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ABSTRACT

The geometrical representation of the space of phylogenetic trees implies a metric on the

space of weighted trees. This metric, the geodesic distance, is the length of the shortest path

through that space. We present an exact algorithm to compute this metric. For biologically

reasonable trees, the implementation allows fast computations of the geodesic distance,

although the running time of the algorithm is worst-case exponential. The algorithm was

applied to pairs of 118 gene trees of the metazoa. The results show that a special path in

tree space, the cone path, which can be computed in linear time, is a good approximation of

the geodesic distance. The program GeoMeTreeGeoMeTreeGeoMeTree is a python implementation of the geodesic

distance, and it is approximations and is available from www.cibiv.at/software/geometree.
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1. INTRODUCTION

COMPARING PHYLOGENETIC TREES is a major task in phylogenetic research. Comparisons are nec-

essary when trees derived from different genes are incongruent (Rokas and Carroll, 2005), when the

outcomes of different reconstruction methods disagree (Dutilh et al., 2007), or when one compares the

outcome of different tree reconstruction methods by simulation (Gadagkar et al., 2005).

A natural way to compare pairs of trees is to apply a distance measure. Most measures only take the

topological information into account, for example, the Robinson-Foulds distance (Robinson and Foulds,

1981), the Nearest Neighbor Interchange distance (Waterman and Smith, 1978), the Subtree Prune and

Regraft distance (Hein, 1990), or the quartet distance (Estabrook et al., 1985). On the other hand, there

are a few measures that focus on the branch lengths of the trees, for example, the branch score distance

(Kuhner and Felsenstein, 1994). The branch score distance between any two trees is the sum of the squares

of differences between the branch lengths. Topological information is not incorporated explicitly in this

measure, but it is considered implicitly by setting the branch lengths of non-existing splits to zero.

However, for a proper comparison of trees, it is desirable to combine both topological and branch

lengths information into a single measure. One attempt for this is the weighted Robinson-Foulds distance
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(Robinson and Foulds, 1978), which is the sum of the absolute differences between the branch lengths of

two trees. A further advantage of distance measures that consider branch length information is that they

yield continuous values. This increases the distinguishability between different comparisons and allows for

applications in the clustering and visualization of trees (Stockham et al., 2002; Hillis et al., 2005; Smythe

et al., 2006).

Billera et al. (2001) define the tree space as the space of all weighted trees (the mathematical properties of

this space have been further studied in Pachter and Sturmfels [2007] and Owen [2007]). Each tree topology

is identified by a positive, real-valued hypercube, where branch lengths identify the exact position of a

tree in such a hypercube. The tree space is the union of these hypercubes. Topologies are connected by

less resolved topologies, therefore the tree space is connected. Every point on a path in tree space is a

phylogenetic tree. It can be shown that the shortest path between any two trees exists and is unique (Billera

et al., 2001). This shortest path is called geodesic path and its length is the geodesic distance. The question

whether the problem of finding the geodesic path is NP-hard is still open (for opposite conjectures, see

Epstein and Ingram [2003] and Owen [2007]); however, lower and upper bounds can be computed in linear

time (Amenta et al., 2007).

The geodesic path can also be used to define a consensus tree method. For two trees, the midpoint of a

path is a consensus tree with branch lengths. For sets of trees, different consensus methods can be defined

using the tree space (Billera et al., 2001). Further issues of tree comparisons can be also be addressed

in the space of trees, like finding the neighborhood of a tree or testing whether data sets are congruent

(Holmes, 2005).

Here we present an exact algorithm to calculate the geodesic path and its length between two trees. We

will define the mathematical framework of tree space and the steps necessary to compute a path in this

space. The implemented algorithm was tested on a dataset of 118 gene trees from 21 species (Ewing et al.,

2008; Ebersberger, 2007).

2. THE TREE SPACE

2.1. Topologies

Phylogenetic trees are leaf-labeled trees, where the leaves are called taxa. One distinguishes between

rooted or unrooted phylogenetic trees. In the case of rooted trees, we treat the root as an additional taxon

of an unrooted tree. The term phylogenetic tree can stand for a topology or a weighted tree. A topology

is the branching pattern of the taxa, whereas a weighted tree adds branch lengths to such a topology. We

will use these two terms if the discrimination is important or the term (phylogenetic) tree if the meaning

is unambiguous in the context.

