HATs (Kassiret al., 2003). While simultaneous existence of activating and
repressing pathways is biologically plausible, we do not anticipate both pathways to be in action at the same time. On
the other hand, interaction of Mcm1 with the NuA4 through anyof the above pathwaysin vivo is doubtful because
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Figure 3: ITMs resulting from the emitting model with Mcm1 asa source and Esa1 as a pseudosink using the original
yeast core dataset (a) and the modified dataset additionallyincluding the edges Tra1–Gal4 and Tra1–Gcn4 (b). The
proteins containing the largest amounts of deposited information are shown, with the information content indicated by
shading (darkest nodes contain the most information).

both pathways lead through the interacting partners of Tra1in the SAGA complex that are not associated with it in
the NuA4 complex (Doyon and Cote, 2004; Timmers and Tora, 2005). Note that the direct physical interaction of the
ArgR/Mcm1 complex and the SAGA complex was hypothesized by Ricci et al. (2002) in relation to regulation of
arginine metabolism.

Nevertheless, it is likely that the yeast core dataset does not contain all the interactions of Tra1 and that the
interactions not in the dataset may provide us with the plausible explanation. Brownet al. (2001) have indicated that
HAT complexes are recruited through Tra1 by Gal4 and Gcn4 transcriptional activators. To investigate if adding the
implied edges would significantly change the resulting ITM we added the Gcn4–Tra1 and Gal4–Tra1 links to the core
dataset and rerun the emitting model with all other parameters unchanged. The resulting ITM, with participation ratio
of 21.66, is shown in Figure 3(b). We observe few changes: the proteins Ssn3, Srb5, Srb6 and Gal11, belonging to the
mediator complex, replaced Cti6 and Srb7, thus placing moreemphasis to the mediator complex.

In this example, our emitting model appears to be quite robust to changes in the pseudosink leakage parameterγ.
Using the original core dataset, in addition to the originalrun withγ = 0.3, we ran our model withγ = 0, γ = 0.5 and
γ = 1, obtaining participation ratios of19.43, 20.34 and20.75 and very little change in constitution of the ITMs. For
example, whenγ = 1, the new ITM contains the NuA4 proteins Arp4 and Yng2 in the place of Cti6 and Srb7. Hence,
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Figure 4: ITM resulting from the emitting model with Esa1 andGcn5 as sources and Mcm1 as a pseudosink: (a)
information content, (b) interference strength.

larger pseudosink leakage coefficient allows exploration of the nodes surrounding the pseudosinks without affecting
the remainder of the ITM in a major way. Such exploration is very desirable for protein-protein interaction networks
because it reveals more of the complexes around pseudosinks, thus giving some of the characteristics of the absorbing
model to the emitting model. Note that many of the interacting partners of the sources are found in the ITM solely due
to proximity of the source.

To explore the extend the HATs Esa1 and Gcn5 share their interaction interface with Mcm1 we set Esa1 and
Gcn5 as sources and Mcm1 as a pseudosink destination. Figure4 shows the ITM based on the total information
content (participation ratio24.62, 28 nodes shown), with the nodes shaded according to total content and interference
strength. The proteins shown as nodes in Figure 4 have appeared in one of the previous figures, mostly forming parts
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of NuA4, SAGA/ADA, TFIID and mediator complexes. The nodes with the largest total content are Tra1, Ada2, Ngg1
and Srb4 and the latter three are also the nodes with by far thelargest interference strength. This fact does not surprise
us because although Tra1 is a member of both NuA4 and SAGA complexes, information flowing from Gcn5 to Mcm1
largely avoids it.

The paths used by the information emitted from Esa1 and Gcn5 separately can best be seen in a color figure (Figure
5(a)) where the information content from Esa1 and Gcn5 is shown as cyan and yellow, respectively. The nodes colored
strongly cyan contain mostly information from Esa1 while those colored yellow contain mostly the information from
Gcn5. The nodes colored green contain information from bothsources. In this way it can be observed that members
of NuA4 contain the information solely from Esa1, some SAGA proteins contain the information solely from Gcn5,
while Ada2, Ngg1 and Srb4 contain a significant amount of information from both sources.

Using additional links based on Brownet al. (Figure 5(b)) produces effects similar to Figure 3(b): the common
interface through the mediator complex is emphasized at theexpense of the paths through the SAGA complex. For
example, note the difference in color of Spt7, Gcn4 and Gal4 between Figure 5(a) and Figure 5(b). The common
interface through the mediator complex appears biologically more plausible than directly through members of the
SAGA complex but we are as yet unable to find direct evidence inthe literature confirming either possibility.

