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Abstract

Computational and comparative analysis of protein-protein interaction (PPI) networks enable under-
standing of the modular organization of the cell through identification of functional modules and protein
complexes. These analysis techniques generally rely on topological features such as connectedness,
based on the premise that functionally related proteins are likely to interact densely and that these inter-
actions follow similar evolutionary trajectories. Significant recent work in our lab, and in other labs has
focused on efficient algorithms for identification of modules and their conservation. Application of these
methods to a variety of networks has yielded novel biological insights.

In spite of algorithmic advances, development of a comprehensive infrastructure for interaction data-
bases is in relative infancy compared to corresponding sequence analysis tools such as BLAST and
CLUSTAL. One critical component of this infrastructure is a measure of the statistical significance of
a match or a dense subcomponent. Corresponding sequence-based measures such asE-values are key
components of sequence matching tools. In the absence of an analytical measure, conventional methods
rely on computer simulations based on ad-hoc models for quantifying significance. This paper presents
the first such effort, to the best of our knowledge, aimed at analytically quantifying statistical significance
of dense components and matches in reference model graphs. We consider two reference graph models –
aG(n, p) model in which each pair of nodes has an identical likelihood,p, of sharing an edge, and a two-
levelG(n, p) model, which accounts for high-degree hub nodes generally occurring in PPI networks. We
argue that by choosing conservatively the value ofp, theG(n, p) model will dominate that of the power-
law graph that is often used to model PPI networks. We also propose a method for evaluating statistical
significance based on the results derived from this analysis, and demonstrate the use of these measures
for assessing significant structures in PPI networks. Experiments performed on a rich collection of PPI
networks show that the proposed model provides a reliable means of evaluating statistical significance
of dense patterns in these networks.

∗This work is supported in part by the NIH Grant R01 GM068959-01, and the NSF Grants CCR-0208709, CCF-0513636,
DMS-0202950.



1 Introduction

Availability of high-throughput methods for identifying protein-protein interactions has resulted in a new
generation of extremely valuable data [2, 36]. Effective analysis of the interactome holds the key to func-
tional characterization, phenotypic mapping, and identification of pharmacological targets, among other
important tasks. Computational infrastructure for supporting analysis of the interactome is in relative in-
fancy, compared to its sequence counterparts [34]. A large body of work on computational analysis of
these graphs has focused on identification of dense components (proteins that densely interact with each
other) [3, 6, 18, 19, 22, 26]. These methods are based on the premise that functionally related proteins
generally manifest themselves as dense components in the network [31]. The hypothesis that proteins per-
forming together a particular cellular function are expected to be conserved across several species along with
their interactions is also used to guide the process of identifying conserved networks across species. Based
on this observation, PPI network alignment methods superpose PPI networks that belong to different species
and search for connected, dense, or heavy subgraphs on these superposed graphs [11, 14, 15, 16, 24, 25].

There are two critical aspects of identifying meaningful structures in data – the algorithm for the iden-
tification and a method for scoring an identified pattern. In this context, the score of a pattern corresponds
to its significance. A score is generally computed with respect to a reference model – i.e., given a pattern
and a reference model, how likely it is to observe the pattern in the reference model that often is a proba-
bilistic measure for scoring patterns. The less likely such an occurrence is in the reference model, the more
interesting it is, since it represents a significant deviation from the reference (expected) behavior. One such
score, in the context of sequences is theE-value returned by BLAST matches [35]. This score broadly
corresponds to the likelihood that a match between two sequences is generated by a random process. The
lower this value, the more meaningful the match. It is very common in a variety of applications to use a
threshold onE-values to identify homologies across sequences. It is reasonable to creditE-value as one of
the key ingredients of the success of sequence matching algorithms and software.

While significant progress has been made towards developing algorithms on graphs for identifying pat-
terns (motifs, dense components), conservation, alignment, and related problems, there are, to the best of
our knowledge, no analytical methods for quantifying the significance of such patterns. For this reason,
existing algorithms for detecting patterns generally adopt simple ad-hoc measures (such as relative density,
diameter) to assess the significance of identified patterns. This paper represents the first such effort at ana-
lytically quantifying the statistical significance of a pattern with respect to a reference model. Specifically, it
presents a framework for analyzing the occurrence of dense patterns in randomly generated graph-structured
data (based on the underlying model) with a view to assessing the significance of a pattern.

