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ABSTRACT

Probabilistic phylogenetic models which relax the site independence evolution assumption

often face the problem of infeasible likelihood computations, for example, for the task of

selecting suitable parameters for the model. We present a new approximation method,

applicable for a wide range of probabilistic models, which guarantees to upper and lower

bound the true likelihood of data, and apply it to the problem of probabilistic phylogenetic

models. The new method is complementary to known variational methods that lower bound

the likelihood, and it uses similar methods to optimize the bounds from above and below.

We applied our method to aligned DNA sequences of various lengths from human in the

region of the CFTR gene and homologous from eight mammals, and found the bounds to be

appreciably close to the true likelihood whenever it could be computed. When computing

the exact likelihood was not feasible, we demonstrated the proximity of the upper and lower

variational bounds, implying a tight approximation of the likelihood.

Key words: algorithms, computational molecular biology, genetic mapping, learning, secondary

structure.

1. INTRODUCTION

MOST ORGANISMS SHARE a great deal of their genetic code with other forms of life. Phylogenetic tree

models are used to associate the genetic makeup of different organisms according to their genetic

variation. A node in phylogenetic trees corresponds to a piece of genetic code in a single organism, and

the branches and the relative branch lengths measure the relative distance from each organism’s genes to

the others. The greater the distance, the more the gene sequence has changed between one organism and

the other.

The classical phylogenetic models of Neyman (1971) and Felsenstein (1981) make several assumptions

regarding how evolution occurs in the trees, from which the most stringent assumption is that evolution

takes place independently at different sites. Over the years, more complex probabilistic phylogenetic models

have been proposed, which relax the site independence evolution assumption. These complex models that

are more biologically realistic, such as the one by Siepel and Haussler (2003), often face the problem of
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infeasible likelihood computations, for example, for the task of selecting suitable parameters for the model.

To overcome this problem, Jojic et al. (2004) suggested we use variational approximations that lower bound

the likelihood of data, and showed that such bounds tend to be close to the true likelihood.

In this paper, we develop tight upper and lower bounds on the likelihood of a given data, so that

good estimates of the likelihood become available. Our new approximation method is applicable for a

wide range of probabilistic models, including the discussed phylogenetic models. The method assumes a

simple distribution Q which approximates the target distribution P of the model, and using the weighted

power-mean inequality it upper bounds the likelihood of data with a function of Q and P . Combining the

resulting bounds with an inequality derived by Pečarić and Mićić (2005), new lower bounds also become

available. The simplicity of Q yields bounds that can be computed efficiently.

Our method is complementary to known variational methods that lower bound the likelihood (Jordan

et al., 1999), and can use an approximating distribution Q suggested by these methods to bound the

likelihood also from above.

We applied our method to aligned DNA sequences of various lengths from human in the region of the

CFTR gene and homologous from eight mammals, and found the upper bounds to be appreciably close to

the true likelihood whenever it could be computed. When computing the exact likelihood was not feasible,

we demonstrated the proximity of the upper and lower variational bounds, implying a tight approximation

of the likelihood. We also developed similar upper bounds for computing the MPE probability and applied

them to medical image reconstruction.

The rest of the paper is organized as follows: Section 2 briefly describes phylogenetic HMM models in

terms of Bayesian networks or DAG models, and provides a quick overview regarding variational techniques

that bound the likelihood of data from below. Section 3 develops our main contribution which are variational

upper and lower bounds for probabilistic models such as Bayesian networks. The experimental results are

described in Section 4. Finally, we discuss the limitations of variational methods. The bounds on the MPE

probability and their application to medical images is described in the appendix.

2. PRELIMINARIES

We provide background information regarding phylogenetic HMM trees, to which the variational bounds

suggested herein are applied (Section 2.1), and outline known variational lower bounds of the likelihood

of data, which turn out to be close to our upper bounds (Section 2.2).

2.1. Phylogenetic HMM model

We consider the Phylogenetic HMM model described by Siepel and Haussler (2003). Since the model

is given in terms of conditional probabilities, it is convenient to describe it as a DAG model, as done by

Jojic et al. (2004). We repeat the description of the model from there with minor changes.

Given a domain of interest having a set of finite variables s D .s1; : : : ; sn/ with a positive joint distribution

p.s/, a DAG model for s is a pair .G; P / where G is a directed acyclic graph and P is a set of conditional

probability distributions. A DAG model is also often called a Bayesian network (Pearl, 1988; Jensen,

2001). Each node si in G corresponds to a variable in s, and to a distribution p.si jpa.si //, called a local

probability distribution, where pa.si / are the parents of si in the graph. The joint distribution is given

by p.s/ D
Qn

iD1 p.si jpa.si //. Consequently, the assumed independence relationships between random

variables are represented through absence of edges in the model.