5 Discussion and conclusion

The proposed information diffusion models appear to capture some of the essential features of the yeast protein-protein
interaction network in our examples. Our absorbing model performed well in identifying complexes related to sinks
while the emitting model with pseudosinks is able to illuminate the possible interaction interfaces between sources
and pseudosinks. Application of the concept of destructiveinterference in this context provides a way to assess the
degree of overlap of different ITMs.

The salient feature of our models is a novel use of attractionpotentials and dissipation. While the entries of the
Green’s function can be interpreted in graph-theoretic terms as sums of weights of paths from a source to a transient
vertex (for the emitting model) or from a transient vertex toa sink (for the absorbing model), the potentials, together
with the choice of boundary, provide a unique context for information diffusion in the network. The weights of
the edges and hence the nature of the underlying graphs are changed every time a different potential is applied, thus
bringing forward different aspects of the network. The potential function used for our examples was heuristic in nature
and we hope that our work would generate interest in developing theoretical foundations for directed information
propagation through networks.

Dissipation coefficients provide a natural and extremely flexible way of controlling the spread of information con-
tent through the network. While Girvan and Newman (2002) proposed a similar formulation for penalizing longer
paths connecting two nodes in a network, they did so in the context of hierarchical clustering and using a single dissi-
pation rate. Node specific dissipation rates are important because they allow construction of ‘evaporating nodes’ and
possible integration of additional information to our model. Having the dissipation rates dependent on the environment
of the node may lead to a more sophisticated model of information transduction.

When modelling physical cellular protein networks, the main limitation of our approach is that the the publicly
available representations of protein-protein interaction networks contain a limited amount of information. Each inter-
action is shown as either occurring or not occurring, without reference to the dynamics, time-scale, or specificity of
binding. Furthermore, the spatial location of the interactions on the protein molecules is not available, so that it cannot
be determined if a protein known to belong to two separate complexes, such as Tra1 in our examples, can belong
to both at the same time and therefore transmit information between them. Therefore, our model of protein cellular
networks is only metaphorical at this stage. However, our diffusion paradigm can be adapted to account for addi-
tional information about proteins, such as their concentrations, cellular compartment localizations, post-translational
modifications or rate constants for binding interactions, as it becomes available. One way to do that is to associate
each protein to a vector instead of a scalar value and to construct an evolution operator that reflects the nature of the
additional information. In such circusmstances, the dynamics of information flow could be as revealing as the steady
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Figure 5: Information content of members of the ITM arising from the emitting model with Esa1 and Gcn5 as sources
and Mcm1 as a pseudosink: (a) using the yeast core dataset; (b) using the modified dataset additionally including the
edges Tra1–Gal4 and Tra1–Gcn4. The strength of the cyan and yellow color component of the node corresponds to
the information content originating from Esa1 and Gcn5, respectively.

state we use at this stage.
The quality of the interaction dataset also has a strong influence to the outcomes of our models. Addition or

deletion of edges may make the results more realistic, as in our emitting examples, but also may completely alter
the ITM produced, if a particular edge provides a shortcut towards the destination. Hence, in order to obtain the
results useful in field of application, it is imperative to use datasets of interactions that precisely reflect the network
being investigated. In the case of yeast protein-protein interactions, Collinset al.(2007) were recently able to derive a
significantly more reliable collection of interactions, primarily based on two large-scale studies of protein complexes
by tandem affinity purification of complexes followed by massspectroscopic identification of individual proteins
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(Gavinet al., 2006; Kroganet al., 2006). It is interesting that the same transcriptional complexes encountered in our
examples are prominent in the unified physical interactome map presented by Collinset al. (2007).

The problem of ‘shortcuts’ through the network was also observed by Steffenet al. (2002), who completely elim-
inated certain nodes in their effort to model signal transduction pathways using the yeast protein-protein interactions.
Our evaporating nodes, with a very large incoming dissipation rate, have a similar role with an added advantage that
they can be visible as parts of complexes observed using the absorbing model. The list of evaporating nodes used by
us is not exhaustive and it would be necessary to add further classes of proteins to it for large-scale investigations of
the yeast protein interactome using our methods.

