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ABSTRACT

Long-range correlations in genomic base composition are a ubiquitous statistical feature

among many eukaryotic genomes. In this article, these correlations are shown to substan-

tially influence the statistics of sequence alignment scores. Using a Gaussian approximation

to model the correlated score landscape, we calculate the corrections to the scale parameter

� of the extreme value distribution of alignment scores. Our approximate analytic results are

supported by a detailed numerical study based on a simple algorithm to efficiently generate

long-range correlated random sequences. We find both, mean and exponential tail of the

score distribution for long-range correlated sequences to be substantially shifted compared

to random sequences with independent nucleotides. The significance of measured alignment

scores will therefore change upon incorporation of the correlations in the null model. We

discuss the magnitude of this effect in a biological context.

Key words: extreme value distribution, long-range correlations, sequence alignment, statistical

significance.

1. INTRODUCTION

RECENT YEARS have witnessed an impressive advance of bioinformatics sequence analysis tools,

aiming at deeper insight to the functional organization and evolutionary dynamics of genomic DNA

sequences. Popular examples include algorithms for genome annotation, homology detection between

genomic regions of different organisms, or the prediction of transcription factor binding sites (Waterman,

1995; Durbin et al., 1998).

Bioinformatics methods frequently yield probabilistic statements. Usually the statistical significance of a

computational prediction is characterized by a p-value, specifying the likelihood that this prediction could

have arisen by chance. The calculation of p-values requires an appropriate null model of DNA, which

reflects our assumptions about the “background” statistical features of the sequence under consideration.

The challenging task is to decide on the set of statistical features a suitable null model should obey. Ideally,

one incorporates those features into the null model which describe the background “noise” of the DNA

sequence, but still allow to discern the specific signal the computational analysis tries to detect.
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The simplest DNA background model is an iid model, given by a random sequence with letters drawn

independently from an identical distribution (Durbin et al., 1998). The iid model can incorporate the

length and the average composition of the sequences under consideration, but it lacks any specific struc-

ture concerning the arrangement of the nucleotides along the DNA. In particular, it is not capable of

incorporating correlations in base composition along the sequences. Up to a certain degree, this additional

complexity can be taken into account by an nth order Markov model, specifying the transition proba-

bilities P.aiC1jai�nC1; : : : ; ai / in a genomic sequence a D a1; : : : ; aN (Durbin et al., 1998). Assuming

the sequences to be generated by Markov processes already allows to incorporate a multitude of spatial

statistical features into the model, like e.g. the preferential occurrence of DNA motifs, local peculiarities

in genomic composition, or specific dinucleotide frequencies. In contrast to iid sequences, where all letters

are uncorrelated, Markov processes lead to, so called, short-range correlations in the nucleotide composi-

tion (Peng et al., 1992). They are characterized by an exponential decay of the correlations between two

different bases with increasing distance along the sequence.

A statistical measure of the correlations in genomic base composition is the autocorrelation function

C.r/. It quantifies the deviations in the joint probability of finding equal bases at a distance of r basepairs

along the DNA backbone compared to that in a random sequence of independent letters with the same

nucleotide frequencies pa2fA;C;T;Gg,

C.r/ �
X

a

�

P.ai D aiCr D a/ � p2
a

�

: (1)

We have C.r/ D 0 .r > 0/ for iid sequences, while C.r/ / exp .�ˇr/ for short-range correlated sequences,

e.g. those generated by Markov processes.

With the rapidly growing availability of whole-genome sequence data the correlations along genomic

DNA can nowadays be studied systematically over a wide range of scales and organisms. A striking

observation in this field was the finding of long-range correlations in the base composition of genomes

more than a decade ago (Li and Kaneko, 1992; Peng et al., 1992; Voss, 1992). They are characterized by

a power-law decay of the correlation function for large r ,

C.r/ / r�˛; (2)

and therefore decay much slower compared to short-range correlations. By now it is well established that

long-range correlations in base composition appear in the genomes of most eukaryotic species (Arneodo

et al., 1995; Bernaola-Galvan et al., 2002; Li and Holste, 2005) with two examples shown in Figure 1.

