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Abstract

Deterministic and stochastic Boolean network models are build for the dy-

namics of negative feedback loops of the p53 pathways. It is shown that the

main function of the negative feedback in the p53 pathways is to keep p53 at

a low steady state level, and each sequence of protein states in the negative

feedback loops, is globally attracted to a closed cycle of the p53 dynamics

after being perturbed by outside signal (e.g. DNA damage). Our theoreti-

cal and numerical studies show that both the biological stationary state and

the biological oscillation after being perturbed are stable for a wide range of

noise level. Applying the mathematical circulation theory of Markov chains,

we investigate their stochastic synchronized dynamics and by comparing the

network dynamics of the stochastic model with its corresponding determin-

istic network counterpart, a dominant circulation in the stochastic model is

the natural generalization of the deterministic limit cycle in the deterministic

system. Moreover, the period of the main peak in the power spectrum, which

is in common use to characterize the synchronized dynamics, perfectly corre-

sponds to the number of states in the main cycle with dominant circulation.

Such a large separation in the magnitude of the circulations, between a dom-

inant, main cycle and the rest, gives rise to the stochastic synchronization

phenomenon.
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I Introduction

Thousands of papers have been reported in the field of p53 protein during the last

three decades since 1979, including both the experimental and theoretical analysis.

p53, the tumor suppressor, transcriptionally activates Mdm2, which in turn targets

p53 for degradation (Piette et al. 1997, Prives et al. 1998, Vogelstein et al. 2000,

Momand et al. 2000, Michael et al. 2003), keeping p53 at a low steady state level.

The low steady state of p53 is essential for normal cell proliferation because p53

induces either cell cycle arrest or programmed cell death. The concentration of p53

increases in response to stress signals, such as DNA damage, inducing a transition

to oscillations of p53 level. Following stress signal, p53 also activates transcription

of several hundred genes, which are involved in the program of cell cycle arrest,

apoptosis, cellular senescence and DNA repair. Therefore, it is important to note

that many additional proteins interact with p53 and Mdm2, so that a number of

positive and negative autoregulatory feedback loops acting upon the p53 response

are embedded inside a network with a few additional interactions (Harris et al.

2005).

Several mathematical models have been proposed to explain the damped oscilla-

tions of p53, either in cell population or in a single-cell, most of which are determin-

istic model of ordinary differential equations (Mihalas et al. 2000, Lev Bar-Or et al.

2000, Monk et al. 2003, Ma et al. 2003, Ciliberto et al. 2005). On the other hand,

the stochastic nature of p53 dynamics has also been observed and caused more and

more interest nowadays (Ma et al. 2003).

However, in many cellular biochemical modelling, a detailed model, whether

the deterministic one based on mass-action law, Michaelis-Menten kinetics and Hill

function, or the stochastic molecular number-based CME(chemical master equa-

tion), is not warranted because of a lack of enough quantitative experimental data.

Alternatively, one can develop discrete state network model, i.e., deterministic and

stochastic Boolean networks, of a complex biological system using the available in-

formation on the activation and repression from one signaling molecules to another,

e.g., the kind of signaling wiring diagram as the Fig. 1 in (Li et al. 2004), where
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Li et. al. have developed a discrete Boolean model by applying the approach of

Hopfield for neural networks for yeast cell-cycle regulatory network with 11 nodes.

The main results of (Li et al. 2004) are that the network is both dynamically and

structurally stable. The biological steady state, known as the G1 phase of a cell

cycle, is a global attractor of the dynamics; the biological pathway, i.e., the return-

ing to G1 phase after perturbation, is a globally attracting dynamic trajectory. The

deterministic Boolean model has been further extended to incorporate stochastic

dynamics (Zhang et al.2006). They found that both the biological steady state and

the biological pathway are well preserved under a wide range of noise level. Fur-

thermore, recently we investigated the synchronized dynamics and nonequilibrium

steady states in the stochastic yeast cell-cycle network (Ge et al. 2007), applying

the mathematical circulation theory of Markov chains(Jiang et al. 2004).

In the present paper, deterministic and stochastic Boolean network models are

build for the dynamics of negative feedback loops of the p53 pathways. It is shown

that the main function of the negative feedback in the p53 pathways is to keep p53 at

a low steady state level, and each sequence of protein states in the negative feedback

loops, is globally attracted to a closed cycle of the p53 dynamics after being per-

turbed by outside signal (e.g. DNA damage). Our theoretical and numerical studies

show that both the biological stationary state and the biological oscillation after

being perturbed are stable for a wide range of noise level. Applying the mathemati-

cal circulation theory of Markov chains, we investigate their stochastic synchronized

dynamics and by comparing the network dynamics of the stochastic model with

its corresponding deterministic network counterpart, a dominant circulation in the

stochastic model is seen to be the natural generalization of the deterministic limit

cycle in the deterministic system.

It is shown that a large separation in the magnitude of the circulation, between

a dominant main cycle and the rest, gives rise to the stochastic synchronization

phenomenon and the stochastic global attractive behavior, and moreover the power

spectrum of the trajectory has a main peak, whose period converges just to the num-

ber of states in the dominant cycle. Furthermore, the net circulation of the dominant

cycle increases monotonically with the noise-strength parameter β, approaching its

deterministic limit; while the circulation of all the other cycles approaches zero very

fast when β is quite large. Together, these observations provide a clear picture of the

nature of the synchronization and stochastic limit cycles in a stochastic network in
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terms of the probabilistic circulation of NESS (nonequilibrium steady states) (Jiang

et al. 2004).