The selection of an appropriate reference model for data and the method of scoring a pattern or match,
are important aspects of quantifying statistical significance. Using a reference model that fits the data very
closely makes it more likely that an experimentally observed biologically significant pattern is generated by
a random process drawing data from this model. Conversely, a reference model that is sufficiently distinct
from observed data is likely to tag most patterns as being significant. Clearly, neither extreme is desirable for
good coverage and accuracy. In this paper, we consider two reference models (i) aG(n, p) model of a graph
with n nodes, where each pair of nodes has an identical probability,p, of sharing an edge, and (ii) a two
level G(n, p) model in which the graph is modeled as two separateG(n, p) graphs with intervening edges.
The latter model captures the heavy nodes corresponding to hub proteins. For these models, we analytically
quantify the behavior of the largest dense subgraph and use this to derive a measure of significance. We
show that a simpleG(n, p) model can be used to assess the significance of dense patterns in graphs with
arbitrary degree distribution, with a conservative adjustment of parameters so that the model stochastically
dominates a graph generated according to a given distribution. In particular, by choosingp to be maximal
we assure that ourG(n, p) model stochastically dominates that of a power-law graph. Our two-levelG(n, p)
model is shown to mirror key properties of the underlying topology of PPI graphs, and consequently yields a
more conservative estimate of significance. Finally, we show how existing graph clustering algorithms [10]
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can be modified to incorporate statistical significance in identification of dense patterns. We also generalize
these results and methods to the comparative analysis of PPI networks and show how the significance of
a match between two networks can be quantified in terms of the significance of the corresponding dense
component in a suitable specified product graph.

Our analytical results are supported by extensive experimental results on a large collection of PPI net-
works derived from BIND [2] and DIP [36]. These results demonstrate that the proposed model and subse-
quent analysis provide reliable means for evaluating the statistical significance of highly connected and con-
served patterns in PPI networks. The framework proposed here can also be extended to include more general
networks that capture the degree distribution of PPI networks more accurately, namely power-law [33, 37],
geometric [20], or exponential [8] degree distributions.

The rest of this manuscript is organized as follows: In the next section, we first discuss graph models for
PPI networks. We then analyze the behavior of the largest dense subgraph and derive measures for assessing
statistical significance of highly connected as well as highly conserved subgraphs in PPI networks. We
present and discuss experimental results in Section 3. We present proofs of important analytical results in
Section 4 and conclude our discussion in Section 5.

2 Probabilistic Analysis of Dense Subgraphs

Since proteins that are part of a functional module are likely to densely interact with each other while being
somewhat isolated from the rest of the network [31], many commonly used methods focus on discovering
dense regions of the network for identification of functional modules or protein complexes [3, 6, 18, 22, 26].
Subgraph density is also central for many algorithms that target identification of conserved modules and
complexes [11, 15, 24]. In order to assess the statistical significance of such dense patterns, we analyze
the distribution of the largest “dense” subgraph generated by an underlying reference model. Using this
distribution, we estimate the probability that an experimentally observed pattern will occur in the network by
chance. The reference model must mirror the basic characteristics of experimentally observed networks in
order to capture the underlying biological process correctly, while being simple enough to facilitate feasible
theoretical and computational analysis.

2.1 Modeling PPI Networks

With the increasing availability of high-throughput interaction data, there has been significant effort on
modeling PPI networks. The key observation on these networks is that a few central proteins interact with
many proteins, while most proteins in the network have few interacting partners [12, 21]. A commonly
accepted model that confirms this observation is based on power-law degree distribution [4, 32, 33, 37].
In this model, the number of nodes in the network that haved neighbors is proportional tod−γ , where
γ is a network-specific parameter. It has also been shown that there exist networks that do not possess a
power-law degree distribution [9, 30]. In this respect, alternative models that are based on geometric [20] or
exponential [8] degree distribution have been also proposed.