A topology T is identified by its taxon set X and its edge set, where terminal edges connect a leaf with

an inner node and interior edges connect two inner nodes. If an edge of a phylogenetic tree is deleted, the

tree decomposes into two connected components. Thus, the taxon set is partitioned into two sets (X1 and

X2), one for each component. Such a bipartition is called a split and is identified by X1jX2 or the smaller

set of X1 and X2 if the underlying taxon set X D X1 [ X2 is clearly stated. A k-split refers to a partition

into k and n � k taxa, i.e., k D min.jX1j; jX2j/. Since each edge in a topology corresponds to a split, we

will identify a topology for taxon set X by the corresponding split set (Fig. 1).

For n D jX j taxa, there are m D 2n�1 � 1 possible splits. We will denote the set of all splits for n taxa

by Sn. Analogous to the edges, we will distinguish between the n terminal splits and the m � n interior

splits. Two splits are called compatible if there is a phylogenetic tree, which contains both splits. This

holds for two splits X1jX2 and Y1jY2 if at least one of the following taxon sets is empty: X1 \ Y1, X1 \ Y2,

X2 \ Y1 or X2 \ Y2. Note that terminal splits are compatible to any other split. The compatibility graph for

a set of splits is a graph whose nodes represent the splits, and edges in the graph indicate compatibility

between two splits. Figure 2 shows the compatibility graph for the interior splits for five and six taxa.

For six taxa, only the induced subgraphs for ABjCDEF (Fig. 2b) and ABC jDEF (Fig. 2c) are shown.

The subgraph of the compatibility graph induced by a split S consists of all splits compatible with S.

The observations for compatibility relationships on six taxa can be extended to compatibility graphs for

an arbitrary number of taxa:
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FIG. 1. Examples for phylogenetic trees on leaf set X D fA; B; C; D; E; F g: T 1 D fA; B; C; D; E; F; AB; CD;

EF g and T
2 D fA; B; C; D; E; F; AC; BE; DF g.

1. The induced compatibility graph for a 2-split is isomorphic to a complete compatibility graph for splits

of n � 1 taxa. In Figure 2b, the compatibility graph of all splits compatible to the 2-split ABjCDEF

is isomorphic to a compatibility graph for five taxa (Fig. 2a).

2. The compatibility graph of a k-split (k > 2) consists of two types of nodes: Type-1-nodes correspond

to splits for k C 1 taxa and are connected according to the complete compatibility graph for k C 1

taxa, and type-2-nodes correspond to n � k C 1 taxa and are connected accordingly. Further, all edges

between the nodes of the two types exist, since all the splits in the independent subtrees are compatible.

In Figure 2c, there are two compatibility graphs for four taxa, which are simply three disconnected

nodes, and both classes of nodes are completely connected.

FIG. 2. Compatibility graphs for five and six taxa. Vertices denote interior splits and edges indicate compatibility

between the connected splits. (a) All interior splits of five taxa (X D fA; B; C; D; Eg). Here, an edge also depicts a

bifurcating topology identified by the two compatible interior splits. There are 15 edges and 15 topologies. The graph

is the well-known Peterson graph. (b),(c) Compatibility subgraphs for six taxa (X D fA; B; C; D; E; F g) induced by

the splits AB , respectively ABC . The splits AB and ABC are representatives for all 2-splits and all 3-splits, since

induced compatibility graphs for other splits are isomorphic to one of the graphs. The full graph for six taxa would

consist of 25 vertices and 105 edges forming 105 3-cliques. Thus, there are 105 different bifurcating topologies for

six taxa.
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A phylogenetic tree of n taxa contains at most n � 3 interior splits. If it contains exactly n � 3 interior

splits, all inner nodes have degree three, and the tree is called bifurcating, and multifurcating or unresolved

otherwise. It is well-known, that .2n � 5/ŠŠ D 1 � 3 � � � � � .2n � 5/ distinct bifurcating topologies exist

for n � 3 taxa (Felsenstein, 2004). In the compatibility graphs, the bifurcating trees are given as cliques

of n � 3 vertices, i.e., 2-cliques for five taxa and 3-cliques for six taxa (Fig. 2).

2.2. Weighted trees

The tree space Tn is the space of all weighted trees on n taxa. Tn is defined as follows (Billera et al.,

2001). Each split is identified with a different orthogonal unit vector eS (S 2 Sn) in the m-dimensional

space; these are the axes of Tn. Thus, Tn is a subspace of R
m.