Little is known about the origin of genomic long-range correlations, so far. However, their ubiquity among

eukaryotic genomes points towards a universal mechanism. A likely dynamical scenario is that they are

generated by the stochastic processes of molecular sequence evolution, as has been discussed in Li (1991)

and Messer et al. (2005a, 2005b).

The widespread presence of long-range correlations in genomes raises the question if they need to

be incorporated into an accurate null model of eukaryotic DNA and how that would change the p-

value calculations. In this article, we address this question in the context of sequence alignment, which

constitutes the most commonly used computational tool of molecular biology today (Altschul et al., 1990,

1997). We tackle the problem of calculating sequence alignment significance values for null models with

long-range sequence composition correlations with both, analytical, as well as numerical methods. On the

analytical side, we introduce a novel approach, the Gaussian approximation, which allows us to calculate

the corrections to the scale parameter � of the alignment score distribution for correlated sequences. Long-

range correlated sequences cannot be generated by an nth order Markov process with finite n (Peng et al.,

1992). The numerical approach therefore only recently has come within reach due to results derived in

Messer et al. (2005a, 2005b), where we proposed a biologically motivated algorithm capable of efficiently

generating long-range correlated sequences with arbitrary correlation parameters. As the main result of our

analysis, it turns out that long-range correlations in the sequences lead to considerable deviations in the

score statistics of sequence alignment.

After presenting a short review of sequence alignment in Section 2, we analytically treat the alignment

of long-range correlated sequences in Section 3. A numerical evaluation of the approximative analytic

results is presented in Section 4. In Section 5, we discuss the relevance of this effect for genomic sequence
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FIG. 1. Long-range correlations in the base composition of two eukaryotic chromosomes. In the double-logarithmic

plots, power-law correlations C.r/ / r�˛ show up as straight lines with slope ˛. They extend over distances of

several orders of magnitude. We demonstrate our capability of simulating long-range correlated sequences with similar

amplitude and correlation exponent ˛ � 0:232, as measured in Human chromosome 22 (b).

alignment by analyzing the magnitude of the corrections to the score significance values using correlation

parameters, measured in eukaryotic genomes. The implications of our findings in a bioinformatics context

are discussed at the end of this article.

2. SEQUENCE ALIGNMENT AND SIGNIFICANCE ASSESSMENT

The goal of DNA sequence alignment is to assign to a given pair of genomic sequences a D a1; : : : ; aN

and b D b1; : : : ; bM a measure of their similarity. The simplest version of sequence alignment is gapless

alignment. A local gapless alignment A of the two sequences consists of a substring ai�lC1 � � � ai of length l

of sequence a and a substring bj �lC1 � � � bj of sequence b of the same length. Each such alignment is

assigned a score SA D
Pl�1

kD0 s.ai�k; bj �k/, where s.a; b/ is some given scoring matrix measuring the

mutual degree of similarity of the different letters of the alphabet. For DNA sequence comparison, one

often uses the simple match-mismatch matrix (Smith and Waterman, 1981):

s.a; b/ D
(

1 W a D b

�� W a ¤ b
: (3)

The computational task is to find the alignment A, which gives the highest total score

S � max SA: (4)

For the purpose of detecting weak sequence homologies, alignment algorithms can also take into account

insertions and deletions in either one of the two sequences during biological evolution (Smith and Water-

man, 1981). For such gapped alignments, each gap contributes a (negative) gap cost 
 to the total score

of the alignment. Using affine gap costs, one additionally distinguishes between the gap initiation cost 
i

and the gap extension cost 
e.