While assessing the statistical significance of identified patterns, existing methods that target identifi-
cation of highly connected or conserved patterns in PPI networks generally rely on the assumption that the
interactions in the network are independent of each other [13, 15, 24]. Since degree distribution is critical
for generation of interesting patterns, these methods estimate the probability of each interaction based on
the degree distribution of the underlying network. These probabilities can be estimated computationally by
generating many random graphs with the same degree distribution via repeated edge swaps and counting the
occurrence of each edge in this large collection of random graphs [24]. Alternately, they can be estimated
analytically, by relying on a simple random graph model that is based on a given degree distribution [7].
In this model, each nodeu ∈ V (G) of graphG = (V,E) is associated with expected degreedu and the
probability of existence of an edge betweenu andv is defined asP (uv ∈ E(G)) = dudv/|E(G)|. In
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order for this function to be a well-defined probability measure, we must haved2
max ≤ |E(G)|, where

dmax = maxu∈V (G) du. However, available protein interaction data generally does not confirm this assump-
tion. For example, based on the PPI networks we derive from BIND [2] and DIP [36] databases, yeastJsn1
protein has 298 interacting partners, while the total number of interactions in theS. cerevisiaePPI network
is 18193. Similarly, theD. MelanogasterPPI network with 28830 interactions contains a protein (CG12470-
PA ORF) with 207 interacting partners. Such problems complicate the analysis of the significance of certain
structures for models that are based on arbitrary degree distribution.

While models that assume power-law [33, 37], geometric [20], or exponential [8] degree distributions
may capture the topological characteristics of PPI networks accurately, they require more involved analysis
and may also require extensive computation for assessment of significance. To the best of our knowledge,
the distribution of dense subgraphs, even maximum clique, which forms a special case of this problem,
has not been studied for power-law graphs. In this paper, we first build a framework on the simple and
well-studiedG(n, p) model and attempt to generalize our results to more complicated models that assume
heterogeneous degree distribution. In the forthcoming work we turn our attention such graphs.

2.2 Largest dense subgraph

Given graphG, let F (U) ⊆ E(G) be the set of edges in the subgraph induced by node subsetU ⊆ V (G).
The density of this subgraph is defined asδ(U) = |F (U)|/|U |2. We define aρ-dense subgraph to be one
with densitylarger than pre-defined thresholdρ, i.e., U induces aρ-dense subgraph ifF (U) ≥ ρ|U |2, where
ρ > p. For anyρ, we are interested in the number of nodes in the largestρ-dense subgraph. This is because
anyρ-dense subgraph in the observed PPI network with size larger than this value will be “unusual”,i.e.,
statistically significant. Note that maximum clique is a special case of this problem withρ = 1.

We first analyze the behavior of the largest dense subgraph for theG(n, p) model of random graphs.
We subsequently generalize these results to the piecewise degree distribution model in which there are two
different probabilities of generating edges. In theG(n, p) model, a graphG containsn nodes and each edge
occurs independently with probabilityp. We assume that the edges are directed and self-loops are allowed.
Note that PPI networks are undirected graphs and they contain self-loops in general, but any undirected
network can be easily modeled by a directed graph.

Let random variableRρ be the size of the maximum subset of vertices that induce aρ-dense subgraph,
i.e.,

Rρ = max
U⊆V (G):δ(U)≥ρ

|U |. (1)

The behavior ofR1, which corresponds to maximum clique, is well studied onG(n, p) model and its
typical value is shown to beO(log1/p n) [5]. In the following theorem, we present a general result for the
typical value ofRρ for anyρ.

Theorem 1 If G is a random graph withn vertices, where every edge exists with probabilityp, then

lim
n→∞

Rρ

log n
=

1
κ(p, ρ)

(pr.), (2)

where

κ(p, ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1 − p
. (3)

More precisely,

P (Rρ ≥ r0) ≤ O

(
log n

n1/κ(p,ρ)

)
, (4)

where

r0 =
log n − log log n + log κ(p, ρ) + log e + 1

κ(p, ρ)
(5)
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for largen.

The proof of this theorem is presented in Section 4. Observe that, ifn is large enough, the probability that
a dense subgraph of sizer0 exists in the subgraph is very small. Consequently,r0 may provide a threshold
for deciding whether an observed dense pattern is statistically significant or not.