For each topology T , the unit vectors associated with its splits span a jT j-dimensional subspace. Recall

that n � jT j � 2n � 3, because each topology consists at least of n terminal splits and at most n � 3

pairwise compatible interior splits can be added.

A weighted tree p with topology T is a point in Tn given by

p D
X

S2T

pS eS ; (1)

where pS denotes the split weight of split S from topology T . With this, every weighted tree p defines

a split weight function �p W Sn ! RC with �p.S/ D pS if S 2 T and 0 otherwise. In other words, �p

assigns to each split S 2 T its weight for tree p. Therefore, the weight function also identifies the tree (and

implicitly also its topology), and we use the convention �p.T / D p. We can apply �p to any collection of

splits A and get a point in Tn with

�p.A/ D
X

S2A

�p.S/ eS :

In particular, �p assigns 0 to each split not in T ; thus, the point �p.A/ lies on the subspace spanned by

the splits in T \ A. In the following, we are mainly concerned with either one or two trees and thus will

use �, respectively �i ; i D 1; 2 to identify the trees.

The union of weighted trees (analogously, topologies and weight functions) forms Tn. Unresolved

topologies are also included in this space. In detail, an unresolved topology lies on the boundary of more

resolved topologies. Thus, unresolved topologies connect the bifurcating topologies. An example is shown

in Figure 3a, there the unresolved topology corresponds to the single axis CDjABE and connects the two

bifurcating topologies.

FIG. 3. Subspace of the tree space for five taxa. (a) Example of an unresolved topology (marked by the arrow)

connecting two resolved topologies. (b) Example of paths in tree space: Manhattan path (line), Euclidean path (spotted)

and geodesic path (dashed).
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FIG. 4. Tree space for four and five taxa where only the internal splits are shown. (a) The split corresponding to each

axis is given. Only points on the axes lie in T4. Billera et al. (2001) introduced (b), which shows a two-dimensional

description of the space spanned by the 10 nontrivial splits for five taxa. Here, each topology is a 2D-plane. Note that

the picture is entangled as some splits .x; y; z/ are shown twice at the boundary of the figure.

Figure 4 shows a visualization of T4 and T5 where only the interior splits are illustrated. The previous

considerations about compatibilities of splits help to understand how to extend these pictures for higher

dimensions:

1. When deleting all splits incompatible with a 2-split, one reduces the dimension of Tn. In particular,

one projects Tn on the subspace spanned by the compatible splits. This results in a space isomorphic

to Tn�1 with two extra dimensions, one for the 2-split and one for the additional terminal split.

2. When projecting Tn on the vector space spanned by the splits compatible to a k-split (k > 2), the

resulting space has the following structure: TkC1 � T
0
n�kC1 , where T

0
n�kC1 is Tn�kC1 with one

terminal split missing. An example is shown in Figure 5.

Further note that Tn is a true subspace of R
m
C. Already in T4 we see that the tree space is sparse.

Although the dimension of the space is m D 3, each tree has only one internal split. For T5, the dimension

is m D 15, but each tree lies in a 2D-plane. This disparity increases for higher dimensions, since the

number of splits for one tree increases linearly with n but the number of possible splits, m, increases

exponentially with n.

FIG. 5. Subspace of T6 showing only the internal splits compatible to the split ABC . This corresponds to a

cross-product of the two T4-spaces with axes fAB; AC; BCg and fDE; DF; EF g, respectively. For the compatibility

relationships, see Figure 2c.
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2.3. Paths and distances between trees

There are many different distance measures for the topological difference between two trees. The most-

common one is the Robinson-Foulds distance (RF) (Robinson and Foulds, 1981), which counts the splits

not in both topologies. In the set-theoretical sense, the RF distance between two topologies T 1 and T 2 is

given by the size of the symmetric difference:

RF.T 1; T 2/ D jT 1�T
2j D j.T 1 [ T

2/ n .T 1 \ T
2/j:

The example topologies from Figure 1 have RF.T 1; T 2/ D 6 because each topology has three interior

splits and no interior split in common.

One measure to compare two trees with respect to both topology and branch lengths is the weighted

Robinson-Foulds distance (RFw) (Robinson and Foulds, 1978). For two weighted trees �1 and �2 with

topology T 1 and T 2, respectively, the RFw distance is given as:

RFw.�1; �2/ D
X

S2Sn

j�1.S/ � �2.S/j:

This measure corresponds to the L1 norm or the length of the Manhattan path in Tn. An example of the

Manhattan path in T5 is shown in Figure 3b. For the weighted trees in Figure 1, the RFw distance is equal

to 2:6.

