
JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 15, Number 8, 2008

© Mary Ann Liebert, Inc.

Pp. 1079–1092

DOI: 10.1089/cmb.2008.0116

Improving Reversal Median Computation

Using Commuting Reversals and Cycle Information

WILLIAM ARNDT and JIJUN TANG

ABSTRACT

In the past decade, genome rearrangements have attracted increasing attention from both

biologists and computer scientists as a new type of data for phylogenetic analysis. Methods

for reconstructing phylogeny from genome rearrangements include distance-based methods,

MCMC methods, and direct optimization methods. The latter, pioneered by Sankoff and

extended with the software suites GRAPPA and MGR, is the most accurate approach, but is very

limited due to the difficulty of its scoring procedure—it must solve multiple instances of the

reversal median problem to compute the score of a given tree. The reversal median problem

is known to be NP-hard and all existing solvers are extremely slow when the genomes are

distant. In this paper, we present a new reversal median heuristic for unichromosomal

genomes. The new method works by applying sets of reversals in a batch where all such

reversals both commute and do not break the cycle of any other. Our testing using simulated

datasets shows that this method is much faster than the leading solver for difficult datasets

with only a slight accuracy penalty, yet retains better accuracy than other heuristics with

comparable speed, and provides the additional option of searching for multiple medians.

This method dramatically increases the speed of current direct optimization methods and

enables us to extend the range of their applicability to organellar and small nuclear genomes

with more than 50 reversals along each edge.

Key words: algorithms, combinatorial optimization, computational molecular biology, genomic

rearrangements, phylogenetic analyses.

1. INTRODUCTION

DUE TO THE ADVENT OF HIGH-THROUGHPUT SEQUENCING and the consequent reduction in costs,

we are seeing an explosion in the amount of genomic data of all types. In particular, the availability

of fully sequenced and well annotated genomes allows us to move beyond the mere sequence level in the

study of genomic evolution. Once a genome has been annotated to the point where gene homologs can

be identified, each gene family can be assigned a unique integer where the sign indicates strand and a

chromosome is able to be represented by a permutation of such integers. Rearrangements of genes under

Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina.

1079

1080 ARNDT AND TANG

reversals, transpositions and other operations then amount to rearrangements of these orderings. Such

rearrangements are known to be an important evolutionary mechanism (Downie and Palmer, 1992) and

their use in reconstructing phylogenies has been studied intensely since the pioneering papers of Sankoff

and colleagues (Blanchette et al., 1997; Sankoff and Blanchette, 1998). Biologists have embraced this new

source of data in their phylogenetic work (Belda et al., 2005; Bhutkar et al., 2007) and also in comparative

genomics (Pevzner and Tesler, 2003), while computer scientists are slowly solving the difficult problems

posed by the manipulations of these gene orders (Moret et al., 2005). During the past several years,

computer scientists have been able to make substantial progress in genome rearrangement research: with

the solution for reversal distance (Hannenhalli and Pevzner, 1995) and reversal median (Caprara, 2001),

researchers were able to estimate phylogenies and ancestral genomes based on reversals (the dominant

events in organellar genomes).

There are several widely used methods for phylogenetic analysis using genome rearrangement data,

including distance-based methods such as neighbor-joining (Saitou and Nei, 1987), GRAPPA (Moret et al.,

2001), and MGR (Bourque and Pevzner, 2002). The latter two will generally achieve better accuracy

than distance-based methods such as neighbor-joining. Their basic optimization tool is an algorithm for

computing the reversal (or breakpoint) median of three genomes. However, using GRAPPA and MGR to

compute phylogeny for organismal genomes with many events is extremely expensive, because the median

computation takes time exponential in both the size of the genomes and the distances among genomes.

In this paper, we present a fast yet accurate heuristic using commuting reversals to improve the reversal

median computation for both distant and large genomes. Integrated with GRAPPA, this method extends the

capability of the existing direct optimization method so that accurate reconstruction of phylogenies can be

achieved for larger genomes. We will also provide some discussions regarding reversal medians when the

number of events approaches saturation.

2. BACKGROUND

2.1. Genome Rearrangements

We assume a reference set of n genes f1; 2; : : : ; ng; thus, a unichromosomal genome can be represented

as a signed permutation of these genes, and each gene is given an orientation that is either positive, written

i , or negative, written �i . Genomes can evolve through events including reversals, transpositions and

transversions.