A DAG model structure that assumes that evolution takes place independently at each nucleotide site

is illustrated in Figure 1a for a simple tree with five species. The unknown nucleotide in an ancestor

species i at site j is denoted as hi
j , and the observed nucleotide of an existing species i 0 at site j 0 is

denoted as yi 0

j 0 . This is the usual model for which Felsenstein’s algorithm for computing likelihood of data

is readily applicable. The model of Siepel and Haussler (2003) does not assume that sites are independent,

and therefore, edges that connect variables of adjacent sites are added (Fig. 1b). This figure illustrates the

phylogenetic HMM model of Siepel and Haussler (2003). In this model, a nucleotide of species i at site j

depends on the nucleotide of that species at site j � 1, and its ancestor’s nucleotides at sites j � 1 and j .
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FIG. 1. Probabilistic phylogenetic trees expressed as DAG models. (a) The Neyman-Felsenstein tree model that

assumes independent evolution in sites. (b) The dinucleotide phylogenetic HMM model suggested by Siepel and

Haussler (2003).

This model is also called the dinucleotide HMM model, since the two nucleotides of species i and k at

site j , where k is the ancestor species of i , are dependent only on the two nucleotides of that species at

site j � 1. Additional, more complex models are discussed in Siepel and Haussler (2003).

The local probability distributions of this model are determined by a continuous-time Markov matrix B

of base substitution rates. The matrix B is of size 16 � 16, and given evolutionary time t , which is the

branch length in the tree, the conditional probabilities p.si
j ; s

i
j �1js

k
j ; s

k
j �1/ are obtained from B , where k

is the ancestor species of i . This distribution then determines the desired probabilities p.si
j jsi

j �1; s
k
j ; s

k
j �1/.

Let P.t/ be the matrix of substitution probabilities for branch length t . Then P.t/ is given by the

solution to the differential equation d
dt
P.t/ D P.t/B with initial conditions P.0/ D I , which is P.t/ D

eBt . With B being diagonalizable as B D SƒS�1, the matrix P.t/ can be computed as P.t/ D

SeƒtS�1, where eƒt is the diagonal matrix obtained by exponentiating each element on the main diagonal

of ƒt .

A standard criterion to choose between two DAG models is to prefer a model with higher log-likelihood

of the data. However, for the phylogenetic HMM model described here, computing the log-likelihood

of data is not feasible, and therefore approximations are needed. In the next section, we review known

approximations that give lower bounds.

2.2. Variational lower bounds

The problem of computing the likelihood, P.Y D y/ D
P

h P.Y D y;H D h//, in DAG models is

NP-hard (Cooper, 1990; Dagum and Luby, 1993), and although there are many DAG models where exact

algorithms are feasible, there are others in which the time and space complexity makes the use of such

algorithms infeasible. In these cases, fast yet accurate approximations are desired. Herein, we call the task

of computing the likelihood by the term inference.

Variational techniques such as the ones suggested by Jordan et al. (1999) are a powerful tool for efficient

approximate inference that offers guarantees in the form of lower bounds. In particular, let P.X/ be a joint

distribution over a set of discrete variables X with the goal to compute the marginal probabilityP.Y D y/,

where Y � X . Further assume that this exact computation is not feasible. The idea is to replace P with a

distribution Q for which exact inference is feasible, and compute a lower bound for P.Y D y/ by using
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Jensen’s inequality:

logP.y/ D log
X

h

Q.h/
P.y; h/

Q.h/
�
X

h

Q.h/ log
P.y; h/

Q.h/
D �D.Q.H/ jj P.Y D y;H//

where H D X n Y and D.� jj �/ denotes the KL divergence between two probability distributions.

To obtain tight lower bounds, several variational algorithms were devised that try to find an approximating

distribution Q that minimizes the KL divergence between Q and the target distribution P (Saul and

Jordan, 1996; Ghahramani and Jordan, 1997; Wiegerinck, 2000; Bishop and Winn, 2003; Geiger et al.,

2006). Variational approaches such as the mean field, generalized mean field, and structured mean field

differ only with respect to the family of approximating distributions that can be used. Such variational

techniques were applied by Jojic et al. (2004) to find lower bounds for the phylogenetic HMM models.

This type of lower bounds computed in the results section herein use a newer algorithm for finding tighter

lower bounds suggested by Geiger et al. (2006).

3. NEW VARIATIONAL UPPER AND LOWER BOUNDS

We denote distributions by P.x/ and Q.x/, where Q is not necessarily a normalized distribution.

Let X be a set of variables and x be an instantiation of these variables. Let P.x/ D
Qn

iD1 ‰i .di / and

Q.x/ D
Qn

iD1 ˆi .di /, where di is the projection of the instantiation x to the variables in Di � X ,

the subsets fDi g
n
iD1 can overlap, and n is the number of sets Di . Consider the marginal probability

P.Y D y/ D
P

h P.y; h/ D
P

h

Q

i ‰i .di /, where X D Y [ H . We assume throughout that Q.x/ is

tractable in the sense that the marginal probability Q.Y D y/ is feasible to compute, while P.Y D y/ is

not feasible to compute.

3.1. Upper bounds

We now develop upper bounds for P.Y D y/ as summarized in Theorems 1 and 2. The weighted power

mean M r
w.Z/ of a series of real numbers Z D fz1; : : : ; zng is defined for every real r 2 R as

M r
w.z1; : : : ; zn/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"

n
X

iD1

wiz
r
i

#1=r

if r ¤ 0

n
Y

iD1

z
wi

i if r D 0

where the weights w1; : : : ; wn are positive real numbers such that
Pn

iD1 wi D 1. Note that M r
w.Z/

r!0
�!

M 0
w.Z/.