Another measure that respects branch lengths is the branch-score distance (BS) (Kuhner and Felsenstein,

1994). It corresponds to the Euclidean distance between the branch lengths of all splits in R
m:

BS.�1; �2/ D k�1.T 1/ � �2.T 2/k D
s

X

S2Sn

.�1.S/ � �2.S//2 :

For two different topologies, the corresponding path in R
m
C (the Euclidean path) is not a path in Tn (Fig. 3b).

This implies that the Euclidean distance does not correspond to the L2-norm on tree space. But Billera

et al. (2001) have shown that an L2-norm in Tn exists by proving that Tn is a CAT.0/-space (Bridson

and Haefliger, 1999). In CAT.0/-spaces, a unique shortest path exists between any two points. These paths

are called geodesics, and their length, the geodesic distance, is a metric on Tn which corresponds to the

L2-norm.

In the following, we will provide an algorithm to determine the geodesic path between two trees of the

same leaf set. As mentioned earlier, the dimension of the tree space, m, increases exponentially with n.

But given two topologies T 1 and T 2, we only need to consider the splits in these two topologies since

the geodesic path will never pass other splits (Vogtmann, 2003). Figure 6 depicts the implications of this

statement for the trees in Figure 1.

For trees containing common internal splits, the problem of finding the geodesic path can be simplified

further: for Sc 2 T 1 \ T 2 with Sc D XAjXB every internal split in T 1 further resolves either taxon set

XA (the splits T 1
A ) or XB (the splits T 1

B ). These two split sets are then subtopologies on the taxon sets

XA and XB (analogous for T 2). Since all splits from subtopology T i
A are compatible with all splits from

subtopology T
j

B ; i; j D 1; 2, paths through these subtopologies are independent. Therefore, the geodesic

for all splits can be found by looking separately at taxon set XA (using the subtopologies T 1
A and T 2

A ) and

taxon set XB (using T 1
B and T 2

B ) and assembling the paths afterwards (Vogtmann, 2003). As a consequence,

we will assume in the following that the topologies are fully decomposed and contain no common splits.

This involves both reducing the topologies and setting the other split weights (including the terminal splits)

to zero.

Another useful property of geodesic paths is that they are piecewise linear. In Figure 3b, the geodesic

path between two trees with only one different split is shown. This path is linear between one tree and

the intersection point with the axis. Therefore, the idea of the algorithm presented here is to enumerate

all possible intersections efficiently, compute the length of a path given special intersections, and find the

shortest among these paths.
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FIG. 6. Three visualizations for the example topologies T 1 and T
2 from Figure 1. (a) Compatibility map of the six

interior splits from the two topologies. Compatibilities between splits of the two topologies are highlighted in gray.

We see that no bifurcating topology other then T 1 and T 2 can be formed from these splits. (b) Associated adjacency

matrix with the same color code, where white entries denote incompatibility. (c) Fraction of tree space T6 spanned by

the interior splits in T 1 and T 2 with the same color code; the three gray planes correspond to unresolved topologies

spanned by splits from both trees.

3. FINDING THE SHORTEST PATH IN TREE SPACE

3.1. Introduction

In this section, we will introduce the prerequisites to compute the geodesic path between two weighted

trees �1 and �2 with topology T 1 and T 2, respectively. As explained in Section 2.3, we already decomposed

the topologies such that T 1 and T 2 contain no common splits. We will further assume that the respective

topologies are bifurcating. Then both topologies contain the same number of splits, i.e., d D jT 1j D jT 2j.
Thus, we reduced Tn to a 2d -dimensional subspace by deleting all splits not in T 1[T 2. The remaining split

set is S
0 with jS0j D 2d . Note that the splits in S

0 are the only ones that contribute to the Robinson-Foulds

distance, and 2d corresponds to the RF distance for the reduced topologies.