In this paper, we introduced a flexible mathematical framework for analysis of interaction networks and indicated
its utility by examples. We believe that the ability to select a particular context for information propagation by setting
various model parameters will be extremely useful for addressing questions involving interaction networks in biology
and many other disciplines.
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A Existence of Green’s Functions

In this appendix we provide the elementary proofs of the results about existence of the Green’s functions stated in the
main text. As before,Γ = (V,E,w) denotes a weighted directed graph withN vertices, with the weight matrixW
and transition matrixP. We also haveT ⊂ V andS = V \ T .

Recall that for every matrixM, the inducedℓ∞ norm ofM, written‖M‖∞, is defined by

‖M‖∞ = sup
x∈Rn

‖Mx‖∞
‖x‖∞

, (33)

where‖x‖∞ = maxi |xi|. One can easily show that

‖M‖∞ = max
i

∑

j

|Mij | . (34)

Also recall that the spectral radius of a square matrixM is defined to be the largest absolute value of its eigenvalues.
It is well known that that for every eigenvalueλ of M and anyk = 1, 2, . . .,

|λ| ≤
∥

∥Mk
∥

∥

1/k

∞
. (35)

Lemma A.1. LetM be a square matrix with the spectral radius strictly less than 1. Then,

(i) Mk → 0 ask → ∞,

(ii) The matrixI−M is invertible and(I−M)−1 =
∑∞

k=0 M
k.

Proof. By the Jordan matrix decomposition, we can writeM = VΛV−1 for some matrixV, whereΛ is a block-
diagonal matrix of the form

Λ =











B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...
0 0 · · · BN











,

with each of the sub-blocksBj , 1 ≤ j ≤ N , is of the formBj = λjI+Cj where

Cj =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















andλ1, . . . λN are eigenvalues ofM. Hence,Mk = VΛkV−1 and

Λk =











Bk
1 0 · · · 0

0 Bk
2 · · · 0

...
...

. . .
...

0 0 · · · Bk
N











.

For each eigenvalueλj and each blockBj, we can write

Bk
j = (λjI+Cj)

k =

k
∑

p=0

(

k

p

)

λ
k−p
j C

p
j .
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It can easily be shown that for eachj, Cj is a nilpotent matrix, that is, ifCj is anm × m matrix, thenCm = 0.
Therefore, fork ≥ m− 1,

Bk
j = λk−m+1

j

(

m−1
∑

p=0

(

k

p

)

λ
m−p−1
j C

p
j

)

.

Observe that the above expression in parenthesis gives an (upper triangular) matrix whose entries arem− 1-th degree
polynomials ink and hence, that the whole expression forBk

j is dominated byλk−m+1
j . Since, by the spectral radius

assumption,|λj | < 1 for eachi, it follows that for eachj, Bk
j → 0 ask → ∞ and henceΛk → 0 ask → ∞ by the

block structure. This proves the first statement.
For the second statement suppose thatI − M is singular. ThenI − M has0 as an eigenvalue and henceλ = 1

is an eigenvalue ofM, contradicting our assumption about the spectral radius ofM. Therefore,I −M is invertible.
Furthermore, it can easily be obtained using the block diagonal structure ofΛ and the ratio test that the sum

∑∞
k=0 M

k

converges, Hence,

(I−M)

∞
∑

k=0

Mk =

∞
∑

k=0

Mk −

∞
∑

k=0

Mk+1 = I+

∞
∑

k=1

Mk −

∞
∑

k=1

Mk = I.

Since the matrixP is stochastic, we have‖P‖∞ = 1 and hence the spectral radius ofP is bounded by1. Since
PTT is a submatrix ofP, we have‖PTT ‖∞ ≤ 1 and its spectral radius is also bounded by1. To prove Proposition
2.1 (denoted Proposition A.5 below) we will show that the spectral radius ofPTT is strictly smaller than1 if there is
some vertex inS that can be reached from any transient node via a directed path. Before presenting the main proof,
we require several lemmas.

Lemma A.2. LetB andC ben× n matrices with non-negative entries such that‖B‖∞ ≤ 1 and‖C‖∞ ≤ 1 and let
D = CB. Suppose there exists1 ≤ p ≤ n such that0 <

∑

j Bpj < 1. Then, for every1 ≤ i ≤ n such thatCip > 0,

∑

j

Dij < 1.

Proof. LetK = {k : Cik > 0}. Thenp ∈ K and

∑

j

Dij =
∑

j

∑

k

CikBkj

=
∑

k∈K

Cik

∑

j

Bkj

≤
∑

k∈K\{p}

Cik ‖B‖∞ + Cip

∑

j

Bpj

<
∑

k∈K\{p}

Cik + Cip

≤ 1.