Let s and t be two real numbers such that s < t , then according to the power mean inequalityM s
w � M t

w .

Using the power mean inequality with s D 0, t D 1 and zi D ‰i .di /
.1=wi /, we obtain the following upper

bound:

P.Y D y/ D
X

h

Y

i

h

.‰i.di //
.1=wi.h//

iwi .h/

�
X

h

X

i

wi.h/ .‰i.di //
.1=wi.h// (1)

where
P

i wi.h/ D 1 for every instantiation h. Note that this bound can be obtained also via Jensen’s

inequality stating that if f is a concave function and Z D fz1; : : : ; zng is a set of real numbers then

f .
Pn

iD1 wizi / �
Pn

iD1 wif .zi /, where each wi � 0 and
Pn

iD1wi D 1. By using the concavity of the log

function, bounds identical to those in Eq. 1 are obtained via:

P.Y D y/ D
X

h

elog
Q

i ‰i .di / D
X

h

e
P

i wi .h/ log ‰i .di /
.1=wi .h//

�
X

h

elog
P

i wi .h/‰i .di /
.1=wi .h//

D
X

h

X

i

wi.h/‰i .di /
.1=wi .h//:
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Eq. 1 holds with equality regardless of the values of potentials ‰i if and only if

wi.h/ D
log‰i .di /

logP.h; y/
: (2)

However, this optimal choice leads to an intractable upper bounds in Eq. 5. Instead, given a tractable

distributionQ.x/ D
Qn

iD1 ˆi .di /, we set wi.h/ D log ˆi .di /

log Q.h;y/
, which approximates the optimal but intractable

choice given by Eq. 2.

With these values for wi .h/, and using the identity x
logy

z D y
logx

z , Eq. 1 can be written as:

P.Y D y/ �
X

h

X

i

logˆi .di /
P

k logˆk.dk/

Y

m

ˆm.dm/
log ‰i .di /
log ˆi .di / (3)

The upper bound in Eq. 3 holds with equality if Q equals P , because by replacing all occurrences of

ˆi .di / with ‰i .di / we get

P.Y D y/ �
X

h

X

i

log‰i .di /
P

k log‰k.dk/

Y

m

‰m.dm/ D
X

h

Y

m

‰m.dm/ D P.Y D y/

Eq. 3 remains hard to compute until the sum over h is divided into smaller sums. To obtain a tractable

bound, we use the arithmetic-geometric means inequality, 1
n

P

k logˆk.dk/ �
Q

k Œlogˆk.dk/�
1=n, where

logˆk.dk/ > 0. To use this inequality, we set all potentials ˆi .di / to be greater than 1. The resulting

tractable upper bound stemming from Eq. 3 is the following:

P.Y D y/ �
1

n

X

h

n
X

iD1

logˆi .di /
Y

m

ˆm.dm/
log ‰i .di /

log ˆi .di /

Œlogˆm.dm/�
1=n

(4)

Consequently, the following theorem holds.

Theorem 1 (upper bound). Let H and Y be two disjoint sets of variables such thatH[Y D X , and let

P.x/ and Q.x/ be distributions that factor according to P.x/ D
Qn

iD1 ‰i .di / and Q.x/ D
Qn

iD1 ˆi .di /

where di is the projection of the instantiation x to the variables in Di � X . Then the following is an

upper bound on P.Y D y/,

P.Y D y/ �
1

n

X

i

X

Di

logˆi .di /

2

4

X

hnDi

Y

m

ˆm.dm/
log ‰i .di /

log ˆi .di /

Œlogˆm.dm/�
1=n

3

5 (5)

Proof. The proof is immediate from Eq. 4 where we replace the sums over i and h, and divide the

sum over h such that first we sum over variables in Di and then over the rest of the variables in H .

Assuming that M D maxifjDi jg is at most a given constant, the time needed to compute the bound

given in Eq. 5 is linear in the number of variables in the model and proportional to the time needed

to compute Q.y/. Therefore, the tractability of this bound is a direct consequence of the assumption of

tractable inference on distribution Q.

Since the maximal size M of the sets in the model can sometime be large enough to significantly slow

computations of the upper bound, we develop a more efficient method to compute the upper bound that

does not depend on M . To do so, we use the following lemma.

Lemma 1. Given two sets of positive real numbers X D fx1; : : : ; xng and Y D fy1; : : : ; yng and a

positive real number r , the following inequalities hold.

If 0 < r � 1, then

n
X

iD1

xr
i

yi

�

 

n
X

iD1

xi

yi

!r

�

 

n
X

iD1

y�1
i

!1�r

:
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If 1 � r < 2, then

n
X

iD1

xr
i

yi

�

 

n
X

iD1

xi

yi

!2�r

�

 

n
X

iD1

x2
i

yi

!r�1

:

For r D 1 equalities hold.