Example. The trees in Figure 1 on leaf set X D fA; B; C; D; E; Fg are each composed of three interior

splits. They do not have interior splits in common and therefore d D 3, S
0 D fAB; CD; EF; AC; BE; DFg

and

T
1 D fAB; CD; EF g; T

2 D fAC; BE; DF g

with the following weights for the topologies:

�1.T 1/ D .0:1; 0:2; 0:3; 0; 0; 0/; �1.T 2/ D .0; 0; 0; 0; 0; 0/;

�2.T 1/ D .0; 0; 0; 0; 0; 0/; �2.T 2/ D .0; 0; 0; 0:9; 0:6; 0:5/:

3.2. Legal topologies

We construct legal topologies A that are formed by the splits in S
0 and fulfill the compatibility condition.

Legal topologies are cliques in the compatibility graph with vertex set S
0.

Further, a legal topology A is required to be maximal, i.e., adding splits S 2 S
0 to A will violate the

compatibility within A. This corresponds to extracting the maximal cliques from the compatibility graph.

Non-maximal topologies are by definition composed of fewer splits and are therefore subtopologies of a

maximal topology. This implies that any path through legal subtopologies runs along the boundary of a

legal topology. Thus, paths through subtopologies are already contained in the possible paths through other

legal topologies by setting the corresponding split weight to 0.

Let A be the set of all legal topologies. By this definition, T 1 2 A and T 2 2 A.
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Example. For the trees in Figure 1, the compatibility graph is shown in Figure 6a. The set A of legal

topologies are the maximal cliques of the graph; thus,

A D fT 1; T
2; fAB; DF g; fCD; BEg; fEF; AC gg

3.3. Legal paths

A sequence of legal topologies connects T 1 with T 2 by passing through legal topologies from A in such

a manner that in each step at least one split from T 1 is replaced by at least one split from T 2.

Accordingly, a sequence of legal topologies .Aj /k
j D0 with k � d and A0 D T 1; Ak D T 2 must fulfill

the following two conditions for all j D 0; : : : ; k � 1:

A
j C1 \ T

1 � A
j \ T

1 and A
j \ T

2 � A
j C1 \ T

2 (2)

i.e., no split from T 1 can reemerge in the sequence and no split from T 2 can be lost.

From the adjacent topologies Aj and Aj C1 we are interested in the splits that changed between these

sets. These transitions I j .j D 0; : : : ; k �1/ are given as the symmetric difference between these two sets,

i.e., I j D Aj �Aj C1 . Note that the series of transitions .I j /k�1
j D0 form a partition of the split set S

0.

From this sequence of topologies we generate a piecewise linear path. The path is linear while passing

through a topology A. Two adjacent topologies are connected by a transition point where all splits in I j

have weight 0.

A path is parameterized with constant speed by a piecewise linear function g W Œ0; 1� ! R
2d
C with

g.0/ D �1.T 1/ and g.1/ D �2.T 2/ (Vogtmann, 2003; Bridson and Haefliger, 1999). For each transition

from topology Aj to Aj C1 , there exists a time tj at which g.tj /i is zero for the splits i 2 I j . In other

words, tj is the transition time in which the splits i 2 T 1 \ I j are reduced to length zero and 1 � tj is

the transition time in which the splits i 2 T 2 \ I j are expanded from zero to their weight in �2. Due to

the constant speed condition of the path (Vogtmann, 2003), the transition times tj are calculated from the

transitions by

tj D k�1.I j /k
k�1.I j /k C k�2.I j /k

For a sequence of topologies to contain a legal path, the following condition must be satisfied: The

points in which the sequence of topologies traverses from topology Aj to Aj C1; j D 0; : : : ; k � 1; can

only be visited in the proposed order. This is ensured when the transition times .tj /k�1
j D0 are increasing. For

a legal path g, the entries of g for an arbitrary time t 2 Œ0; 1� are given by

gi .t/ D

8

ˆ
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ
ˆ̂
ˆ
ˆ̂
ˆ̂

:̂

��1.i/

tj
.t � tj /; i 2 T

1 \ I j and t < tj ;

�2.i/

1 � tj
.t � tj /; i 2 T

2 \ I j and t > tj ;

0; otherwise

9

>
>>
>>
>>
>>=

>
>>>
>>
>>
>;

:

With this, the function g describes the path between the two weighted trees, which changes direction at

.tj /k�1
j D0 and its length is computed by:

kgk D
k

X

j D1

kg.tj / � g.tj �1/k; with t0 D 0 and tk D 1:

There is always a legal path defined by a single transition at time t� with I � D S
0. This path

simultaneously replaces all splits in T 1 by all splits in T 2 at time t� and is called cone path, because it

passes through the origin of the 2d -dimensional subspace of Tn.
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Example. The example set A from Figure 1 suggests four sequences of legal topologies with the

following transitions and transition times:

Path 1: T 1

fCD;EF;AC g���!
t1D0:42 fAB; DF g

fAB;AC;BEg���!
t2D0:09 T 2

Path 2: T 1

fAB;EF;BEg���!
t1D0:35 fCD; BEg

fCD;AC;DFg���!
t2D0:16 T 2

Path 3: T 1

fAB;CD;AC g���!
t1D0:2 fEF; AC g

fEF;BE;DF g���!
t2D0:28 T 2

Path 4: T 1

fAB;CD;EF;AC;BE;DFg����!
t�D0:24 T 2

Because t1 > t2 for the first sequence, it does not yield a legal path. This is visualized in Figure 7a: The

topologies suggested by the transition times are T 1

fAB;AC;BEg���!
t2D0:09 fCD; EF; AC; BEg

fCD;EF;AC g���!
t1D0:42 T 2. So four

splits coexist between time 0.09 and 0.42 where the splits from the first tree are incompatible to the splits

from the second tree. Thus, the condition of a legal path can be checked by testing whether the times in

a sequence of topologies are increasing.

Since t1 > t2 also holds for the second sequence (Fig. 7b), only path 3 (Fig. 7c; length 1:5592) and

path 4 (Fig. 7d; the cone path, length 1:5658) correspond to legal paths. Comparing their lengths shows

that path 3 is the geodesic path between the two trees.

FIG. 7. Parameterizations for the four possible paths of the example trees in Figure 1.
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3.4. Multifurcating trees

Only one extension of our findings is necessary to include trees with less than n � 3 interior splits

(multifurcating trees). If T 1 is multifurcating, there may be splits in T 2 that are compatible to every split

in T 1 and vice versa. The length of a split in T 2 with this property will be extended immediately from the

beginning, while the length of a split in T 1 with this property will be reduced until the end. Thus, only the

remaining topologies OT 1 and OT 2 without these splits are relevant for the calculation of the transition times

and contribute to the topologies in A. Note that OT 1 and OT 2 do not necessarily contain the same number

of splits.

3.5. Implementation details

The presented algorithm for the geodesic path comprises several steps: decomposing the topologies to

the sets T 1 and T 2; building the legal topologies A; arranging them in legal sequences; and extracting

the legal paths, which are the legal sequences where the transition times are in the correct order. The

geodesic path is then the shortest of these legal paths. Our implementation does not follow these steps,

but computes the legal topologies together with the transitions and their respective times. The computation

starts with T 1 and generates all possible transitions I , which lead to a maximal legal topology. A directed

acyclic graph (DAG) is thereby generated whose node set is A, and an edge is inserted for every generated

transition and labeled with its time. A legal sequence is a directed path in the DAG which connects

T 1 and T 2, and a legal path is a legal sequence with increasing edge weights on the path through the

DAG. Not all sequences have to be enumerated until the end. The transition times are computed co-

instantaneously and tested for an ascending sequence. Illegal paths are identified and terminated before

reaching T 2.

The time-limiting step is the generation of all transitions I , which is done for each topology in A. First,

for topology T 1, all possible I leading to a maximal legal topology are generated. There are not more

than 2d . Then the complete set A is already known, and for each element, all possible index vectors are

generated again. This yields

2d

„ƒ‚…

Generation of A from T 1

C 2d � 2d

„ ƒ‚ …

Generation of all I for the other topologies

D O.22d /

for building the graph. But note that, because of incompatibilities, the size of A is much smaller than

2d . Further, the algorithm is exponential in d , which is small for topologically similar trees and can be

decreased by decomposing the trees (Section 2.3).

The algorithm is implemented in a python program called GeoMeTree, which is available from www.

cibiv.at/software/geometree. The program has been used for the calculations in the next section.

4. RESULTS

4.1. Data

A dataset was generated from 216 alignments of 20 metazoa species and yeast as an outgroup (Ewing

et al., 2008; Ebersberger, 2007). The orthologs were extracted from the Inparanoid database (O’Brien et al.,

2005), where pairwise orthologs of eukaryotes are stored. Orthology is expanded to cover all 21 species

by taking an arbitrary order of the 21 species and determining the orthologous pairs between neighboring

species. If a chain occurs where the protein in the first and last species are also orthologs, this protein

is added to the data set. This resulted in 216 alignments for 21 species, where each alignment consists

of putatively orthologs. For these, alignments were produced with T-coffee (Notredame et al., 2000).