For a graph of arbitrary distribution, letdmax denote the maximum expected degree as defined in Sec-
tion 2.1. Letpmax = dmax/n. It can be easily shown that the largest dense subgraph in theG(n, p) graph
with p = pmax stochastically dominates that in the random graph generated according to the given de-
gree distribution (e.g., power-law graphs). Hence, by estimating the edge probability conservatively, we
can use the above result to determine whether a dense subgraph identified in a PPI network of arbitrary
degree distribution is statistically significant. Moreover, the above result also provides a means for quanti-
fying the significance of an observed dense subgraph. For a subgraph with sizer̂ > r0 and densitŷρ, let
ε = r̂−log n/κ(ρ̂,p)

log n/κ(ρ̂,p) . Then, as we show (cf. (14)) in the proof of Theorem 1 in Section 4, the probability of
observing this subgraph in a graph generated according to the reference model is bounded by

P (Rρ̂ ≥ (1 + ε) log n/κ(ρ̂, p)) ≤
√

1 − ρ

2π
√

ρ

(1 + ε) log n

nε(1+ε) log n/κ(ρ̂,p)
. (6)

While these results onG(n, p) model provide a simple yet effective way of assessing statistical signif-
icance of dense subgraphs, we extend our analysis to a more complicated model, which takes into account
the degree distribution to capture the topology of the PPI networks more accurately.

2.3 Piecewise degree distribution model

In the piecewise degree distribution model, nodes of the graph are divided into two classes, namely high-
degree and low-degree nodes. More precisely, we define random graphG with node setV (G) that is
composed of two disjoint subsetsVh ⊂ V (G) andVl = V (G) \ Vh, wherenh = |Vh| � |Vl| = nl and
nh + nl = n = |V (G)|. In the reference graph, the probability of an edge is defined based on the classes of
its incident nodes as:

P (uv ∈ E(G)) =




ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

(7)

Here,pl < pb < ph. This model captures the key lethality and centrality properties of PPI networks in
the sense that a few nodes are highly connected while most nodes in the network have low degree [12, 21].
Observe that, under this model,G can be viewed as a superposition of three random graphsGl, Gh, andGb.
Here,Gh andGl areG(n, p) graphs with parameters(nh, ph) and(nl, pl), respectively.Gb, on the other
hand, is a random bipartite graph with node setsVl, Vh, where each edge occurs with probabilitypb. Hence,
we haveE(G) = E(Gl)∪E(Gh)∪E(Gb). This facilitates direct employment of the results in the previous
section for analyzing graphs with piecewise degree distribution.

Note that the random graph model described above can be generalized to an arbitrary number of node
classes to capture the underlying degree distribution more accurately. Indeed, with appropriate adjustment
of certain parameters, this model will converge to power-law or exponential degree distribution at the limit
with increasing number of node classes. In fact, our experiments indicate that the piecewise graph model is
better suited than the power-law model. However, in order to get a better fit we need to introduce three or
four classes in our piecewise model.

We now show that the high-degree nodes in the piecewise degree distribution model contribute a constant
factor to the typical size of the largest dense subgraph as long asnh is bounded by a constant.
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Theorem 2 Let G be a random graph with piecewise degree distribution, as defined by (7). Ifnh = O(1),
then

P (Rρ ≥ r1) ≤ O

(
log n

n1/κ(pl,ρ)

)
, (8)

where

r1 =
log n − log log n + 2nh log B + log κ(pl, ρ) + log e + 1

κ(pl, ρ)
(9)

andB = pbql
pl

+ qb, whereqb = 1 − pb andql = 1 − pl.

Note that the above result is based on asymptotic behavior ofr1, hence thelog n/κ(pl, ρ) term dominates
asn → ∞. However, ifn is not large enough the2nh log B term may cause over-estimation of the critical
value of the largest dense subgraph. Therefore, the application of this theorem is limited for smallern and
the choice ofnh is critical.

A heuristic approach for estimatingnh is as follows. Assume that the underlying graph is generated
by a power-law degree distribution, where the number of nodes with degreed is given bynd−γ/ζ(γ) [1].
Here,ζ(.) denotes the Riemann zeta-function. If we divide the nodes of this graph into two classes where
high-degree nodes are those with degreed ≥ (n/ζ(γ))1/γ so that the expected number of nodes with degree
d is at most one, thennh =

∑∞
d=(n/ζ(γ))1/γ nd−γ/ζ(γ) is bounded, provided the above series converges.