Proof. We use the Euclidean case of Hölder’s inequality, stating that for two sets of positive real

numbers X D fx1; : : : ; xng and Y D fy1; : : : ; yng, and for two real numbers p; q � 1 such that 1
p

C 1
q

D 1,

n
X

iD1

xi � yi �

 

n
X

iD1

x
p
i

!1=p

�

0

@

n
X

j D1

y
q
j

1

A

1=q

:

For 0 < r � 1, we obtain using Hölder’s inequality,

n
X

iD1

xr
i

yi

D

n
X

iD1

�

xi

yi

�r

� yr�1
i �

 

n
X

iD1

�

xi

yi

�r �p
!1=p

�

 

n
X

iD1

y
.r�1/�q
i

!1=q

:

Setting p D 1
r

and q D 1
1�r

we obtain

n
X

iD1

xr
i

yi

�

 

n
X

iD1

xi

yi

!r

�

 

n
X

iD1

y�1
i

!1�r

:

Similarly, for 1 � r < 2, we obtain using Hölder’s inequality,

n
X

iD1

xr
i

yi

D

n
X

iD1

�

xi

yi

�2�r

�

�

x2
i

yi

�r�1

�

 

n
X

iD1

�

xi

yi

�.2�r/�p
!1=p

�

 

n
X

iD1

�

x2
i

yi

�.r�1/�q
!1=q

:

Setting p D 1
2�r

and q D 1
r�1

we obtain

n
X

iD1

xr
i

yi

�

 

n
X

iD1

xi

yi

!2�r

�

 

n
X

iD1

x2
i

yi

!r�1

:

Theorem 2 (efficient upper bound). Let H and Y be two disjoint sets of variables such thatH[Y D

X , and let P.x/ and Q.x/ be normalized distributions with corresponding unnormalized distributions
QP .X/ and QQ.X/ that factor according to P.x/ D 1

K
QP .X/ D

Qn
iD1

Q‰i.di / and Q.x/ D 1
K

QQ.X/ D
Qn

iD1
Q̂

i .di / where Q‰i > 1, Q̂
i > 1 and

log Q‰i

log Q̂ i
< 2 for every i D 1; : : : ; n, and where di is the projection

of the instantiation x to the variables in Di � X . In addition, let Ui denote the set of instantiations of

Di for which Q̂
i .di / � Q‰i .di /, and let Li denote the rest of instantiations of Di . Then the following is

an upper bound on P.Y D y/,

P.Y D y/ �
1

nK

X

i

2

4

X

di 2Li

log Q̂
i .di /ƒLi C

X

di 2Ui

log Q̂
i .di /ƒUi

3

5 (6)

where

ƒLi D

0

@

X

hnDi

Y

m

Q̂
m.dm/

�

log Q̂
m.dm/

�1=n

1

A

log Q‰i .di /

log Q̂ i .di /

�

0

@

X

hnDi

Y

m

1
�

log Q̂
m.dm/

�1=n

1

A

1�
log Q‰i.di /

log Q̂ i .di /
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and

ƒUi D

0

@

X

hnDi

Y

m

Q̂
m.dm/

�

log Q̂
m.dm/

�1=n

1

A

2�
log Q‰i .di /

log Q̂ i .di /

�

0

@

X

hnDi

Y

m

Q̂
m.dm/

2

�

log Q̂
m.dm/

�1=n

1

A

log Q‰i .di /

log Q̂ i .di /
�1

Proof. Lemma 1 implies that when Q̂
i .di / � Q‰i.di / > 1, we can replace every bracketed term

P

hnDi

Q

m

�

ˆm.dm/
log ‰i .di /
log ˆi .di / = logˆm.dm/

�1=n

in Eq. 5 with
ƒLi

K
and when 1 < Q̂

i .di / < Q‰i .di /, we can

replace it with
ƒUi

K
, since

log Q‰i .di /

log Q̂ i .di /
< 2.

Computing each term,ƒUi orƒLi , involves only two sums of products, where each sum factors according

to distributionQ. These computations can be performed by using any algorithm such as bucket elimination

algorithm or the sum-product algorithm described by Dechter (1999) and Kschischang et al. (2001).

According to Eq. 6, only a linear number of calls to such procedures are needed to obtain the upper

bound.

If each potential ‰i and ˆi is multiplied by a large factor ˛ to obtain the potentials Q‰i and Q̂
i

respectively, all the terms
log Q‰i

log Q̂ i
approach one as ˛ grows. This reduces the accuracy gap when using

Hölder’s inequality in Eq. 6 with r D
log Q‰i

log Q̂ i
. In addition, note that multiplying the potentials ˆi by ˛

also improves the tightness of the arithmetic-geometric inequality used to obtain Eq. 5, since for each pair

of potentials Q̂
j and Q̂

k , the ratio
log Q̂ j

log Q̂ k
approaches one as ˛ grows. A large enough ˛ guarantees that

log Q‰i

log Q̂ i
< 2 for all sets Di and thus the applicability of Theorem 2. In our experiments, we use ln˛ D 300.