Since an alignment score S is assigned to any pair of sequences, also to biologically completely unrelated

ones, it is helpful to know the distribution of S in an appropriate null model. The knowledge of this

distribution gives the possibility to assign p-values to alignment results; they specify the probability that

a high score could have arisen by chance in order to be able to distinguish true evolutionary relationship

from random similarities. As already mentioned in the introduction, a frequently used null model for that

purpose is the iid model. For ungapped alignment of long sequences (M; N � 1), the distribution of S
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for the iid model has been worked out rigorously (Karlin and Altschul, 1990, 1993; Karlin and Dembo,

1992); it is a Gumbel or extreme value distribution, with its probability density function given by

pdf.S/ D KMN � exp .��S � KMNe��S /: (5)

The distribution is characterized by the two parameters � and K. In the iid case, the scale parameter � is

the unique positive solution of the equation

hexp .�s/i D
X

a;b

papb exp Œ�s.a; b/� D 1: (6)

The other parameter K then determines the mean of the distribution.

For gapped alignment, no rigorous theory for the distribution of S exists, so far. However, numerical

evidence strongly suggests that the distribution is still of Gumbel form (Smith et al., 1985; Waterman and

Vingron, 1994; Altschul and Gish, 1996; Mott, 1999). Using this empirical applicability, it has been shown

in Bundschuh (2000, 2002) and Grossmann and Yakir (2004) that � for local gapped alignment in the iid

model can be derived solely from studying the much simpler global alignment, where one is interested in

the path with the highest score h � max hA, connecting the beginning .a1; b1/ to the end .aN ; bN / of a

given pair of sequences a and b (we set M D N , from now on). One defines a generating function

ZN .�/ � hexp .�h/i; (7)

where the brackets h�i denote an average over all possible pairs of random sequences a and b of length N .

The central conjecture in Bundschuh (2000) then states that � is determined by the solution of the equation

lim
N!1

1

N
log ZN .�/ D 0: (8)

Following the results of Park et al. (2005) and Chia and Bundschuh (2005), this allows for a very efficient

computation of � for gapped alignment in the iid model.

3. THE GAUSSIAN APPROXIMATION

In this section, we derive approximate analytical results for the parameter � of the score distribution one

obtains for alignment of random sequences with long-range correlations. We restrict ourselves to gapless

alignment, since we expect qualitatively similar results for the gapped case. This will also be confirmed by

the numerical data we present in Section 5. For simplicity, we furthermore assume a uniform distribution

of the four nucleotides; a generalization to sequences with biased composition is straightforward.

The approach employed in the following is based on the assumption that for local gapless alignment of

correlated sequences the distribution of the maximal scores obeys Gumbel form, and � is still determined by

Equation (8). The score of the global alignment is given by the sum over all elementary scores si D s.ai ; bi /

along the diagonal of the alignment-lattice. Two exemplary realizations of an alignment score lattice are

shown in Figure 2. Defining s D .s1; : : : ; sN /, we have

h D
N

X

iD1

si D 1
t
s: (9)

The ensemble average of Equation (7) over all realizations of the two sequences a and b can therefore

be expressed in terms of an average over all score vectors s. While the probability of a score vector

factorizes in the iid model, P.s/ D
Q

i P.si /, this is no longer the case for correlated sequences. However,

approximate values for the probabilities P.s/ in the correlated case can still be derived by a Gaussian

approximation. The idea of this approach is to replace the discrete variables si by continuous Gaussian

variables. More precisely, an individual discrete score si D f1; ��g at position i along the diagonal of
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FIG. 2. Two realizations of an alignment score lattice: (a) The two sequences a and b are drawn from the iid

model. (b) Both sequences are random sequences featuring long-range correlations in their base composition with

decay exponent ˛ D 0:5. They are generated by an expansion-randomization dynamics, as described in Section 4.