For the completeness of the work, in supporting information, we give a theoretical

sketch of some relevant results on biological networks, including a classification of

the deterministic and stochastic Boolean networks and their correspondence. Also a

short introduction of the mathematical theory of stochastic circulation for Markov

chains is introduced and applied to deterministic and stochastic networks. It is

shown that the stochastic Boolean network is reversible if and only if the matrix T

in the model is symmetric, and the net NESS circulation is strictly positive as long

as the probability of the directed cycle is larger than that of its reversal.

II Boolean network approach

Since the influential work of J.J. Hopfield in 1980s’ (Hopfield 1982, Hopfield 1984),

the deterministic Boolean (Hopfield) network has been applied to various fields of

sciences. Amit (Amit 1989) has introduced a temperature-like parameter β that

characterizes the noise in the network and constructed a probabilistic Boolean net-

work called Boltzmann machine. The deterministic and stochastic Boolean networks

have found wide range of applications in biological networks.

In our model, the states of the nodes(proteins, DNAs or RNAs) in the network

at the n-th step are represented by variables Xn = (X1
n, X

2
n, · · · , X

N
n ) respectively,

where N is the number of nodes in the network. Each node i has only two values,

X i
n = 1 and X i

n = −1, representing the active state and the reset state of this node

respectively.

Deterministic Boolean network model:

The deterministic model consider in the present paper is a deformation of model

A1 in supporting information. Let us supposeN is a fixed integer, S = {1, 2, · · · , N}.

We take the state space as {−1, 1}S. Denote the state of the n-th step as Xn =

(X1
n, X

2
n, · · · , X

N
n ), then the dynamic is as follows:

If Xn 6= (−1,−1, · · · ,−1), then

X i
n+1 =







sign(Hi), if
∑N

j=1 TijX
j
n 6= Ui;

X i
n, if

∑N
j=1 TijX

j
n = Ui;

(1)
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where the function sign(x) =















1 x > 0;

0 x = 0;

−1 x < 0,

Hi =
∑N

j=1 TijX
j
n − Ui is the input to

the i-th node and Ui (1 ≤ i ≤ N), given a priori, are called the threshold of the i-th

unit.

And if Xn = (−1,−1, · · · ,−1), then Xn+1 = Xn when the parameter γ = 0 rep-

resenting that the system is under normal environment, andXn+1 = (1,−1,−1, · · · ,−1)

when the parameter γ = 1 representing there are some perturbation(signal) of the

system (e.g. DNA damage) emerge.

Stochastic Boolean Network model:

The stochastic model consider in the present paper is a deformation of model

C in supporting information, which is similar to the model in (Ge et al. 2007).

Consider a Markov chain {Xn = (X1
n, X

2
n, · · · , X

N
n ), n = 0, 1, 2, · · · } on the state

space {−1, 1}S, with transition probability given as follows:

P (Xn+1|Xn) =
N
∏

i=1

Pi(X
i
n+1|Xn), (2)

where

Pi(X
i
n+1|Xn) =

exp(βX i
n+1Hi)

exp(βHi) + exp(−βHi)
,

in which Hi =
∑N

j=1 TijX
j
n − Ui is the input to the i-th node, if

∑N
j=1 TijX

j
n 6= Ui

and Xn 6= (−1,−1, · · · ,−1) or i ≥ 2,

Pi(X
i
n+1|Xn) =







1
1+e−α , X i

n+1 = X i
n;

e−α

1+e−α , X i
n+1 = 1−X i

n,

if
∑N

j=1 TijX
j
n = Ui and Xn 6= (−1,−1, · · · ,−1) or i ≥ 2, and

P1(X
i
n+1|Xn) =







1− γ, X i
n+1 = X i

n,

γ, X i
n+1 = 1−X i

n,

if Xn = (−1,−1, · · · ,−1), where the parameter 0 ≤ γ ≤ 1 still represents the

stochastic perturbations of the system from extracellular environment.

In the above equation, α(> 0), β(> 0), Tij and Ui (1 ≤ i, j ≤ N) are parameters

of the model. The positive temperature-like parameter β represents noise in the

system from the perspective of statistical physics (Amit 1989, Zhang et al. 2006).

Noticeably, the actual noises within a cell might not be constant everywhere, but here
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we use a system-wide noise measure for simplicity. To characterize the stochasticity

when the input Hi to a node is zero, we have to introduce another parameter α.

This parameter controls the likelihood for a protein to maintain its state when there

is no input to it.

The previous parameters β and α represent the intracellular noise due to ther-

modynamic fluctuations, and on the other hand, we need another parameter γ to

characterize the extracellular signal strength with appropriate stochasticity. Since

the signal is not purely disordered, we can not express the probability P1(X
i
n+1|Xn)

when Xn = (−1,−1, · · · ,−1) as the exponential form analogous to the Boltz-

mann distribution, hence we directly regard γ as the probability transiting from

(−1,−1, · · · ,−1) to (1,−1, · · · ,−1).

In our models below, Tij = 1 for a arrow from protein j to protein i, and

Tij = −1 for a horizontal bar instead of arrowhead from protein j to protein i(Fig.

1, 2). And it is indispensable to point out that self-connections haven’t been taken

into consideration in our models for simplicity.

Similar to Proposition II.6 in supporting information, with the same initial dis-

tribution, when γ → 0, and α, β → ∞, then the stochastic Boolean network model

converges to the corresponding deterministic Boolean network model with parame-

ter γ = 0; and when γ → 1, and α, β → ∞, then the stochastic Boolean network

model converges to the corresponding deterministic Boolean network model with

parameter γ = 1.