We applied the weighted power means inequality for a specific parameter r D 1. Choosing a smaller

parameter r D 1= l where l is an integer greater than 1 yields a tighter bound but at the cost of additional

run-time. The general form of the bounds, which replaces Eq. 1, is as follows:

P.Y D y/ D
X

h

Y

i

‰i .di / �
X

h

"

X

i

wi‰i .di /
1

l�wi .di /

#l

D
X

h

X

i1 :::il

l
Y

tD1

wit .dit /‰it .dit /
1

l�wit .dit /

Weights that are chosen according to Eq. 2 are still optimal for the general case. Choosing the weights as

before, and applying the arithmetic-geometric inequality, the bounds can be further rewritten:

P.Y D y/ �
X

i1 :::il

X

Di1 :::Dil

"

l
Y

tD1

logˆit .dit /

#

X

hnfDi1 :::Dil
g

1
�
P

k logˆk.dk/
�l

Y

m

ˆm.dm/

log
Ql

tD1 ‰it .dit /

l�log
Ql

tD1 ˆit .dit / (7)

�
1

nl

X

i1 :::il

X

Di1 :::Dil

"

l
Y

tD1

logˆit .dit /

#

X

hnfDi1 :::Dil
g

Y

m

ˆm.dm/

log
Ql

tD1 ‰it .dit /

l�log
Ql

tD1 ˆit .dit /

Œlogˆm.dm/�
l=n

As can be seen from the equations, the run-time is exponential in l .

3.2. Lower bounds

The method described in Section 3.1 for obtaining upper bounds can also be used, with small modifi-

cations, to obtain lower bounds on the likelihood. In particular, we use an inequality which was originally

described by Pečarić and Mićić (2005): Let s; t 2 R be two non-zero numbers such that s � t and t � 1

and �1 < s � 1, and k D M
m

where M and m are the maximum and minimum numbers in a series of real

numbers A, respectively. Then,

�.k; s; t/�1M t
w.A/ � M s

w.A/ (8)
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where M r
w.A/ is the r th weighted power mean of the series A and �.k; s; t/ D

�

s.kt �ks /

.t�s/.ks �1/

�1=t

�

t.ks �kt /

.s�t.kt �1/

��1=s

.

Let Q be a tractable distribution Q.x/ D
Qn

iD1ˆi .di / as before, with respective weights wi .h/ D
log ˆi .di /

log Q.h;y/
, and let Z.h/ D fz1.h/; : : : ; zn.h/g such that zi .h/ D ‰i .di /

1=wi .h/, then for a small positive

number � we get:

P.Y D y/ D
X

h

M 0
w.Z.h// �

X

h

M��
w .Z.h// �

X

h

�.k.h/;��; 1/�1M 1
w.Z.h// (9)

where the last inequality is due to Eq. 8.

For a tractable bound, we set two virtual potentials ‰m D .1 C �m/ and ‰M D �M > 1 and their

respective weights wm and wM , such that every term zi .h/ is in the range zm � zi .h/ � zM for every

instantiation h where zm D ‰
.1=wm/
m and zM D ‰

.1=wM /
M . The condition zm � zi .h/ � zM is attainable for

every set of potentials by multiplying the original potentials ‰i by a constant and setting �m and �M and

their weights accordingly. Now we can rewrite Eq. 9 as follows:

P.Y D y/ D
X

h

M 0
w.Z.h// �

X

h

M��
w .Z.h// �

X

h

�

�

zM

zm

;��; 1

��1

M 1
w.Z.h// (10)

Since �. zM

zm
;��; 1/�1 does not depend on the instance h, this inequality can be written as:

P.Y D y/ � �.
zM

zm

;��; 1/�1
X

h

M 1
w.Z.h// (11)

D �

�

zM

zm

;��; 1

��1
X

h

X

i

logˆi .di /
P

k logˆk.dk/

Y

j

ˆj .dj /
log ‰i .di /
log ˆi .di / : (12)

We denote the maximal potential in Q by ˆmax D maxh;kfˆk.dk/g. Hence, since
P

k logˆk.dk/ �

n logˆmax, we can lower bound the expression in Eq. 11 to obtain

P.Y D y/ �
�
�

zM

zm
;��; 1

��1

n logˆmax

X

i

X

Di

logˆi .di /

2

4

X

hnDi

Y

j

ˆj .dj /
log ‰i .di /
log ˆi .di /

3

5 : (13)

We note that, if each potential ‰i and ˆi is multiplied by a large factor ˛, as done before, the decrease

in the tightness of the bound as a result of using logˆmax reduces as ˛ grows. In addition, we note that

these proposed bounds show results comparable with known variational lower bounds on the models we

tried, and when computing both, one can take the maximum of the two to obtain tighter bounds.

4. APPROXIMATIONS FOR PHYLOGENETIC HMM MODELS

The dinucleotide phylogenetic HMM model of Siepel and Haussler (2003), described in Section 2.1,

leads to improvements over previous models in several biological tasks such as gene finding. But, despite

its enhanced power, it also requires evaluating an intractable likelihood for the purpose of finding optimal

parameters for the model. Jojic et al. (2004) used variational techniques, similar to the ones described

in Section 2.2 to lower bound the likelihood of data, and showed that when the exact likelihood can be

computed (although with much effort), the approximations were tight.

We use the upper and lower bounds suggested in Section 3 to compute the likelihood of phylogenetic trees

with a small error, by bounding it tightly from above and below. First, we show the upper bounds are close

to the true likelihood when this can be computed. Then, for larger phylogenetic trees, where computing the

exact likelihood is infeasible, we demonstrate a small gap between the lower and upper bounds. To set a

tractable approximating distributionQ, we use a parameter k that determines its structure: sets that contain
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variables from sites ck and ck C 1, for c D 1; 2; 3; : : : , are split into two disjoint subsets, Di1 and Di2,

where Di1 contains only variables in Di from site ck, and Di2 contains the rest of the variables in Di .