2.4 Identifying significant dense subgraphs

We use the above results to modify an existing state-of-the-art graph clustering algorithm, HCS [10], in order
to incorporate statistical significance in identification of interesting dense subgraphs. HCS is a recursive
algorithm that is based on decomposing the graph into dense subgraphs by repeated application of min-cut
partitioning. The density of any subgraph found in this recursive decomposition is compared with a pre-
defined density threshold. If the subgraph is dense enough, it is reported as a highly-connected cluster of
nodes, else it is partitioned again. While this algorithm provides a strong heuristic that is well suited to
the identification of densely interacting proteins in PPI networks [19], the selection of density threshold
poses an important problem. In other words, it is hard to provide a biologically justifiable answer to the
question “How dense must a subnetwork of a PPI network be to be considered biologically interesting?”.
Our framework provides an answer to this question from a statistical point of view by establishing the
relationship between subgraph size and density as a stopping criterion for the algorithm.

For any subgraph encountered during the course of the algorithm, we estimate the critical size of the
subgraph to be considered interesting by plugging in its density in (5) or (9). If the size of the subgraph
is larger than this probabilistic upper-bound, then we report the subgraph as being statistically significant.
Otherwise, we continue partitioning the graph. Note that this algorithm only identifies disjoint subgraphs,
but can be easily extended to obtain overlapping dense subgraphs by greedily growing the resulting graphs
until significance is lost.

2.5 Conservation of dense subgraphs

Comparative methods that target identification of conserved subnets in PPI networks induce a cross-product
or superposition of several networks in which each node corresponds to a group of orthologous proteins [13,
15, 16, 24, 25]. Here, we rely on ortholog groups available in the COG database [29] to relate proteins in
different PPI networks [16]. Labeling each node in the PPI network with the COG family of the protein it
represents, we obtain an intersection of two PPI networks by putting an edge between two COG families
only if proteins that belong to these families interact in both graphs. In the case of theG(n, p) model,
the above framework directly applies to the identification of dense subgraphs in this intersection graph,
where the probability of observing a conserved interaction is estimated aspI = p1p2. Herep1 and p2
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Figure 1: The behavior of the size of largest dense subgraph with respect to number of proteins in the
network where a subgraph is considered dense ifρ = 0.5 andρ = 1.0 (clique), respectively. Each sample
point corresponds to the PPI network of a particular species, as marked by the initials of its name. The
typical values of largest dense subgraph size based onG(n, p) and piecewise degree distribution models are
also shown.

denote the probability of observing an edge in the first and second networks, respectively. For the piecewise
degree distribution model, on the other hand, we have to assume that the orthologs of high-degree nodes
in one graph are high-degree nodes in the other graph as well. If this assumption is removed, it can still
be shown that the low-degree nodes dominate the typical behavior of the largest conserved subgraph. Note
that the reference model here assumes that the orthology relationship between proteins in the two networks
is already established and estimates the conditional probability that the interactions between these given
ortholog proteins are densely conserved.

3 Results and Discussion

In this section, we experimentally analyze connectivity and conservation in PPI networks of 11 species
gathered from BIND [2] and DIP [36] databases. These networks vary significantly in size and comprehen-
siveness and cover a broad range of organisms. Relatively large amounts of interaction data is available for
S.cerevisiae(18192 interactions between 5157 proteins),D. melanogaster(28829 among 8577),H. sapiens
(7393 among 4541),C. elegans(5988 among 3345),E. coli (1329 among 1079), while the networks for
other organisms are restricted to a small portion of their proteins.

In Figure 1, we inspect the behavior of largest subgraph with respect to number of nodes in the PPI
network for two different values of density threshold (ρ). In the figure, each organism corresponds to a
sample point, which is marked with the initials of its name. Since the sparsity and degree distribution of
these networks vary significantly across different organisms, the estimated values of edge probabilities vary
accordingly. Hence, the curves forr0 (G(n, p) model) andr1 (piecewise degree distribution model) do
not show a linear behavior. As seen in the figure, piecewise degree distribution model provides a more
conservative assessment of significance. This is mainly because of the constant factor in the critical value of
r1. The observed size of the largest dense subgraph in smaller networks is not statistically significant, while
larger and more comprehensive networks contain subgraphs that are twice as large as the theoretical estimate,
with the exception ofD. melanogasterPPI network. The lack of dense subnets in theD. melanogaster
network may be due to differences in experimental techniques (e.g., two hybrid vs AP/MS) and/or the
incorporation of identified interactions in the interaction network model (e.g., spoke vs matrix) [23]. In
order to avoid problems associated with such variability, it may be necessary to revise the definition of
subgraph density or preprocess the PPI networks to standardize the topological representation of protein
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S. cerevisiae H. sapiens S. cerevisiae & H. sapiens