Maximum likelihood gene trees were reconstructed for each of the gene alignments with phyML (Guindon

and Gascuel, 2003). A widely accepted species tree had been found for these gene trees with different

methods (Ewing et al., 2008).

From the resulting set of 216 trees, we used the 118 strictly bifurcating trees (6903 pairs) for the

distance computations. The resulting weights for each tree (see Equation [1]) are normalized (i.e., they
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have a Euclidean norm of 1). Otherwise, the branch lengths are expected to dominate the distance between

two trees, while differences between their topologies have less influence on the measure.

4.2. Dimension and number of paths

The computations were first done without decomposition (Section 2.3). As stated earlier, the dimension

d is the number of splits in one topology but not in the other. For pairs of bifurcating trees, d corresponds

to half of the Robinson-Foulds distance. For 21 taxa, the maximal d is 18, but the observed dimension d

in the data ranged from 0 to 12 (Fig. 8a). The few pairs with a high dimension d are mainly caused by a

few gene trees with many incongruencies to the species tree.

Without decomposition, the mean number of legal paths in tree space increases exponentially with the

dimension (Fig. 8b). This is due to the fact that the number of legal topologies increases exponentially with

d , and more legal paths are expected for a larger set of legal topologies. A substantially smaller number

of paths is explored when the topologies are decomposed. The number with decomposition in Figure 8b

refer to the product of the number of paths through the independent decompositions, which is smaller than

the complete number of paths.

4.3. Computing time

Although the algorithm is exponential in d , the program is reasonably fast. The mean runtime without

decomposition was 0.4 sec. However, the time to compute the distance for one pair of trees strongly

depends on the number of paths evaluated. This is reflected by the longer runtime for high dimensions

and without decomposition (Table 1, left part). The runtime is highly improved when decomposition of

the trees is applied (Table 1, right part). For the two runs which then show a runtime of >30 sec, the trees

could not be decomposed.

4.4. Approximations of the Geodesic distance

A lower and an upper bound is known for the geodesic distance (Amenta et al., 2007). The lower bound

is the branch score distance (Kuhner and Felsenstein, 1994; Felsenstein, 2005), which is the Euclidean

distance between the branch lengths vectors of the two trees. The upper bound is the length of the cone

path. Amenta et al. (2007) showed that these two lengths differ at most by a factor of
p

2.

FIG. 8. Frequency of observed dimensions and mean number of paths. (a) Frequency (number of pairs of trees) of

the observed dimension d . (b) Mean number of paths (log-scale) for the computation without decomposition and the

product of the paths through independent decompositions].
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TABLE 1. Time: MEAN AND MAXIMAL TIME CONSUMPTION FOR THE

DIFFERENT DIMENSIONS d WITHOUT AND WITH DECOMPOSITION.

Dec.: MEAN AND MAXIMAL NUMBER OF DECOMPOSITIONS

FOR A DIMENSION d

Without decomposition With decomposition

Time Dec.

d Mean Max Mean Max Mean Max

0 0 sec 0 sec 0 sec 0 sec 1 1

1 0 sec 0 sec 0 sec 0 sec 1 1

2 0 sec 0 sec 0 sec 0 sec 1.6 2

3 0 sec 0 sec 0 sec 0 sec 2.2 3

4 0 sec 0.1 sec 0 sec 0.1 sec 2.6 4

5 0.2 sec 1 sec 0 sec 0.2 sec 2.9 5

6 0.9 sec 9.9 sec 0 sec 0.7 sec 3 5

7 3.7 sec 102 sec 0 sec 0.8 sec 2.7 6

8 15.8 sec 11.4 m 0.1 sec 7.7 sec 2.7 6

9 56.1 sec 33.7 m 0.2 sec 22.6 sec 2.4 5

10 8.6 m 9.9 h 2.1 sec 46 sec 2.1 4

11 43.7 m 17.9 h 2.7 sec 44.3 sec 2 4

12 2.3 m 5.4 m 3.9 sec 13.9 sec 1.5 2

We observed that the mean ratio of the cone path to the branch score distance is close to 1.4, when

the distance is computed only from the differing splits (Fig. 9). In contrast, the ratio is smaller than 1.1

when all splits are considered. Thus, both distances give a tight interval for the geodesic distance. Figure 9

also shows that the geodesic distance is better approximated by the cone path than by the branch score

distance. This is expected, since the cone path is already a path in tree space. In contrast, the branch score

distance measures the length of the Euclidean path between two trees, which is not a path in tree space

for trees with at least one different split.