Their respective potentials ˆi .di / then factor according to ˆi .di / D ˆi1.di1/ˆi2.di2/. In our experiments

we used k D 10 when computing the exact likelihood was feasible and k D 5 when the likelihood

computation was infeasible. The lower bounds were obtained both by using a recent variational algorithm

called VIP* (Geiger et al., 2006), and by using the lower bounds suggested in Section 3.2.

We computed upper bounds using two choices of potentials ˆi . The first choice is what we call non-

informative (NI), where each potential ˆi .di / D
Qmi

j D1 ˆij .dij / is a product of mi sub-potentials of sets

Dij � Di . A sub-potential ˆij .dij / is set to be ˆij .dij / D
�

1
jCdij

j

P

di 2Cdij
‰.di /

�1=mi

, where Cdij is the

set of instantiations di consistent with dij .

The second choice of potentials, called variational-based (VB), is based on variational algorithms, such

as VIP*, that optimize the approximating distributionQ in order to set tight lower bounds on the likelihood.

If the topology of Q given for these algorithms follows the factorization suggested in Section 3.1 (i.e., every

potential ‰i in P has its corresponding potential ˆi in Q), the potentials found by these optimization

algorithms to lower bound the likelihood can also serve to upper bound it using the method proposed

herein. This choice of potentials is also used when computing the lower bounds proposed in Section 3.2.

We ran the tests on data used by Siepel and Haussler (2003) that contains sequences from human in

the region of the CFTR gene and homologous from eight mammals: chimp, baboon, cow, pig, cat, dog,

mouse, and rat. The sequences are aligned, and we used portions of this alignment to obtain our results. The

substitution probabilities in all models were computed from the dinucleotide substitution matrix obtained

by Jojic et al. (2004), and the branch lengths in each tree were randomly chosen, normally distributed

around predetermined means. The first tests used two data sets, similar to those used by Jojic et al. (2004),

where each set consisted of three sequences. The sequences in set A were taken from the cow, mouse and

human genomes and were of length 30K bp (namely, each sequence consists of 30,000 symbols which

are either A, C, G, or T), and the sequences in set B were taken from the cow, pig, and dog genomes and

were of length 20K bp. Figure 2a,b plots the upper and lower bounds versus the exact log-likelihoods of

trees with different branch lengths.

The upper and lower bounds for an additional set of aligned sequences that contained sequences of

length 30K bp from all nine organisms (Set C) are illustrated in Figure 2c. For this set, it is infeasible to

FIG. 2. Upper and lower bounds on the likeli-

hood of data of phylogenetic HMM models for

sets A, B, and C with different branch lengths.

UB, upper bounds obtained using the NI and

VB potential choices; LB VIP*, lower bounds

obtained via a known variational algorithm; LB

new, lower bounds obtained via Eq. 13. (a, b)

Bounds versus the exact likelihood for models

of sets A and B. (c) Bounds for models of set

C, for which computing the exact likelihood is

infeasible.



730 WEXLER AND GEIGER

FIG. 3. Accuracy and run-time as a function of parameter k of decomposing the model. (a) Accuracy as a function

of k. (b) Run-time as a function of k.

FIG. 4. The difference in accuracy between upper bounds computed via Eq. 5 and via Eq. 6.

compute the exact likelihood, but the small gap between the upper and lower bounds allows us to predict

the likelihood with a small error.

As shown in Figure 2, both choices of potentials (NI and VB) performed similarly, with a small advantage

of the VB method over NI in most experiments. In other experiments we performed, we found that arbitrary

choice of potentials often lead to significant decrease in the tightness of the bounds (up to 45%). In addition,

the lower bounds computed via Eq. 13 are similar to the variational bounds computed using VIP* and have

almost identical average.

The parameter k used for decomposing the tree model into parts of k sites is a trade-off between run-time

and accuracy: the larger that k is, the more time consuming it is to compute the upper bounds; however,

the bounds computed are also more accurate. The default value of k was set to 10 for trees in Set A.

Figure 3 shows the results for these trees as a function of k in terms of accuracy and in terms of run-time.

Finally, we tested the difference in accuracy between upper bounds computed via Eq. 5 and those

computed via Eq. 6. The expected run-time ratio between these two methods is 81:25 which equals the

average probability table size in the model. As shown in Figure 4, the differences in accuracy of the upper

bounds were negligible, less than 0:05% of their log value, when applied to phylogenetic trees in data set

A. This implies that when the size of the probability tables is large, Eq. 6 is an attractive and efficient

alternative to Eq. 5.

5. DISCUSSION

Computing the likelihood of many probabilistic models is infeasible and calls for efficient approxi-

mations. Our results on phylogenetic models show that the suggested bounds are appreciably tight and,

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0129&iName=master.img-087.png&w=420&h=128
http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0129&iName=master.img-088.jpg&w=263&h=151
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together with other variational methods, allow us to compute the likelihood almost exactly in feasible time.

We have also started using the upper bounds to approximate other probabilistic models and believe that

they can be applied to a wide range of models and for various tasks.