Figure 2: Behavior of the size of the largest dense subgraph and largest conserved dense subgraph with
respect to density threshold (ρ) for S. cerevisiaeand H. sapiensPPI networks. Typical values of largest
dense subgraph size based onG(n, p) and piecewise degree distribution models are also shown.

complexes in the network model.
The behavior of largest dense subgraph size with respect to density threshold is shown in Figure 2 forS.

CerevisiaeandH. SapiensPPI networks and their intersection. It is evident from the figure that the observed
size of the largest dense subgraph follows a similar trajectory with the theoretical values estimated by both
models. Moreover, in both networks, the largest dense subgraph turns out to be significant for a wide range
of density thresholds. For lower values ofρ, the observed subgraphs are either not significant or they are
marginally significant. This is a desirable characteristic of significance-based analysis since identification
of very large sparse subgraphs should be avoided while searching for dense patterns in PPI networks. Ob-
serving that theG(n, p) model becomes more conservative than the piecewise degree distribution model
for lower values ofρ, we conclude that this model may facilitate fine-grain analysis of modularity in PPI
networks.

We implement the modified HCS heuristic described in Section 2.4 using a simple min-cut algorithm [27].
A selection of most significant dense subgraphs discovered onS. cerevisiaePPI network are shown in Ta-
ble 1. In the table, as well as the size, density and significance of identified subgraphs, we list the GO
annotations that are shared by most of the proteins in the dense subgraph. The GO annotations may refer
to function [F], process [P], or component [C]. For most of the significant dense subgraphs, most of the
proteins that induce the subgraph are involved in the same cellular process. As an extreme case, the algo-
rithm also identifies proteins that share a common function or that are part of a particular complex. For
example, the dense subgraph of 7 proteins in the last row corresponds to the mitochondrial outer membrane
translocase (TOM) complex, which mediates recognition, unfolding, and translocation of preproteins [17].
On the other hand, some dense subgraphs correspond to proteins that are involved in a range of processes
but localize in the same cellular component, such as the largest dense subgraph identified by modified HCS,
which contains 24 proteins.

The significant dense subgraphs that are conserved inS. cerevisiaeandH. sapiensPPI networks are
shown in Table 2. Most of these dense components are involved in fundamental processes and the proteins
that are part of these components share a particular function. Among these, the 7-protein conserved sub-
net that consists of 6 Exosomal 3’-5’ exoribonuclease complex subunits and Succinate dehydrogenase is
interesting. As in the case of dense subgraphs in a single network, the conserved dense subgraphs provide
an insight on the crosstalk between proteins that perform different functions. For example, the largest con-
served subnet of 11 proteins contains Mismatch repair proteins, Replication factor C subunits, and RNA
polymerase II transcription initiation/nucleotide excision repair factor TFIIH subunits, which are all in-
volved in DNA repair. The conserved subnets identified by the modified HCS algorithm are small and
appear to be partial, since we employ a strict understanding of conserved interaction here. In particular,
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Table 1: Seven most significant dense subgraphs identified inS. cerevisiaePPI network by the modified
HCS algorithm.