Cells corresponding to matching nucleotides in a and b are colored black, white cells denote mismatches. The score

of an ungapped global alignment is the sum over all elements of the diagonal vector s D .s1; : : : ; sN / of the score

lattice. Comparison of both figures reveals qualitative differences between the two null models. The alignment lattice

of sequences with long-range correlated nucleotide composition shows systematically larger black and white blocks

representing exactly matching or mismatching substrings of the two sequences, compared to the iid model.

the alignment lattice will now be allowed to take continuous values, distributed according to a normal

distribution

pdf.si / D 1p
2��2

exp
�.si � hsi/2

2�2
: (10)

Mean and variance are chosen in accordance with the original discrete score distribution, i.e., hsi D
1=4 � 3�=4, and �2 D 3.1 C �/2=16.

The probability P.s/ of a score vector s is then determined by an N -dimensional Gaussian distribution

P.s/ D Œ.2�/N det � ��1=2 exp

�

�
1

2
.s � hsi/t

�
�1.s � hsi/

�

; (11)

with hsi D .hsi; : : : ; hsi/ and the covariance matrix � , defined by

� ij D hs.i/s.j /i � hs.i/ihs.j /i: (12)

The diagonal elements of � are given by the variance of an individual score, � i i D �2. The non-diagonal

elements � i¤j can be expressed in terms of the correlation function C.r/ of the sequences a and b,

� ij D 1

3
.1 C �/2C 2.ji � j j/: (13)

In this expression the correlation function C.r/ is squared, since (13) describes the correlations of the

similarity scores which arise from a comparison of two sequences. The non-diagonal elements vanish for

iid sequences.
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Using the distribution (11), the calculation of the generating function (7) amounts to the evaluation of

an N -dimensional Gaussian integral, which can be solved explicitly,

ZN .�/ D
Z

ds P.s/ exp .�1
t
s/

D Œ.2�/N det � ��1=2

Z

ds e� 1

2
.s�hsi/t

�
�1.s�hsi/C�1

t
s (14)

D exp

�

�1
thsi C 1

2
�2

1
t
� 1

�

:

The central conjecture (8) then implies

0 D lim
N!1

1

N

�

�1
thsi C 1

2
�2

1
t
� 1

�

: (15)

Notice that this expression coincides with the result obtained by applying the central conjecture to the

Taylor series approximation of the generating function (7) up to second order. Using Equation (13) yields

� D �2hsi

�2 C 2

3
.1 C �/2 lim

N!1

N
X

iD1

C 2.i/

: (16)

The first term �2 in the denominator of (16) is related to the individual fluctuations of a single score

element, irrespective of correlations along the sequences. The second term, on the other hand, vanishes for

iid sequences and determines the corrections to � due to correlations.

In case of long-range correlations, i.e., C.r/ D cr�˛, and assuming ˛ > 1=2, we obtain

� D
�2hsi

�2 C 2

3
.1 C �/2c2�.2˛/

; (17)

where �.x/ is the Riemann zeta function. Consequently, the Gaussian approximation predicts deviations in

� for the alignment of long-range correlated sequences compared to iid sequences. A detailed numerical

analysis of this analytic result will be performed in Section 4. Notice that for ˛ � 1=2 the sum
P1

iD1 C 2.i/

diverges, resulting in � D 0. This might indicate a transition from local to global alignment in the Gaussian

approximation, which will be discussed in Section 4.3.

As a first evaluation of the Gaussian approximation, we investigate its predictions for sequences a D
.a1; : : : ; aN / generated by a Markov process. We consider a first order process with four different states

Ai 2 fA; C; T; Gg. Starting with a random nucleotide a1, the transition probabilities are defined by

P.aiC1jai / D

8

ˆ

<

ˆ

:

p W aiC1 D ai

1

3
.1 � p/ W aiC1 ¤ ai

: (18)

This process generates short-range correlations in the sequences of the form C.r/ D c exp .�ˇr/ with

ˇ D � log .4p=3 � 1=3/ and c D 3=4. For this case, the Gaussian approximation (16) yields