The goodness of the bounds heavily depends on the choice of an approximating distribution Q, and

more work on choosing useful Q functions is desired, as indicated by Xing et al. (2004). As with classical

variational methods that offer lower bounds on the likelihood, if the dependence of variables under Q

largely differs from their dependence under the target distribution P , these methods yield loose bounds.

When exploring probabilistic models to genetic linkage analysis, as used by Fishlson and Geiger (2002),

we found that the variational methods we used did not offer sufficiently good approximating distributions

for these models, and therefore did not give tight enough bounds. Geiger et al. (2006) provided results of

variational techniques on genetic linkage analysis problems and showed that although the lower bounds

followed the shape of the likelihood function, the difference from the true log-likelihood reached 20%. The

difficulty in finding good approximations to this model may lie in the level of determinism of the model:

relaxing deterministic dependence relationships between variables reduced accuracy far more than when

relaxing mild dependence relationships. When computing the upper bounds suggested herein for genetic

linkage analysis, the results were within 10% from the true log-likelihood.

The increasing size and complexity of probabilistic models for various applications led an intensive

research on approximation methods. Some upper bounds devised for tasks similar to those discussed herein

(Wainwright et al., 2005; Globerson and Jaakkola, 2007; Larkin, 2003) may be applied in conjunction with

our method, to enhance the tightness by taking a minimum over the results.

6. APPENDIX

Upper bounds on the MPE probability with applications to reconstruction of medical images

Finding the Most Probable Explanation (MPE) assignment to some set of variables H given that another

set of variables has been observed Y D y is a query that is common to many applications. For example,

in image reconstruction, Y can denote a set of observed pixels of a corrupted image and H may denote

a set of pixels in the original image whose values need to be inferred from the observation Y D y. In

such cases one needs to compute P.h� ; y/ D maxh P.h; y/ where h� is an assignment to H , called the

MPE assignment, that maximizes P.h; y/. This computation is similar to that of computing the likelihood

of evidence P.y/ D
P

h P.h; y/ and therefore approximations via upper bounds are desired. In contrary,

obtaining lower bounds to P.h�; y/ is immediate because any assignment h0 provides the lower bound

P.h0; y/ which can be easily computed.

Several methods for setting upper bounds were previously suggested, among which we mention Detcher

& Rish (2003) who iteratively remove dependencies between potentials in the model to create mini-buckets,

Weiss, Yanover, & Meltzer (2007) who use linear programming relaxation, and Wainwright, Jaakkola, and

Wilsky (2005) where the upper bounds are the result of a convex combination of trees in the model.

Section 3.1 provided upper bounds on the likelihood of evidence y for some of the variables Y � X .

We now develop upper bounds also to the probability of the most probable assignment h� of H � X

when observing Y D y. Recall that P.h�; y/ D maxh P.y; h/ D maxh

Q

i ‰i .di /. Consequently, Eq. 1

can be replaced with

P.h� ; y/ � max
h

X

i

wi.h/ .‰i.di //
.1=wi.h// (14)

Given a tractable distributionQ.x/ D
Qn

iD1 ˆi .di / and setting weights wi.h/ D
log ˆi .di /

log Q.h;y/
, we can upper

bound P.h�; y/ similarly to Eq. 3, with the difference of replacing the sum over instantiations h with a

maximum over them:

P.h� ; y/ � max
h

X

i

logˆi .di /
P

k logˆk.dk/

Y

m

ˆm.dm/
log ‰i .di /
log ˆi .di / (15)

We use the arithmetic-geometric means inequality, 1
n

P

k logˆk.dk/ �
Q

k Œlogˆk.dk/�
1=n

, where

logˆk.dk/ > 0. To use this inequality we set all potentials ˆi .di / to be greater than 1. The resulting
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tractable upper bound stemming from Eq. 15 is the following:

P.h�; y/ �
1

n
max

h

n
X

iD1

logˆi .di /
Y

m

ˆm.dm/
log ‰i .di /
log ˆi .di /

Œlogˆm.dm/�
1=n

(16)

Consequently, the following theorem holds.

Theorem 3 (upper bound on the MPE). Let H and Y be two disjoint sets of variables such that

H [ Y D X , and let P.x/ and Q.x/ be distributions that factor according to P.x/ D
Qn

iD1 ‰i .di / and

Q.x/ D
Qn

iD1ˆi .di / where di is the projection of the instantiation x to the variables in Di � X . Let h�

be an instance of H for which the probability P.H D h; Y D y/ is maximum. Then,

P.h�; Y D y/ �
1

n

X

i

max
Di

logˆi .di /

2

4max
hnDi

Y

m

ˆm.dm/
log ‰i .di /
log ˆi .di /

Œlogˆm.dm/�
1=n

3

5 : (17)

Proof. The proof is immediate from Eq. 16 where we replace the sum over i with the maximum

over h, recalling that maximum over a sum is smaller than or equal to sum of maxima, and divide the

maximum over h such that first we take maximum over variables in Di and then over the rest of the

variables in H .