# Proteins # Interactions Significance GO Annotation

10 45 p < 1e − 200 [P] ER to Golgi transport (90%)
[C] TRAPP complex (90%)

20 138 p < 8e − 187 [P] ubiquitin-dependent protein catabolism (80%)
[F] endopeptidase activity (50%)

24 165 p < 4e − 175 [C] nucleolus (54%)
[C] nucleus (46%)

16 104 p < 3e − 173 [P] histone acetylation (62%)
[C] SAGA complex (56%)
[P] chromatin modification (56%)

15 90 p < 8e − 145 [F] RNA binding (80%)
[C] mRNA cleavage & polyadenylation specificity fac. comp. (80%)
[P] mRNA polyadenylylation (80%)

14 79 p < 3e − 127 [P] mRNA catabolism (71%)
[F] RNA binding (64%)
[P] nuclear mRNA splicing, via spliceosome (57%)

7 20 p < 9e − 30 [C] mitochondrial outer membrane translocase complex (100%)
[F] protein transporter activity (100%)
[P] mitochondrial matrix protein import (100%)

limiting the ortholog assignments to proteins that have a COG assignment and considering only matching
direct interactions as conserved interactions limits the ability of the algorithm to identify a comprehensive
set of conserved dense graphs. Algorithms that rely on sequence alignment scores and consider indirect or
probable interactions [24, 25, 16] coupled with adaptation of the statistical framework in this paper have the
potential of increasing the coverage of identified patterns, while correctly evaluating the interestingness of
observed patterns.

4 Proof of Theorems

In this section we prove Theorems 1 and 2.

Proof of Theorem 1: We first prove the upper-bound. LetXr,ρ denote the number of subgraphs of sizer
with density at leastρ, i.e., Xr,ρ = |{U ⊆ V (G) : |U | = r ∧ |F (U)| ≥ ρr2}|. From first moment method,
we obtain

P (Rρ ≥ r) ≤ P (Xr,ρ ≥ 1) ≤ E[Xr,ρ]. (10)

Let Yr denote the number of edges induced byr vertices. Then,E[Xr] =
(n

r

)
P (Yr ≥ ρr2). Moreover,

sinceYr is a Binomial r.v.B(r2, p) andρ > p, we have

P (Yr ≥ ρr2) ≤ (r2 − ρr2)P (Yr = ρr2) ≤
(

r2

ρr2

)
(r2 − ρr2)pρr2

(1 − p)r
2−ρr2

. (11)

Hence, we get

P (Rρ ≥ r) ≤
(

n

r

)(
r2

ρr2

)
(r2 − ρr2)pρr2

(1 − p)r
2−ρr2

. (12)
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Table 2: Seven most significant conserved dense subgraphs identified inS. cerevisiaeandH. sapiensPPI
networks by the modified HCS algorithm.

# # Conserved
Proteins Interactions Significance COG Annotation

10 17 p < 1.7e − 69 RNA polymerase (100%)
11 11 p < 4.2e − 27 Mismatch repair (33%)

RNA polymerase II TI/nucleotide excision repair factor TFIIH (33%)
Replication factor C (22%),

7 7 p < 9.9e − 26 Exosomal 3’-5’ exoribonuclease complex (86%)
4 4 p < 2.9e − 26 Single-stranded DNA-binding replication protein A (50%)

DNA repair protein (50%)
5 4 p < 3.9e − 13 Small nuclear ribonucleoprotein(80%)

snRNP component (20%)
5 4 p < 3.9e − 13 Histone (40%)

Histone transcription regulator (20%)
Histone chaperone (20%)

3 3 p < 1.4e − 10 Vacuolar sorting protein (33%)
RNA polymerase II transcription factor complex subunit (33%)
Uncharacterized conserved protein (33%)

Using Stirling’s formula, we find the following asymptotics for
(n

r

)
:

(
n

r

)
∼

{ 1√
2πr

nr

rr e−r if r = o(
√

n)
1√

2πα(1−α)n
2nH(α) if r = αn

(13)

whereH(α) = −α log α − (1 − α) log(1 − α) denotes the binary entropy.
Let Q = 1/pρ(1 − p)1−ρ. Plugging the above asymptotics into (12), we obtain

P (Rρ ≥ r) ≤ r
√

1 − ρ

2π
√

ρ
exp2(−r2 log Q + r log n − r log r + r2H(ρ) − r log e}) (14)

Definingκ(p, ρ) = log Q − H(ρ) as in Section 2, we find

P (Rρ ≥ r0) ≤ r0
√

1 − ρ

2π
√

ρ
exp2(f(r0)), (15)

wheref(r0) = −r0(r0κ(p, ρ) − log n + log r − log e). Plugging in (5) and working out the algebra, we

obtainf(r0) = −r0

(
1 − O

(
log log n

log n

))
. Hence,

P (Rρ ≥ r0) ≤ O
(
2−r0

)
= O

(
log n

n1/κ(p,ρ)