III Steady states and synchronized dynamics of

the p53 pathways

From biochemical perspective, the microscopic variables for a cellular regulatory

network are the concentrations, or numbers, of various mRNAs, regulatory pro-

teins, and cofactors. If all the biochemistry were known, then the dynamics of such

a network would be represented by a chemical master equation (McQuarrie 1967,

Gillespie 1977). Unfortunately, much of the required information is not available,

nor such a “fully-detailed” model will always be useful. Phenomenologically the

concentrations of key players of a biochemical regulatory network can often be re-

duced to two or three states, such as resting state, activated state, inactivated state,

6



etc. (Fall et al. 2002). The interactions between these states are usually determined

from experimental data.

The present study will build simple deterministic and stochastic Boolean network

models for several negative feedback loops of the p53 pathways, and more impor-

tant, provides a sound mathematical explanation of the synchronized dynamics and

stochastic limit cycles in the stochastic Boolean network model after being perturbed

by stress signals, in terms of the theory of nonequilibrium circulations (Jiang et al.

2004). This makes the description of pathway more definite and penetrating.

III.1 The core regulation

Negative feedback loops, composed of one transcription arm and one protein-interaction

arm, are a common network motif across organisms. p53, the tumor suppressor,

transcriptionally activates Mdm2, which in turn targets p53 for degradation. Al-

though it is believed that the existence of negative feedback loop in biological systems

can always gives rise to oscillations, yet it is not sufficient for the appearing of a

limit cycle in the deterministic ODE model from the mathematical point of view.

A bit out of expectation is, if we use the deterministic Boolean network even

to the simplest case(Fig.1), the existence of negative feedback already gives rise to

a limit cycle corresponding to oscillations in a biological system, when there exists

the outside signal (i.e. γ = 1). Fig 1.

Model: From Section II(For Fig.1).

The first node X1
n: p53; and the second node X2

n: Mdm2.

N = 2 is the number of nodes in the model. For simplicity, we set thresholds as

U1 = U2 = 0. And the interacting matrix

T =





0 −1

1 0





The deterministic model with γ = 0 has a global attractor (−1,−1), which

corresponds to the fact that the main function of the negative feedback between p53

and Mdm2 is to keep p53 at a low steady state level in normal cells.

On the other hand when γ = 1, the deterministic model has a unique limit cycle

consist of 4 state, which is described by Table 1. It corresponds to the fact that the

stress signal (e.g. DNA damage) will activate the protein p53(i.e. time-2 point in
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Table 1) and induce a transition to oscillations of p53 level after being perturbed

from the outside environment.

Time p53 Mdm2

1 1 -1

2 1 1

3 -1 1

4 -1 -1

Table 1: Cycle evolution of the protein states in the negative feedback loop of p53

and Mdm2 after being perturbed.

Moreover, as long as the stress signal strength γ is sufficiently low (0 < γ << 1)

or sufficiently high (0 < 1− γ << 1), the stochastic Boolean network model would

preserve the dynamics of the corresponding deterministic model at a certain low

level of noise. As it illustrates the same phenomenon as the Cyclin G/Mdm-2 loop

given below, so we won’t show the data here.

Similar model can also be built and analyzed exactly by the same reasoning, to

other ubiquitin ligases that promote p53 ubiquitination and subsequent proteasomal

degradation (Fig. 10 in Harris et al. 2005). We only use the simplest example as a

start, and pass directly to a really delicate interesting case.

III.2 Cyclin G/Mdm2 loop
Fig 2.

Model: From Section II.

The first node X1
n: p53; The second node X2

n: cyclin G; The third node X3
n:

PP2A cyclin G; The last node X4
n: Mdm-2.

N=4 is the number of nodes in the model. For simplicity, we set thresholds as

U1 = U2 = U3 = U4 = 0. And from Fig.2, the interacting matrix

T =















0 0 0 −1

1 0 0 0

0 1 0 0

1 0 1 0















.

The deterministic model with γ = 0 has a global attractor (−1,−1,−1,−1),

which corresponds to the fact that p53 is kept at a low steady state level in normal
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cells.

On the other hand, the deterministic model when γ = 1 has a unique limit cycle

consist of 8 state, which is described by Table 2. It corresponds to the fact that the

stress signal (e.g. DNA damage) will activate the protein p53(i.e. time-2 point in

Table 2) and induce a transition to oscillations of p53 level after being perturbed

from the outside environment, which roughly corresponds to the p53 pathway or

biological trajectory described in (Harris et al. 2005) “One of the most active of the

p53-responsive genes is the cyclin G gene. It is rapidly transcribed to high levels

after p53 activation in a wide variety of cell types.”(i.e. Time-3 point in Table 2)

“The cyclin G protein makes a complex with the PP2A phosphatase, which removes

a phosphate residue from Mdm-2, which is added to the Mdm-2 protein by a cdk

kinase” (i.e. Time-4,5 points in Table 2). Our language in the present paper is more

definite and penetrating than the quotations.

Time p53 Cyclin G PP2A Cyclin G Mdm-2

1 (-1 -1 -1 -1)

2 (1 -1 -1 -1)

3 (1 1 -1 -1)

4 (1 1 1 -1)

5 (1 1 1 1)

6 (-1 1 1 1)

7 (-1 -1 1 1)

8 (-1 -1 -1 1)

Table 2: Cycle evolution of the protein states in the Cyclin G/Mdm-2 loop after

being perturbed.