� D �2hsi

�2 C 2

3
.1 C �/2c2=.exp .2ˇ/ � 1/

: (19)

This can be compared to an exact analytical result for � obtained by equating the largest eigenvalue of

a modified �-dependent transition matrix of the underlying Markov process to one (Karlin and Dembo,
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FIG. 3. � for sequences with short-range correlations generated by a Markov process. The dashed line is the

exact result (Karlin and Dembo, 1992) for the Markov process defined in (18), using � D 3. The solid line is the

corresponding result of the Gaussian approximation, as derived in Equation (19). Solving Equation (6) yields the iid

asymptotics � � 1:374 (dotted line).

1992). As is shown in Figure 3, the Gaussian approximation (19) fits well to the exact results; deviations

for large ˇ vanish for decreasing ˇ. Notice that the limit ˇ ! 1 corresponds to p ! 1=4, describing the

asymptotics of an uncorrelated iid sequence. The deviations of the Gaussian approximation for this regime

result from the fact that the third and all higher cumulants of the distribution (10) vanish, which they do

not for the discrete distribution.

4. NUMERICAL RESULTS

4.1. Generation of long-range correlated random sequences

Numerical evaluation of the results obtained in the previous section hinges on the knowledge of the

score distribution pdf.S/ for local gapless alignment of pairs of long-range correlated random sequences.

However, the efficient generation of such sequences is quite intricate. In Messer et al. (2005a), we have

proposed a biologically motivated model of sequence evolution which generates sequences with the desired

statistical features. Furthermore, it has recently been shown (Messer et al., 2005b) that there exists a much

larger class of dynamical processes, so called, expansion-randomization processes, which allow for the

efficient generation of sequences with arbitrary long-range correlations.

Based on Messer et al. (2005b), we use a single-site duplication-mutation algorithm to generate long-

range correlated sequences. We start with a sequence of one random nucleotide a1, and the dynamics of

the model is defined by the following update rules:

1. A random position j of the sequence is chosen.

2. The nucleotide aj is either mutated to a random but different nucleotide with probability Pmut, or

duplicated with probability Pdup D 1 � Pmut. The duplication process inserts a copy of aj at position

j C 1, thereby increasing the sequence length by one.

This process generates sequences of arbitrary length N in a time O.N / with asymptotic long-range

correlations in their nucleotide composition. The correlation function of the generated sequences is given

in terms of the Euler beta function B.x; y/ by Messer et al. (2005a):

C.r/ D 3

4
˛B.r C 1; ˛/: (20)
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In the large r limit, this yields C.r/ / r�˛ . By varying the mutation probability 0 < Pmut < 1, the decay

exponent ˛ of the long-range correlations can be tuned to any desired positive value, as it is determined

by

˛ D 8

3

Pmut

1 � Pmut

: (21)

The algorithm has recently been implemented in the web server CorGen (Messer and Arndt, 2006), which is

publicly available at http://corgen.molgen.mpg.de. CorGen can measure long-range correlations in the base

composition of DNA and generate random sequences with the same correlation parameters or any other

user-defined long-range correlation parameters, using the above described algorithm. If large ensembles of

long-range correlated random sequences are needed, as is the case for an accurate measurement of the tail

of the score distribution pdf.S/, independent realizations of the sequences can directly be obtained from

CorGen via non-interactive network clients, e.g., wget. Due to the algorithm’s fast runtime of O.N / we

can efficiently generate the large ensembles of long-range correlated sequences needed for our analysis.

For the alignment, we use the standard Smith-Waterman dynamic programming algorithm (Smith and

Waterman, 1981) with scoring matrix (3) and � D 3.