Also the generalized bounds on likelihood of evidence given by Eq. 7 extend to the MPE probability,

by replacing the sum over all the instantiations h of H with maximum over these instantiations:

P.h�; Y D y/ �
1

nl

X

i1:::il

max
Di1 :::Dil

"

l
Y

tD1

logˆit .dit /

#

max
hnfDi1 :::Dil

g

Y

m

ˆm.dm/

log
Ql

tD1 ‰it .dit /

l�log
Ql

tD1 ˆit .dit /

Œlogˆm.dm/�
l=n

(18)

Almost in all applications finding the probability of the most probable assignment is not sufficient

and the actual assignment h� is needed. To find an assignment with probability close to the maximum

we utilize the computations of Eq. 17; Denote the assignments that yield the maxima for the terms

maxDi logˆi .di /

"

maxhnDi

Q

m
ˆm.dm/

log ‰i .di /
log ˆi .di /

Œlog ˆm.dm/�1=n

#

by Qh1; : : : ; Qhn. Our heuristic outputs an instantiation Oh D

max. Qh1; : : : ; Qhn/. Other choices that we tried for Oh D f . Qh1; : : : ; Qhn/ such as weighted average have been

found less effective.

Below we apply this method to find high probability assignments for several image models, and

demonstrate the small gap between the probability of the chosen assignments h� and the upper bounds

provided by Eq. 18, indicating that the assignments found are close to being optimal.

Super-resolution and image reconstruction

Obtaining high-resolution images is important in various applications, as in the example of medical

images where seemingly minor details are often helpful to make a correct diagnosis. However, sometime

due to technical limitations or cost considerations the resolution of images is not sufficient. Super-resolution

is the process of obtaining a high-resolution image with more pixels than the original image, improving the

perceived image content compared to that of the low-resolution image (Fig. 5). The super-resolution image

reconstruction methods proved to be useful in medical imaging, satellite imaging, and video applications.

Synthetic zooming of regions of interest is an important application in surveillance, forensic, scientific,

medical, and satellite imaging. For surveillance or forensic purposes, for instance, it is often needed to

magnify objects in the scene such as the face of an individual or the license plate of a car.

Freeman, Pasztor, and Carmichael (2000) modeled super-resolution as a pairwise Markov random field,

which is an undirected model where the joint distribution over the variables is given as a product of pairwise

potentials P.X D x/ D
Qn

iD1  i .xi ; xj / and where Xi and Xj are neighboring variables in the model.

They used a maximum a-posteriori estimation technique to find an assignment of the variables in the model
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FIG. 5. Super-resolution process where each pixel in the low-resolution image corresponds to four pixels in the

high-resolution image.

that yields a sharp image. More specifically, given a low-resolution image y, we are interested in finding

the most probable high-resolution scene x, based on probabilities obtained from an adequate training data.

For that we divide y into n � m patches, which may overlap, and each patch in y has its corresponding

high-resolution patch in x. When modeled as a graph (Fig. 6), every node Yij corresponds to a single patch

in y, and every node Xij is the respective high-resolution patch. In addition, potentials‰ are assigned to the

edges in the graph and reflect the joint probability for every assignment to a pair of neighboring variables.

There are k possible values to each node Xij which are the patches from a training data that best fit the

observed patch. Similar to Freeman et al. (2000) we use overlapping patches, and determine the potential

between two neighboring patches in x based on their overlap agreement: ‰.xij ; xlm/ D eˇ�d
ij
lm where d

ij

lm

is the Euclidean distance in the overlap pixels, and ˇ is a user parameter set to 0:001. For simplicity

we determine the potential of a patch in y and its corresponding high resolution patch in x similarly by

increasing the size of y to that of x and setting: ‰.xij ; yij / D eˇy �d
ij
y where d

ij
y is the Euclidean distance

between xij and yij and ˇy is a user parameter set to 0:01.

The goal of finding the most probable assignment to the variables of x is extremely hard when the graph

contains more than a few hundred variables. Freeman et al. (2000) used loopy belief propagation (Weiss,

1997) to obtain an assignment and use it to reconstruct their images. Although they show an improvement

in the perceived images, it remains a question how close are the assignments they used to the optimal

assignments and thus, how much better they could do.

We used the method described here to find upper bounds on the MPE probability of image reconstruction

models and used the heuristic method described to find an assignment to the variables X in these models.

We found that our method performs well on images with reduced resolution. In particular we tried

the method on images used for medical diagnosis. For example, the low resolution image in Figure 7a

FIG. 6. A Markov network where each node y represents a patch of the observed image, and each node x represents a

high-resolution patch of one patch in y. The potentials j�psi �j.xi ; yi / and j�psi �j.xi ; xj / indicate the dependencies

between nodes.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0129&iName=master.img-105.jpg&w=311&h=137
http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0129&iName=master.img-106.png&w=239&h=129
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FIG. 7. Computed tomography (CT) image example. (a) Low-resolution image. (b) High-resolution image obtained

by our proposed heuristic. (c) Desired high-resolution image.

FIG. 8. Example images from a training set of 20 computed tomography (CT) images used to reconstruct the image

in Figure 7b.

was modeled using a 200 � 200 grid. For candidate patches we used 20 CT images from different parts

of the body, from which four are shown in Figure 8, and considered three possible values (candidates)

for each high resolution node. The corresponding high resolution image retrieved is shown in Figure 7b,

and the assignment that generate this image has a log-probability of �12,989. The upper bound on the

log-probability using our method was �12,562, which is distant 2:6% from the lower bound.
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