Numerical Simulation of the stochastic Boolean network model

The numerical results about the cyclic motion of this stochastic model are quite

similar to the stochastic Boolean network model of the cell-cycle, which we have

recently discussed (Ge et al. 2007). The main conclusion is that, given the struc-

ture of the negative feedback present in Fig. 2, the stochastic model still exhibits

well pronounced oscillations after being seriously perturbed, which is excellently

characterized by the circulation theory introduced in the supporting information.

Numerical computations for the current model(Fig.2), are carried out with the
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famous Gillespie’s method (Gillespie 1977) of the stochastic Boolean network model

using MATLAB, and the results are given in the following figures. The network

with 4 binary nodes has a total of 24 = 16 number of states. Here, we can present

the dynamics of the network in terms of the integer states 0, 1, 2, · · · , 24 − 1 = 15

on a line. This 1-d system is reversible if and only if the 4-d system is reversible.

Fig. 3 are the basic behavior of a random trajectory. The upper panel shows

that there arises the phenomenon of local rapid synchronization like that observed

in (Hopfield 1995) during a very short time period after the value of γ transits

from 0.01 to 0.99 at time n = 50, when β and α are sufficiently large. The lower

panel is a random trajectory over a longer time. Little deviation is shown from the

deterministic trajectory in Table 2 after being perturbed at time n = 50, which

implies that the stochastic model still leads to well pronounced oscillations when

the perturbation from the environment is sufficiently high. Fig 3.

Fig. 4 shows the stationary distribution of the state (−1,−1,−1,−1) in the

stochastic model which increasingly approaches 1 when β tends to infinity. This ex-

cellently corresponds well to the dynamics of the deterministic model when γ = 0.

At large β (low temperature or small noise level), the low level state (−1,−1,−1,−1)

is the most probable state of the system. So analogous to the concept of the deter-

ministic model, this state (−1,−1,−1,−1) can be regarded as the global attractor

of the stochastic model. Moreover, one observes a phase-transition like behavior

of the stationary distribution of the state (−1,−1,−1,−1) while varying the noise

level β (similar behavior has been seen in (Qu et al. 2002)). Fig 4.

Then we turn to investigate the synchronized dynamics when the signal pa-

rameter γ is sufficiently high(i.e. 0 < 1 − γ << 1). The keys to understand

synchronization behavior in stochastic Boolean network models are (i) establishing

a correspondence between a stochastic dynamics and its deterministic counterpart;

and (ii) identifying the cyclic motion in the stochastic models.

As there is a growing awareness and interest in studying the effects of noise in

biological networks, it becomes more and more important to quantitatively char-

acterize the synchronized dynamics mathematically in stochastic models, because

the concepts of limit cycle and fixed phase difference no longer holds in this case.

Instead, physicists and biologists always have to characterize synchronized dynam-

ics by the distinct peak of some spectrum or just only by observing the stochastic

trajectories, which however may cause ambiguities in the conclusion. Therefore,

10



a logical generalization of limit cycle to the stochastic model is well worth to be

developed.

In case of the stochastic models of biological networks, there does exist a rather

complete mathematical theory for the cyclic motion of the corresponding Markov

chains, which has been developed for more than twenty years (Jiang et al. 2004,

Kalpazidou 1995). One of the most important concepts in this mathematical theory

of NESS is the circulation, which corresponds to the cycle kinetics in open chemical

systems (Hill 1989, Qian 2005). The details of mathematical theory is supplied in

the supporting information.

To further characterize the synchronized dynamics, we give Fig. 5 which shows

the Fourier power spectrum of the stochastic trajectory with different values of

β respectively. Using MATLAB, the discrete Fourier transform for time series

{x1, x2, · · · , xn} is defined as

ym =

∣

∣

∣

∣

∣

n
∑

k=1

xke
−i(2π/n)(m−1)(k−1)

∣

∣

∣

∣

∣

,

(

m− 1

n
2π, 1 ≤ m ≤ n

)

. (3)

Therefore, by the Herglotz theorem (Qian et al. 1997 p. 331), the power spectrum

of discrete trajectory has a symmetry ym = yn+2−m. For different sets of parameters,

we found all the calculations give the same outstanding main peak in the Fig. 5. It

is important to mention here that by ergodicity, different trajectories give the same

power spectrum for any β that is sufficiently large. Fig 5.

The single dominant peak in Fig. 5 implies there exists a global synchronization

and a globally attractive phenomenon. Note that by representating our maps, one-

to-one, from the N binary nodes to the integers 0 − 15, the synchronized behavior

is preserved. It is possible that the map will cause some distortion in the power

spectrum.

To further illustrate the synchronized behavior, Fig. 6 shows the power spectra

of all the 4 individual nodes in the network. While subtle details are different, all ex-

hibit the dominant peak, similar to that of the overall dynamics. This demonstrates

further that synchronized dynamics is presented in the network. Fig 6.

Fig. 7 plots the magnitude and the period of the dominant peak of the power

spectrum in Fig. 5 respectively, as functions of the noise strength, i.e., the parameter

β. It shows, as we have predicted, that the period converges to 8 which corresponds

perfectly to the number of states in the main cycle of Table 2 when β is large. We

also put error bars on the upper panel of Fig. 7 with various values of β. Fig 7.
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Finally, Fig. 8 shows how the net circulation of the dominant, main cycle varies

with β, applying the determinant presentation of circulations according to Theorem

II.4 in the supporting information. Note that circulation is just the time-averaged

number of appearance of certain cycle along the stochastic trajectory of our model,

and net circulation is just the difference between the circulations along the positive

direction and negative direction of a specific cycle. It is clearly seen that the net

circulation of the main cycle increases monotonically to 1
8
that is just the reciprocal

of the number of states in the main cycle, which implies the appearing of more

and more distinct synchronization and global attractive behavior with increasing

β. The direction of the net circulation does not change. It is also found that the

circulation of negative direction along the main cycle is always quite low compared

to the circulation of positive direction. Fig 8.