FIG. 9. Means of the ratios of the distance measures. Cone, cone path length; BS, branch score distance; Geod,

geodesic distance.
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FIG. 10. Relation between Robinson-Foulds distance and the three distances: Robinson-Foulds distance is two times

the dimension d of the pair. For every category of d , a boxplot of the distribution of each of the three distances is

drawn.

4.5. Relationship to the Robinson-Foulds distance

The Robinson-Foulds distance (Robinson and Foulds, 1981) is a pure topological and discrete distance

measure, which counts the number of different splits between two trees and thus corresponds to 2d in

our notation. Since it is the prevalent distance measure for phylogenetic trees, it would be preferable

if continuous distance measures also display this topological information and extend it with the branch

lengths information.

As Figure 10a indicates, comparing pairs of trees over all their splits results in a distance range that

appears to have little correlation with the Robinson-Foulds distance, especially for small values of d . The

notches of the boxplots of different dimensions are overlapping for the geodesic distance (and also for its

approximations). This indicates that the medians do not differ significantly. Under these circumstances,

the lengths of the branches have a much higher influence on the distance than the topological features.

If one intends to make the comparison more sensitive to topological differences, we suggest reducing the

study to the 2d different splits (Fig. 10b). Here, the notches do not overlap until a dimension of nine,

indicating that the median geodesic distance is increasing with increasing dimension. However, the broad

distributions show that the branch lengths do still have a substantial impact.

5. DISCUSSION

We presented an exact algorithm for computing the geodesic distance and showed its applicability for

phylogenetic trees. For a pair of trees, the algorithm constructs legal topologies formed from splits of the

input trees. From these topologies, it enumerates the legal paths leading from one tree through a sequence

of legal topologies to the other tree. We employed computational techniques to reduce the number of

paths enumerated. This facilitated the calculation of the geodesic path between two trees in reasonable

time, although the algorithm is still exponential in the number of different splits. Currently, no other

implementation of the geodesic distance is published, but another approach is in preparation (Owen, 2007).

The availability of a distance metric in tree space allows us to address further issues. These include

clustering or visualizing trees (Hillis et al., 2005) or finding the center of a set of trees (Billera et al., 2001),

which can be interpreted as a consensus method. One possibility to define a consensus method for a given

distance metric are median trees. With the Robinson-Foulds distance, the median tree corresponds to the

majority-rule consensus tree (Barthélemy and McMorris, 1986), which is one of the prevalent consensus

methods (Bryant, 2003). For the weighted Robinson-Foulds distance, the median tree is given by the

majority rule consensus tree in which each branch length is the minimum of the lengths of the respective

split in the data (Pattengale, 2005). The median tree for a given set of trees under the geodesic distance

corresponds to the tree with the smallest total distance to all trees in the regarded set. No closed formula

to determine the median tree under the geodesic distance is known, so searching over the whole tree space

would be necessary. For simplification, one could assume that the median tree is among the observed trees

and thus determine the tree with the smallest total distance from all pairwise distances.
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We showed the applicability of the presented algorithm on a metazoa dataset which was generated from

118 alignments of 21 species (Ewing et al., 2008; Ebersberger, 2007). In this example, the contribution of

the branch lengths overwhelms the influence of the topologies (Fig. 10a) on the distance. To incorporate

the topological signals, we suggest as an appropriate distance measure the length of the geodesic path

through those splits exclusive to one of the trees considered (Fig. 10b).

Another notable observation is the small factor by which the cone path and the geodesic distance differ

(Fig. 9). This was also observed for pairs of trees simulated under a Yule (1924) process (results not

shown). Thus, the length of the cone path is a useful approximation of the geodesic distance, especially

since it incorporates topological differences in a similar way. The previous finding of using only splits

exclusive to one of the trees as a distance can also be applied to the cone distance (Fig. 10b). The

approximation can be further improved if the trees are decomposed (results not shown). While the cone

distance passes through the consensus of two trees, the decomposed cone distance passes through the

consensus of every decomposition. This allows for more than one transition point. The resulting distance

is an easily computable continuous distance measure on phylogenetic trees.
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