Lemma A.3. LetΓ be a weighted directed graph with weight matrixW. Leti andj be distinct nodes ofΓ connected
by a directed path fromi to j of lengthn ≥ 1. ThenWn

ij > 0.
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Proof. We use induction. Ifi andj are connected with a path of length1, then there exists an edge(i, j) ∈ E and
henceWij > 0. Assume thatWm

ij > 0 if i andj are connected by a directed path fromi to j of lengthm. Suppose
i andj are connected by a path of lengthm + 1. Then there exists a vertexk such thati andk are connected by a
directed path fromi to k of lengthm and there exists a directed edge(k, j). Hence, by our assumptionWm

ik > 0 and
Wkj > 0. Therefore,

Wm+1
ij =

∑

k′∈V

Wm
ik′Wk′j ≥Wm

ikWkj > 0.

Lemma A.4. LetM = PTT , let i ∈ T and suppose there existss ∈ S such that there exists a directed path fromi to
s of lengthm. Then for alln ≥ m,

∑

k∈T

Mn
ik < 1. (36)

Proof. Let i ∈ T and lets ∈ S be a vertex such that there exists a directed path fromi to s of lengthm. Let J be the
set of vertices inT directly adjacent to a vertex inS. Then, by our assumption, for everyi ∈ T there existsj ∈ J such
that there exists a directed path fromi to j of lengthm− 1. Since the matrixPTT can be treated as the weight matrix
for the subgraph ofΓ restricted to vertices inT , it follows by Lemma A.3 thatMm−1

ij > 0.
Since every point inJ is adjacent to a point inS, it also follows that

∑

k∈T Mjk < 1. Clearly,‖M‖∞ ≤ 1

and hence
∥

∥Mm−1
∥

∥

∞
≤ 1. Applying Lemma A.2 to the matricesM andMm−1 we obtain that for everyi ∈ T ,

∑

k∈T M
m
ik < 1.

Let t ≥ m and assume
∑

k∈T M
t
ik < 1. We have

∑

k∈T

M t+1
ik =

∑

k∈T

∑

k′∈T

M t
ik′Mk′k =

∑

k′∈T

M t
ik′

∑

k∈T

Mk′k ≤
∑

k′∈T

M t
ik′ < 1

and our result follows by induction.

Proposition A.5. Suppose that for everyp ∈ T there existss ∈ S such that there exists a directed path fromp to s.
Then, the matrixI−PTT is invertible and

(I−PTT )
−1 =

∞
∑

k=0

(PTT )
k. (37)

Proof. Let M = PTT . Observe that our assumption implies that for everyi ∈ T there existss ∈ S such that there
exists a directed path fromi to s of length at mostN . By Lemma A.4, we have for everyi ∈ T ,

∑

k∈T M
N
ik < 1.

Hence,
∥

∥MN
∥

∥

∞
< 1 and therefore the spectral radius ofM = PTT is strictly smaller than1. Our result follows by

Lemma A.1.

A.1 Information dissipation

Proposition A.6. Letα andβ be vectors of lengthN such that for alli ∈ V , αi > 0 andβi > 0. Define theN ×N

matrix P̃ with entries
P̃ij = αiβjPij ,

Let α∗ = max{αi : i ∈ V } andβ∗ = max{βi : i ∈ V } and supposeα∗β∗ < 1. Then, the matrixI − P̃TT is
invertible and

(I− P̃TT )
−1 =

∞
∑

k=0

(P̃TT )
k. (38)
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Proof. LetM = P̃TT and leti ∈ T . Then,

∑

j∈T

Mij =
∑

j∈T

αiβjPij ≤ α∗β∗
∑

j∈T

Pij < 1.

Hence,‖M‖∞ < 1 and thus the spectral radius ofP̃TT is strictly smaller than1. Our result then follows by Lemma
A.1.

More generally, it is possible to interpret dissipation in the light of Proposition A.5 by constructing a new graph
Γ̃ with the vertex set̃V = V ∪ {v}, wherev denotes an additional vertex. The weight matrix ofΓ̃, denotedW̃, has
entries

W̃ij =











αiβjPij if i ∈ V andj ∈ V ,

1−
∑

k∈V αiβkPik if i ∈ V andj = v,

0 if i = v.