The net circulations of all the cycles are very small when β and α are near zero,

since the system is close to equilibrium(reversible) state when α = β = 0 according

to lemma II.9 in supporting information.

For large β, the net circulations of all the cycles except the main cycle are also

very small by numerical simulation using the determinant expression in Theorem

II.4 of supporting information. All the circulations of non-main cycles actually de-

crease with increasing β when β is large. Examples are shown in Fig. 9. This large

separation in the magnitudes of the weights gives rise to the stochastic synchro-

nization, and this stochastic limit cycle can be defined as a “stable” one, whose

attractive domain is global. Fig 9.

As in (Zhang et al. 2006, Ge et al. 2007), we also notice that there exists an

inflection point in the curve in Fig. 8. This implies a cooperative transition of

the net circulation of the main cycle while varying the noise level β, which equiv-

alently means some sort of “phase transition” around β = 2 from chaotic fluctu-

ations(period=infinity) at small β to periodic fluctuations (period=8) at large β.

Certainly, the implication of this observation remains to be further elucidated.

IV Discussion

From detailed models to simplified Boolean network approach

Deterministic nonlinear mathematical models, based on the Law of Mass Action,

have been traditionally used for biochemical reaction networks. Furthermore, noises
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are unavoidable in small biochemical reaction systems such as those inside a single

cell. Stochastic models with chemical master equations (CME) (McQuarrie 1967,

Van Kampen 1981) should be developed, which has already provided important

insights and quantitative characterizations in some cases of the biochemical system

(Fox et al. 1994, Fox 1997, Zhou et al. 2005). Ref. (Wilkinson 2006) is a good

introduction to the stochastic modelling in biology.

In many cellular biochemical modelling, it is impossible to build a detailed,

molecular number-based CME model due to a lack of quantitative experimental

data. Thus, one often seeks a simplified network model based on simple binary

states of the signaling molecules. This leads to the Boolean, Markov network model

of the p53 pathways we studied in the present paper.

Modelling the oscillatory dynamics of p53 pathways after being per-

turbed

The realization that p53 is a common denominator in human cancer has stim-

ulated an avalanche of research since 1989. The p53 gene can integrate numerous

signals that control cell life and death, and damped oscillations for p53 and Mdm2

has been observed and modeled (Lev Bar-Or et al. 2000, Ma et al. 2003). The

Boolean network models built in the present paper, which omit some parameters

to represent the degradation of the p53 protein in cells, only try to explain the

mechanism of the oscillatory behavior of the p53 dynamics after being perturbed by

stress signals rather than exhibiting the damped oscillations. The signal parameter

γ plays a very important role in the model similar to the cell cycle model in (Ge et

al. 2007), which can induce the level of p53 from a low steady state to oscillated

behaviors.

On the other hand, ideally, one should try to combine these Boolean network

models of negative feedback loops together to construct a clear and integrated picture

of the p53 pathways, maybe especially including several positive feedback loops

(Harris et al. 2005). But unfortunately we haven’t developed a reasonable way to

do so.

Synchronization and circulation in stochastic Boolean network

Synchronization is an important characteristics of many biological networks

(Strogatz 2003, Winfree 2000) whose dynamics has been modelled traditionally by

deterministic, coupled nonlinear ordinary differential equations in terms of regu-

latory mechanisms and kinetic parameters (Murray 2002, Fall et al. 2002). Two
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important classes of biological networks which have attracted wide attentions in

recent years are neural networks (Scott 2002) and cellular biochemical networks

(Goldbeter 1996).

As we know, the occurrence of a deterministic limit cycle in an ODE model is

the hallmark of a synchronization phenomenon, while such a definite concept no

longer holds in a stochastic system. It is observed that in our present model of p53

pathways, the trajectory concentrates around a main cycle, which we call stochastic

limit cycle and is very similar to in many aspects the limit cycle of a deterministic

model. Furthermore, the present work shows that the circulation in an irreversible

Markov chain (Jiang et al. 2004) is a reasonable generalization of the concept of

deterministic limit cycles, and provides a sound mathematical explanation of the

synchronization in the stochastic Boolean network model.

Stability and robustness of the p53 genetic networks

Biological functions in living cells are controlled by protein interaction and ge-

netic networks, and have to be robust to function in complex (and noisy) environ-

ments. More robustness would also mean being more evolvable, and thus more likely

to survive.

More precisely, these molecular networks should be dynamically stable against

various fluctuations which are inevitable in the living world. Therefore, the stability

and robustness of Boolean network model can not be determined if the noise hasn’t

been introduced into the model, since it is not reasonable to simply apply the Eu-

clidean topology in mathematics to such a real biological discrete model not to say

the magnitudes of the different attractive basins of fixed states and limit cycles as

in the deterministic models. For instance, the recent analysis of stochastic cell-cycle

Boolean networks (Ge et al. 2007, Zhang et al. 2006) just claimed the stability and

robustness of the previous deterministic model (Li et al. 2004), in which Li, et.al.

announced but didn’t really investigate the robustness of this model against pertur-

bation. Hence, the numerical and theoretical studies in the present paper in some

sense excellently exhibit the stability and robustness of the p53 genetic networks.
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Figure 2: Cyclin G/Mdm2 loop, redrawn from (Fig. 8 in Harris et al. 2005).
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Figure 3: Stochastic trajectory and synchronization of the Cyclin G/Mdm-2 loop.