4.2. Gumbel distribution of alignment scores

Our solution of the Gaussian model is based on the assumption that the alignment score distribution

pdf.S/ is of Gumbel form for long-range correlated sequences. Consequently, our first numerical analysis

aims at a verification of this conjecture. In Figure 4, we show the measured score distributions for two

different long-range correlated sequence ensembles with correlation parameters ˛ D 1:0 and ˛ D 0:5,

compared to the Gumbel distribution of the iid model. While the tail of the score distributions for long-

range correlated sequences still features the Gumbel-typical exponential decay, its decay parameter �

systematically decreases with increasing correlation strength, i.e. smaller values of ˛, and the mean of the

distribution is additionally shifted towards larger scores. For large N , the shape of pdf.S/ asymptotically

approaches a Gumbel form for the correlated ensembles, as can be seen in Figure 5, where we exemplarily

show the measured score distribution for long-range correlated sequences with ˛ D 2:0 and different

FIG. 4. Numerically measured shape of the alignment score distribution pdf.S/ for N D M D 103 using three

different null models: iid sequences, long-range correlated sequences with ˛ D 1:0, and such with ˛ D 0:5. The

distributions were obtained by aligning 107 pairs of sequences randomly drawn from the particular null model en-

semble. As is the case for the iid ensemble, the tail of the score distributions for long-range correlated sequences

features the Gumbel-typical exponential decay characterized by a decay exponent �. However, the mean of pdf.S/ is

systematically shifted towards larger scores for increasing correlation strength, i.e., smaller values of ˛, compared to

the iid model. Moreover, long-range correlations decrease the decay exponent � (indicated by less steeper slopes in the

semi-logarithmic plot), and therefore lead to a slower decay of the exponential tail of the alignment score distribution.
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FIG. 5. Convergence of the distribution pdf.S/ for long-range correlated sequences with ˛ D 2:0 to a Gumbel

form. The solid line is a Gumbel distribution, as specified in Equation (5) with N D M D 104 and fitted parameters

� D 0:9614 and K D 0:119. � was obtained by fitting a linear function to logŒpdf.S/� for 21 < S < 31, K has then

been estimated by fitting the data to (5) in the same interval. In order to be able to compare the shape of pdf.S/ for

different N , the distributions have to be rescaled by a transformation pdf.S/ ! pdf.S C 2 ln ŒN=N0�/ with reference

length N0 D 104.

sequence lengths N . As is the case for the iid model, finite-size corrections come into play for small N

(Altschul and Gish, 1996; Altschul, 1991; Yu et al., 2002). These deviations primarily show up in the

small S regime, while the more relevant large S regime converges fast for increasing sequence lengths.

Now, that we have verified the shape of the score distribution to be of Gumbel form, we can test the

accuracy of the analytic predictions for � derived by the Gaussian approximation. Here we restrict ourselves

to the discussion of the regime ˛ > 1=2, where the Gaussian approximation predicts finite values of �;

the regime ˛ � 1=2 will be investigated below.

We compare our numerical data to Equation (16), using correlations of the form (20). Results are shown

in Figure 6. The Gaussian approximation captures the qualitative behavior of the numerical data. Again,

FIG. 6. � for a null model with long-range correlated sequences in dependence of the correlation exponent ˛. The

solid line is the analytic result of the Gaussian approximation, one obtains by estimating Equation (16) using the

correlations (20) of our simulated sequences. Numerically measured values of � for different correlation parameters

˛ are denoted by symbols. For our simulation, we use sequences of length N D 103 and average over ensembles of

108 pairs of sequences.
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TABLE 1. DEPENDENCE OF hSi AND K

ON THE EXPONENT ˛

˛ � hSi K

(iid) 1.374 9.71 3:50 � 10�1

4.0 1.240 10.61 2:90 � 10�1

2.0 0.967 12.65 1:15 � 10�1

1.0 0.556 18.07 1:30 � 10�2

0.5 0.248 51.30 1:15 � 10�3

0.2 0.048 165.08 9:47 � 10�6

We use simulated sequences of length N D 103

and average over ensembles of 108 pairs of sequences

for each value of ˛ to obtain numerical values of �

and hSi. The values of K have been calculated using

Equation (22).

the right hand side of the plot reveals the deviations of the Gaussian approximation concerning its iid

asymptotics given by ˛ ! 1. With increasing correlation strength, i.e., smaller values of ˛, � decreases,

confirming that long-range correlations systematically raise the probability of measuring high alignment

scores.