(39)

Clearly, a random walk oñΓ is equivalent to a random walk onΓ with dissipation: the dissipated information is
directed towards the additional vertexv and then disappears. If we placev in the boundary set̃S, by Proposition A.5,
the necessary condition for existence of the Green’s function (I − P̃TT )

−1 is that from every transient nodei there
exists a directed path to either a nodes ∈ S or a nodej ∈ T such that

∑

k∈V αjβkPjk < 1 (such nodej is adjacent
to v in the graph̃Γ. Proposition A.6 then just represents the special case where every transient vertex is adjacent tov
in Γ̃.

B Interpretations of the matrices F and H

B.1 F and H as matrices of expected visiting times

We will show that bothFij andHij can be interpreted as the expected number of times a random walk originating at
the vertexi visits the vertexj, while avoiding all vertices in the boundary setS. Note that in the case of the matrixF,
we havei ∈ T andj ∈ S while for the matrixH, i ∈ S andj ∈ T . We will useE to denote the expectation operator.

Lemma B.1. Suppose the boundary setS represents sinks and letZij be a random variable denoting the total number
of times a random walk starting ati ∈ T is absorbed atj ∈ S. Then,

E(Zij) = Fij . (40)

Proof. Let Yij(t) be the random variable taking the value1 if the random walk originating ati ∈ T is absorbed at
j ∈ S at timet, with probability

∑

k∈T P
t−1
ik Pkj , and taking the value0 otherwise. We haveZij =

∑∞
t=1 Yij(t) and
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E(Yij(t)) =
∑

k∈T P
t−1
ik Pkj . Thus,

E(Zij) = E

(

∞
∑

t=1

Yij(t)

)

=

∞
∑

t=1

E(Yij(t))

=

∞
∑

t=1

∑

k∈T

P t−1
ik Pkj

=
∑

k∈T

∞
∑

t=0

P t
ikPkj

=
∑

k∈T

GikPkj

= Fij .

Lemma B.2. Suppose the boundary setS represents sources and letZij be a random variable denoting the total
number of times a random walk starting ati ∈ S visits the nodej ∈ T . Then,

E(Zij) = Hij . (41)

Proof. In the same fashion as above, letYij(t) be the random variable taking the value1 if the random walk originating
at i ∈ S is at j ∈ T at timet, with probability

∑

k∈T PikP
t−1
kj , and taking the value0 otherwise. We haveZij =

∑∞
t=1 Yij(t) andE(Yij(t)) =

∑

k∈T PikP
t−1
kj . Thus,

E(Zij) = E

(

∞
∑

t=1

Yij(t)

)

=

∞
∑

t=1

E(Yij(t))

=

∞
∑

t=1

∑

k∈T

PikP
t−1
kj

=
∑

k∈T

∞
∑

t=0

PikP
t
kj

=
∑

k∈T

PikGkj

= Hij .

B.2 Invariants of F and H

Let 1 ∈ R
n denote the vector whose entries are all1’s. Since all rows ofP sum to unity, it follows thatP1 = 1

and hence1 is a right eigenvector ofP for the eigenvalueλ = 1. Defined as a vector of lengthn having entries
di =

∑

j Wij . If Γ is unweighted graph,di gives the degree of the nodei. AssumingW is symmetric,
∑

k

Pkjdk =
∑

k

Wkj =
∑

k

Wjk = dj

and therefored is a left eigenvector ofP corresponding to the eigenvalueλ = 1. This leads to the following result.
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Lemma B.3. Suppose that the matrixI−PTT is invertible. Letu andv be the left and right eigenvector of the matrix

P corresponding to the eigenvalueλ = 1, respectively. Writeu = [uS uT ] andv =

[

vS

vT

]

. Then,

uT = uSH, (42)

and
vT = FvS . (43)

Proof. Using the canonical form of the matrixP (Equation (3)) and the fact thatu andv are left and right eigenvectors
of P respectively, we obtain

uT = uSPST + uTPTT , (44)

and
vT = PTSvS +PTTvT . (45)

Rearranging Equations (44) and (45) leads to

uT (I−PTT ) = uSPST , (46)

and
(I−PTT )vT = PTSvS . (47)

Our result then follows as the consequence of invertibilityof I−PTT .

Since1 is a right eigenvector ofP, it follows from (43) that for alli,
∑

j∈S Fij = 1. Furthemore, recall that ifΓ
is an undirected graph,W is symmetric andd is a left eigenvector ofP for λ = 1. Assuming the matrixH exists, we
obtain from Lemma B.3 that, ifS contains a single point, the matrixH is a row vector, which is a multiple ofdT .
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