Simulations are carried out with the parameters α = 5, β = 5 and the values of γ

transits from 0.001 to 0.999 at time n = 50.
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Figure 4: Stationary distribution of the state (−1,−1,−1,−1) in the stochastic

model. Simulations are carried out with the parameters α = 5 and γ = 0.001.
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Figure 5: Power spectrum of the overall trajectory in the Cyclin G/Mdm-2 loop

with the parameter α = 5 and γ = 0.999 fixed, and with different β: blue: β=2.4;

green: β=4.8; red: β = 6. The discrete Fourier transform causes an alias; hence the

spectrum is symmetric with respect to π on the [0, 2π] interval.
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Figure 6: Power spectra of individual nodes in the Cyclin G/Mdm-2 loop show a

synchronization among all the nodes with the parameter α = 5 and γ = 0.999 fixed,

and different β: blue: β=2.4; green: β=4.8; red: β=6.
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Figure 7: Magnitude and period of the dominant power-spectral peak as functions of

β in the Cyclin G/Mdm-2 loop, with α = 5 and γ = 0.999. In the upper panel, the

magnitude of the dominant power-spectral peak is averaged over 20 simulations. The

solid curve is the mean, and the dotted curves are the mean ± standard deviation.

The period approaches to 6 (the horizonal line) with increasing β.
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Figure 8: Net circulation of the main cycle in the Cyclin G/Mdm-2 loop as a function

of the noise strength, β, with the parameter α = 5 and γ = 0.999 fixed.
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Figure 9: Net circulation of several other cycles in the Cyclin G/Mdm-2 loop as a

function of the noise strength, β, with the parameter α = 5 and γ = 0.999 fixed.
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I Theoretical Sketch of Some Relevant Results on

Deterministic and Stochastic Boolean Networks

This section is mainly restated from (Ge et al. 2007).

We first give a brief account of the deterministic Hopfield networks and its

stochastic incarnation, the stochastic Boolean networks (sometimes called Boltz-

mann machines). They can be mainly categorized into several classes as follows

(Amit 1989).

Let us suppose N is a fixed integer, S = {1, 2, · · · , N}. We take the state space

as {−1, 1}S.

Model A: deterministic

A1 (discrete time, synchronous, McCulloch-Pitts): Denote the state of the n-th
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step as Xn = (X1
n, X

2
n, · · · , X

N
n ), then the dynamic is

X i
n+1 = sign1

(

N
∑

j=1

TijX
j
n − Ui

)

, if

N
∑

j=1

TijX
j
n 6= Ui; (1)

and if
∑N

j=1 TijX
j
n = Ui, then X i

n+1 randomly choose 1 or −1 with probability 1
2

respectively. Ui (1 ≤ i ≤ N), given a priori, are called the threshold of the ith unit.

A2 (continuous time, synchronous): Every state has an exponentially distributed

stochastic waiting-time, with mean waiting-time λ−1, then chooses the next state

by the same rule of model A1.

A3 (discrete time, asynchronous, Hopfield): The neurons are updated one by

one, in some prescribed sequence, or in a random order. If the previous state σ

satisfies
∑N

j=1 Tijσj > Ui, then σi changes to be 1, otherwise changes to be −1.

A4 (continuous time, asynchronous): Every state has an exponentially dis-

tributed stochastic waiting-time, with rate constant λ, then chooses the next state

by the same rule of model A3.

Remark I.1 Note that by deterministic, we mean the transition from one state to

the next is deterministic. But the systems with continuous-time will still behave

stochastically due to the Poisson nature in the transition time.

Model B: stochastic Boolean networks

B1 (discrete time, synchronous): Consider the Markov chain

{Xn = (X1
n, X

2
n, · · · , X

N
n ), n = 0, 1, 2, · · · } (2)

1The function sign(x) =































1 x > 0;

0 x = 0;

−1 x < 0.
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on state space {−1, 1}S, with transition probability given as follows: for each pair

of states σ, η ∈ {−1, 1}S, the probability transiting from σ to η

pση =
N
∏

i=1

exp(βηi(
∑N

j=1 Tijσj − Ui)

exp(β(
∑N

j=1 Tijσj − Ui)) + exp(−β(
∑N

j=1 Tijσj − Ui))
, (3)

where β(> 0), Tij and Ui (1 ≤ i, j ≤ N) are parameters of the model.

B2 (continuous time, synchronous): Consider the continuous-time Markov chain

{ξt : t ≥ 0} on state space {−1, 1}S. Every state waits an exponential time with

meantime λ−1 until choosing the next state by the rule of modelB1. So the transition

density matrix is

qση = λpση, ∀ σ, η ∈ {−1, 1}S. (4)

B3 (discrete time, asynchronous): Denote σi to be the new state which changes

the sign of the ith coordinate of σ. Consider the Markov chain {Xn = (X1
n, X

2
n, · · · , X

N
n ), n =

0, 1, 2, · · · } on state space {−1, 1}S. The neurons are updated one by one, in some

prescribed sequence, or in a random order. Then choose the next state according to

the probability:

pσσi =
exp(βσi(

∑N
j=1 Tijσj − Ui))

exp(β(
∑N

j=1 Tijσj − Ui)) + exp(−β(
∑N

j=1 Tijσj − Ui))
, σ ∈ {−1, 1}S,

where β > 0; and pση = 0, if η 6= σi for each i.