So far, our investigations of the alignment score distribution for long-range correlated sequences have

focused on the exponential tail of pdf.S/. We now turn to the second parameter K. For that purpose, we

recall that the mean of a Gumbel distribution (5) is determined by

hSi D � C log .KN 2/

�
; (22)

where � � 0:5772 is the Euler-Mascheroni constant. Thus, knowing �, the parameter K can easily be

calculated by measuring the mean hSi of the score distribution. As shown in Table 1 and Figure 7, K is

significantly affected by the presence of long-range correlations in the sequences to be aligned; it decreases

FIG. 7. Mean of the score distribution pdf.S/ for different exponents ˛ against increasing sequence length N .

Measured values for hSi were obtained by averaging over ensembles of 104 pairs of sequences. K can be measured

using K D 1=N 2 exp Œ�hSi � ��. The deviations from the form �hSi D � C log .K/ C 2 log .N / for the strong

correlations ˛ D 0:2 are due to the fact that pdf.S/ yet significantly deviates from a Gumbel distribution for small N

in the strong correlation regime ˛ � 0:5.
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with increasing correlation-strength. However, the mean of the distribution is, as expected, shifted to larger

values of S for decreasing values of ˛, since K contributes only logarithmically in Equation (22) and the

change in hSi is dominated by the decrease of �. Figure 7 again reveals the finite-size deviations of the

numerically measured score distribution pdf.S/ from a Gumbel form (5) in the strong correlation regime

˛ � 1=2.

4.3. The score distribution for ˛ � 1/2

In the regime ˛ > 1=2, the score distribution is of Gumbel form and the Gaussian approximation

suitably fits the numerical values of �. For values of ˛ � 1=2, the Gaussian approximation yields � D 0,

which might indicate a transition from local to global alignment. For simulated sequences of finite length,

on the other hand, one still measures finite values of � (Fig. 6). The numerical investigation of this

regime is complicated by a distinct finite size effect: according to the results derived in Messer et al.

(2005b), an individual alignment of two finite sequences will have a systematic bias of hsi towards either

hsi D 1, or hsi D ��, depending on whether by chance the two initial random letters a1 and b1 of

our sequence generation algorithm were equal for the two sequences to be aligned, or not. This effect

causes strong deviations of pdf.S/ from a Gumbel form for small S . However, the tail of the distribution

is still exponential for finite sequences, and therefore allows for a measurement of �. It is dominated by

those realizations of the ensemble, where both sequences started with the same letter since they lead to

systematically higher values of hsi and therefore also higher scores S .

As can be seen in Figure 6, � approaches zero for finite sequences not until the “infinite” correlation

strength limit ˛ ! 0. Further analysis is needed to decide on whether there actually is a transition to

global alignment for a particular ˛ > 0 in the limit N ! 1, or not. If this is the case, then the rate of

convergence for � ! 0 is at most logarithmically.

However, for practical applications this transition is irrelevant. Finite sequences always have a positive �,

also in the regime ˛ � 1=2. For these particular choices of parameters, � needs to be measured numerically.

5. CONSEQUENCES FOR ALIGNMENTS OF GENOMIC SEQUENCES

It has been shown that long-range correlations in base composition increase the probability of measuring

high scores for pairwise sequence alignment. In a biological context, this raises the question whether the

effect causes a significant change of the p-values for DNA alignment? In order to address this issue,

we investigate the deviations of the score distribution for correlation parameters of genomic magnitude

compared to iid sequences. As an example, we consider the measured correlation function of Human

chromosome 22, shown in Figure 1b. Using the simulation algorithm introduced in Section 4.1 we can

generate long-range correlated random sequences with the corresponding exponent ˛ � 0:232. By randomly

mutating 85% of the sites after sequence build up, the correlation amplitude is reduced to the genomic value,

while the exponent remains unchanged (Messer et al., 2005b). As can be seen in Figure 1b, this procedure

allows us to generate random sequences featuring comparable correlations as Human chromosome 22.