)
. (16)

This completes the proof for the upper-bound.
The lower-bound is not of a particular interest in terms of statistical significance, but we provide a sketch

of the proof for completeness. By the second moment method [28], we have

P (Rρ < r) ≤ P (Xr,ρ = 0) ≤ Var[Xr,ρ]
E[Xr,ρ]2

=
1

E[Xr,ρ]
+

∑
Ur 6=Vr

Cov[XUr
ρ ,XVr

ρ ]
E[Xr,ρ]2

, (17)
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whereXUr
ρ is the indicator r.v. for the subgraph induced by the vertex setUr beingρ-dense. Lettingr =

(1 − ε) log n/κ(ρ), we observe that 1
E[Xr,ρ] → 0 asn → ∞. We split the sum

∑
Ur,Vr

Cov[XUr
ρ ,XVr

ρ ] =
g(r)+h(r), whereg(r) spans the set of node subsetsUr, Vr with intersection of cardinality at mostO(ρr2).
Observe that whenUr overlaps withVr on l vertices, then form = ρr2

Cov[XUr
ρ ,XVr

ρ ] =
min{l2,m}∑

k=max{0,l2−r2+m}

(
l2

k

)
pkql2−k

[(
r2 − l2

m − k

)
pm−kqr2−l2−(m−k)

]2

.

Routine and crude calculations show thatg(r) ≤ E[Xr,ρ], while h(r) ≤ α(r)E[Xr,ρ]2 whereα((1 −
ε) log n/κ(ρ)) → 0 asn → ∞, which completes the proof. 2

Proof of Theorem 2: Let Xh
r,ρ, X l

r,ρ be the number ofρ-dense subgraphs induced by only nodes inGh

or Gl, respectively. LetXb
r,ρ be the number of those induced by nodes from both sets. Clearly,Xr,ρ =

Xh
r,ρ + X l

r,ρ + Xb
r,ρ. The analysis forG(n, p) directly applies forE[Xh

r,ρ] andE[X l
r,ρ], hence we emphasize

onE[Xb
r,ρ]. Sincenh = O(1), we have

E[Xb
r,ρ] ≤ (1−ρ)r2

nh∑
k=0

(
nh

k

)(
nl

r − k

) 2k(r−k)∑
l=0

(
2k(r − k)

l

)(
(r − k)2

ρr2 − l

)
pl

bq
2k(r−k)−l
b pρr2−l

l q
(r−k)2−ρr2+l
l ,

(18)
whereqb = 1 − pb andql = 1 − pl. Then,

E[Xb
r,ρ] ≤ c(1 − ρ)r2nh

(
nl

r

) 2nhr∑
l=0

(
2nhr

l

)(
r2

ρr2 − l

)
pl

bq
2nhr−l
b pρr2−l

l qr2−ρr2+l
l , (19)

wherec is a constant. Sincel = o(ρr2), we have
( r2

ρr2−l

) ≤ ( r2

ρr2

)
for 0 ≤ l ≤ 2nhr. Therefore,

E[Xb
r,ρ] ≤ (1 − ρ)r2

(
n

r

)(
r2

ρr2

)
pρr2

l qr2−ρr2

l

2nhr∑
l=0

(
2nhr

l

)(
pbql

pl

)l

q2nhr−l
b . (20)

UsingB = pbql
pl

+qb as defined in Theorem 2, we findP (Rρ > r) ≤ O(2f1(r)), wheref1(r) = −r(rκ(ρ)−
log n + log r − log e + 2nh log B).Hence,

P (Rρ > r1) ≤ O(2f1(r1)) ≤ O

(
log n

n1/κ(pl,ρ)

)
(21)

for largen. 2

5 Conclusion

In this paper, we make a first attempt to assess analytical statistical significance in PPI networks. Specifically,
we emphasize on the notion ofdensesubgraphs, which is one of the most well-studied pattern structures in
extracting biologically novel information from PPI networks. While the analysis based on theG(n, p) model
and its extension provides a reasonable means of assessing significance, models that mirror the topological
characteristics of PPI networks should also be analyzed. This paper provides a stepping stone for the analysis
of such complicated models.
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