B4 (continuous time, asynchronous): Every state waits an exponential time

with meantime λ−1 until choosing the next state by the rule of model B3. So the

transition density matrix is

qσσi = λpσσi , ∀σ ∈ {−1, 1}S. (5)

The third class given below is a variant of the model B1. It is included here since

it is the model used for the probabilistic Boolean network of cell-cycle regulation in

3



(Ge et al. 2007).

Model C: deformation

Fix α > 0. Consider a new Markov chain {Xn = (X1
n, X

2
n, · · · , X

N
n ), n =

0, 1, 2, · · · } on the state space {−1, 1}S taking the model B1 as defined initially,

with transition probability given as follows:

P (Xn+1|Xn) =

N
∏

i=1

Pi(X
i
n+1|Xn), (6)

where we define

Pi(X
i
n+1|Xn) =































exp(βXi
n+1

(
PN

j=1
TijX

j
n−Ui))

exp(β(
PN

j=1
TijX

j
n−Ui))+exp(−β(

PN
j=1

TijX
j
n−Ui))

if
∑N

j=1 TijX
j
n 6= Ui

1
1+e−α if

∑N
j=1 TijX

j
n = Ui and X i

n+1 = X i
n

e−α

1+e−α if
∑N

j=1 TijX
j
n = Ui and X i

n+1 = 1−X i
n.

Remark I.2 The model C differs from B1 when
∑N

j=1 TijX
j
n − Ui = 0, and the

latter is also a special case of the former when α = 0.

II Mathematical Circulation Theory of Network

Nonequilibrium Steady States

This section is also mainly restated from (Ge et al. 2007), ignoring those detailed

proofs.

There are many different approaches to the theory of nonequilibrium statistical

mechanics in the past (Nicolis et al. 1977, Keizer 1987), mathematical theories of

which have emerged in the last two decades, and Jiang et.al. have summarized

their results of this theory in a recent monograph (Jiang et al. 2004). The most
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important concepts in the theory are (i) reversibility of a stationary process that

corresponds to thermodynamic equilibrium, and (ii) the circulation in a stationary

process which corresponds to NESS. A key result of the theory is the circulation

decomposition of NESS.

II.1 Circulation theory of nonequilibrium steady states

Hill (Hill 1989) constructed a theoretical framework for discussions of vivid metabolic

systems, such as active transport, muscle contractions, etc. The basic method of

his framework is diagram calculation for the cycle flux on the metabolic cycles

of those systems (Hill 1989). He successively found that the result from diagram

calculation agrees with the data of the numbers of completing different cycles given

by random test (Monte Carlo test), but did not yet prove that the former is just

the circulation rate in the sense of trajectory of a corresponding Markov chain.

In Chapter 1 and 2 of (Jiang et al. 2004), Markov chains with discrete time and

continuous time parameter are used as models of Hill’s theory on circulation in

biochemical systems. The circulation rate is defined in the sense of trajectories and

the expressions of circulation rate are calculated which coincide with Hill’s result

obtained from diagrams. Hence the authors verify that Hill’s cycle flux is equivalent

to the circulation rate defined in the sense of trajectories.

Below we only state the circulation theory of discrete-time Markov chains, and

refer to Chapter 2 in (Jiang et al. 2004) for the quite similar circulation theory of

continuous-time Markov chains.

First of all, we state the main results, rewritten in terms of the cycle representa-

tion of stationary homogeneous Markov chains (Kalpazidou 1995, Theorem 1.3.1),

5



which is analogous to the Kirchoff’s current law and circuit theory in the networks

of master equation systems (Schnakenberg 1976).

Theorem II.1 Given a finite oriented graph G = (V,E) and the weight on every

edge {we > 0 : e ∈ E}. If the weight satisfies the balance equation(input=output)

∑

e+=i

we =
∑

e−=i

we, ∀i ∈ V, (7)

then there exist a positive function defined on the oriented cycles {wc : c = (e1, e2, · · · , ek), k ∈

Z+}, such that

we =
∑

e∈c

wc, ∀e ∈ E. (8)

For a finite stationary Markov chain X with finite state space S = {1, 2, · · · , N},

transition matrix P = {pij : i, j ∈ S} and invariant distribution π̄ = {π1, π2, · · · , πN},

one can take its state space to be the group of vertexes, and E = {e : e− =

i, e+ = j, pij > 0} with weight {we = πipij}. Then notice that (7) is satisfied, since

∑

j pij = 1 for each i and

∑

j

πipij = πi =
∑

j

πjpji, ∀i ∈ V,

we can conclude that

Corollary II.2 (cycle decomposition) For an arbitrary finite stationary Markov

chain, there exists a positive function defined on the group of oriented circuits

{wc : c = (i1, i2, · · · , ik), k ∈ Z+} such that

πipij =
∑

c

wcJc(i, j), ∀i, j ∈ V, (9)

where Jc(i, j) is defined to be 1 if the cycle c includes the path i → j, otherwise 0.

6



Definition II.3 wc is called the circulation along cycle c.

For any i, j ∈ S, i 6= j,

πipij − πjpji =
∑

c

(wc − wc
−

)Jc(i, j), (10)

where c− denotes the reversed cycle of c. Equation (10) is called the circulation

decomposition of the stationary Markov chain X , and the difference between

the circulations of positive direction and negative direction along the cycle c (i.e.

wc − wc
−

) is called the net circulation of cycle c, which actually represents the

true flux of this cycle.

It can be proved that generally the circulation decomposition is not unique, i.e.

it is possible to find another set of cycles C and weights on these cycles {wc|c ∈ C}

which also fit (10).