We perform ungapped, as well as gapped alignment with affine gap costs for 107 pairs of random

sequences with length N D 103 from the above specified ensemble. Alignment parameters are chosen in

accordance with the NCBI default values � D 3, gap initiation cost 
i D 5, and gap extension cost 
e D 2

(NCBI, 2007). In Figure 8, we show the measured score distributions for the simulated chromosome 22

sequences compared to iid sequences. The resulting parameters � and hSi are presented in Table 2.

It turns out that the difference in the score distributions between ungapped and gapped alignment is

negligible for the parameters used. The deviations in � between the iid ensemble and the simulated Human

chromosome 22 sequences are approximately 15% in both cases, and the mean of the score distributions

for the correlated sequences is significantly higher. In combination, both effects substantially change the p-

values of high scores compared to the iid model, as can be seen in Table 2. The p-value of a specific score

S 0 is thereby defined by the integral P.S � S 0/ D
R 1

S 0 pdf.S/dS . For an exemplary score S 0 D 18, this

p-value will be increased by almost one order of magnitude if one incorporates the genomic correlations

into the null model.
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FIG. 8. The score distribution for ungapped and gapped alignment of simulated sequences with correlations compa-

rable to those of Human chromosome 22. The straight lines are the fits to the exponential tails of the score distributions,

obtained by fitting a linear function to logŒpdf.S/� in the depicted intervals.

6. DISCUSSION

Long-range correlations are a widespread statistical feature of eukaryotic DNA. In this article, it has

been shown that incorporation of this feature into the null model substantially influences the score statistics

of sequence alignment. While the p-values of the scores are systematically increased, the ranking of hits

will not be significantly changed. The effect is therefore relevant whenever one is actually interested in

p-values, e.g., when specifying a cutoff in order to distinguish true evolutionary relationship from random

similarities.

One has to keep in mind that genomic DNA is a highly heterogeneous environment: it consists of genes,

noncoding regions, repetitive elements etc., and all of these substructures may imprint their signature on

the amount of correlations found in a particular genomic region. Long-range correlations are by definition a

feature on larger scales. Our findings are therefore naturally applicable to the alignment of larger genomic

regions. This includes the identification of duplicated regions, or conserved syntenic segments between

chromosomes of different species, which often extend over many kilobases up to several megabases.

However, long-range correlations will also influence the statistics of search algorithms for short DNA

motifs if the query sequences are large enough for long-range correlations to be measured.

Moreover, it will be interesting to analyze possible effects of long-range correlations on the statistics of

other widely used sequence analysis tools, e.g., the prediction of transcription factor binding sites. Further

investigation is needed to assess the relevance of long-range correlations for other statistical predictions.

Finally, more accurate null models of DNA sequences utilizing quantitative correlation features will help

to reduce the often encountered high false-positive rate of bioinformatics analysis tools.

TABLE 2. FITTED PARAMETERS � AND hSi FOR THE iid

ENSEMBLE AND SIMULATED HUMAN CHROMOSOME 22

SEQUENCES OF LENGTH N D 103

Ensemble � hSi P.S � 18/

iid (ungapped) 1.374 9.714 3:3 � 10�6

sim. chr. 22 (ungapped) 1.191 10.164 2:8 � 10�5

iid (gapped) 1.373 9.714 3:2 � 10�6

sim. chr. 22 (gapped) 1.215 10.163 2:7 � 10�5

In the last column, exemplary p-values of a score S 0 D 18 are shown.
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