However, the most reasonable choice of circulation definition is the one defined

in the sense of trajectories form the probabilistic point of view. Along almost every

sample path, the Markov chain generates an infinite sequence of cycles, and if we

discard every cycle when it is completed and at the meantime record it down, then

we can count the number of times that a specific cycle c is formed by time t, which

we denote by wc,t(ω).

The following theorem is recapitulated from Theorem 1.3.3 in (Jiang et al. 2004).

Theorem II.4 Let Cn(ω), n = 0, 1, 2, · · · , be the class of all cycles occurring until

n along the sample path {Xl(ω)}. Then the sequence (Cn(ω), wc,n(ω)/n) of sam-

ple weighted cycles associated with the chain X converges almost surely to a class

7



(C∞, wc), that is,

C∞ = lim
n→+∞

Cn(ω), a.e. (11)

wc = lim
n→+∞

wc,n(ω)

n
, a.e. (12)

Furthermore, for any directed cycle c = (i1, i2, · · · , is) ∈ C∞, the weight wc is given

by

wc = pi1i2pi2i3 · · · pis−1ispisi1
D({i1, i2, · · · , is}

c)
∑

j∈S D({j}c)
. (13)

where D = {dij} = I − P = {δij − pij} and D(H) denotes the determinant of D

with rows and columns indexed in the index set H. The function δij =















0, i 6= j;

1, i = j,

is the well known Kronecker delta function.

It is important to emphasize that the circulations defined in the above theorem

also satisfy the circulation decomposition relation (10).

The above theorem not only rigorously confirms the Hill’s theory, but also gives

a prior substitute method of the widely used diagrammatic method. The complexity

of directed diagrams and cycles increases rapidly with the number of states in the

model, while the determinant interpretation is much more systematic and easy to

be applied using the mathematics softwares. But it will still cost excessive time to

compute these determinants if there are hundreds of states in the model.

Luckily, a Monte Carlo method using the so-called derived chain method

(Section 1.2 in Jiang et al. 2004) to compute the cycle fluxes has already been

developed according to the above theorem, the main idea of which is just simply to

discard every cycle when it is completed and at the meantime record it down so as

to count the number of times that a specific cycle c is formed by time t(i.e. wc,t(ω)).

8



Then when the time t is long enough, one gets the approximated circulation of the

cycle c (i.e. wc ≈
wc,t(ω)

t
).

Recently, the Boolean yeast cell-cycle network model discussed in (Ge et al.

2007) has 2048 states and it is found that the Monte Carlo method is much more

efficient than the method of determinant interpretation, because the latter is even

impossible to be applied to such a large model upon a normal computer.

The relationship between circulation and NESS is as follows, which is recapitu-

lated from Theorem 1.4.8 in (Jiang et al. 2004).

Theorem II.5 Suppose that X is an irreducible and positive-recurrent stationary

Markov chain with the countable state space S, the transition matrix P = (pij)i,j∈S

and the invariant probability distribution Π = (πi)i∈S, and let {wc : c ∈ C∞} be the

circulation distribution of X, then the following statements are equivalent:

(i) The Markov chain X is reversible.

(ii) The Markov chain X is in detailed balance, that is,

πipij = πjpji, ∀i, j ∈ S.

(iii) The transition probability of X satisfies the Kolmogorov cyclic condition:

pi1i2pi2i3 · · · pis−1ispisi1 = pi1ispisis−1
· · · pi3i2pi2i1 ,

for any directed cycle c = (i1, · · · , is).

(iv) The components of the circulation distribution of X satisfy the symmetry con-

dition:

wc = wc
−

, ∀c ∈ C∞.

Consequently, when the system is in a nonequilibrium steady state, there exists

at least one cycle, containing at least three states, round which the circulation rates

9



of one direction and its opposite direction are asymmetric (unequal), so as to cause

a net circulation of the cycle. In theoretic analysis, if there is a large separation in

the magnitude of the circulation, between few dominant, main cycles and the rest, it

gives rise to the stochastic synchronization phenomenon and helps to distinguish the

most important main biological pathways, which can be observed in experiments.

II.2 Applied to deterministic and stochastic Boolean net-

works

The keys to understand synchronization behavior in stochastic models are (i) es-

tablishing a correspondence between a stochastic dynamics and its deterministic

counterpart; and (ii) identifying the cyclic motion in the stochastic models.

In the framework of the stochastic theory, deterministic models are simply the

limits of stochastic processes with vanishing noise. This is best illustrated in the

following proposition.

Proposition II.6 With the same initial distribution, when β → ∞, the model Bk

converges to the model Ak in distribution, for k = 1, 2, 3, 4.

We shall further discuss the necessary condition for stochastic Boolean networks

to have cyclic motion. In the theory of neural networks, one of Hopfield’s key results

(Hopfield 1982,1984) is that for symmetric matrix Tij, the network has an energy

function. In the theory of Markov processes, having a potential function(Kolmogorov

cyclic condition in Theorem II.5) is a sufficient and necessary condition for a re-

versible process. A connection is established in the following theorem.

10



Theorem II.7 For k = 1, 2, 3, 4, the Markov chain {Xn} in the model Bk is re-

versible if and only if Tij = Tji, ∀i, j = 1, 2, · · · , N , i.e. the matrix T is symmetric.

From the above two conclusions, it is obvious that

Corollary II.8 When Tij = Tji, ∀i, j = 1, 2, · · · , N , there doesn’t exist any limit

cycle consist of more than two states in model Ak, k = 1, 2, 3, 4.

Lemma II.9 For k = 1, 2, 3, 4, the Markov chain {Xn} in the model Bk is reversible

when β is zero, and the Markov chain {Xn} in the model C is reversible when β

and α are both zero.
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