Let � be a genome with the signed ordering of 1; 2; : : : ; n. A reversal between indices i and j .i � j /,

transforms � to a new genome with linear ordering

1; 2; : : : ; i � 1; �j; �.j � 1/; : : : ; �i; j C 1; : : : ; n:

A transposition on genome � acts on three indices i; j; k, with i � j and k … Œi; j �, picking up the interval

i; i C 1; : : : ; j and inserting it immediately after k. Thus, genome � is replaced by (assume k > j):

1; : : : ; i � 1; j C 1; : : : ; k; i; i C 1; : : : ; j; k C 1; : : : ; n:

A transversion is a transposition followed by a reversal of the transposed subsequence; it is also called an

inverted transposition.

2.2. Distance computation

Given two genomes �1 and �2, we define the edit distance d.�1; �2/ as the minimum number of

events required to transform one of these genomes into the other. When only reversals are allowed, the

edit distance is the reversal distance. Hannenhalli and Pevzner (1995) developed a mathematical and

computational framework for signed gene-orders and provided a polynomial-time algorithm to compute

the edit distance between two signed gene-orders under reversals; Bader et al. (2001) later showed that

this edit distance can be computed in linear time. However, computing the reversal distance is NP-hard

IMPROVING REVERSAL MEDIAN COMPUTATION 1081

FIG. 1. Breakpoint graph between genome (�2 4 3 �1) and the identity genome (1 2 3 4).

in the unsigned case (Caprara, 1999b). Two genes i and j are said to be adjacent in genome G if i

is immediately followed by j , or, equivalently, �j is immediately followed by �i . A breakpoint in �1

is defined as an ordered pair of genes .i; j / such that i and j are adjacent and have the same relative

orientation in �1 but not in �2. The breakpoint distance (Sankoff and Blanchette, 1998), which is simply

the number of breakpoints in �1 relative to �2, is an approximation of evolutionary distance measurement

because breakpoints do not directly correspond to evolutionary events.

The Hannenhalli and Pevzner (HP) algorithm is based on the breakpoint graph (Fig. 1). Given two

permutations �1 and �2 with n genes, we can assume without loss of generality that �2 is the identity.

Begin by padding �1 with gene 0 on the left end and gene n C 1 on the right end. For each gene i in �1,

two vertices are created, i� and iC. These vertices are connected with two sets of undirected edges, one

for each genome. One set of edges, called desire edges, connecting iC and .i C 1/� for all 0 � i � n,

represents the identity genome and is shown with dashed arcs in Figure 1. For each adjacency .i; j / in

�1 add a reality edge. If gene i is positive this edge begins at vertex iC; if gene i is negative this edge

begins at vertex i�. Similarly, if gene j is positive this edge ends at vertex j �; if gene j is negative this

edge ends at vertex j C.

The arrangment of these edges form cycles which alternate between reality and desire edges; the crucial

concept is the relationship between the number of cycles, denoted by c.�1; �2/, and the number of reversals

needed to transform �1 into �2. Overlapping cycles in certain configurations create structures known as

hurdles; we use h.�1; �2/ to represent the number of hurdles. A very unlikely configuration of hurdles can

form a fortress (Hannenhalli and Pevzner, 1995). Hannenhalli and Pevzner (1995) proved that the reversal

distance between two signed permutations of n genes is given by:

n � c.�1; �2/ C h.�1; �2/ C .1 if fortress present; 0 otherwise/:

2.3. Sorting and commuting reversals

The HP algorithm also returns one (and only one) minimum sorting sequence that transform one

permutation into another. Siepel (2003) extended the HP theorem to find all sorting reversals, i.e., all

possible reversals that appear as the first step in the sorting. Figure 2 gives one example of sorting

FIG. 2. Eight sorting reversals that bring (�1 �2 �3 �4 �5) one step closer to (1 2 3 4 5).

1082 ARNDT AND TANG

reversals: there are eight possible reversals that bring �1 one step closer to �2 (the identity genome). This

algorithm can be easily extended to enumerate all minimum sorting sequences by identifying every sorting

reversal at each step of the sorting. This enumeration can be very time consuming and Braga et al. (2007)

later provided an algorithm so that a representative set of these sorting sequences can be found.

The concept of commuting reversals was introduced in Bergeron et al. (2002). To define commuting

reversals create three sets of permutation elements: those which are only members of the first reversal,

those which are only members of the second, and those which are members of both. The two sorting

reversals commute if and only if one of these three sets is empty. Commuting reversals have the desirable

property that applying them to a permutation will always give the same result no matter the order in which

they are applied.

2.4. Reversal median problem

Given three genomes (permutations) �1, �2, �3 and another genome �0, we define the median score of

�0 as d.�0; �1/C d.�0; �2/C d.�0; �3/. The median problem for these three genomes is to find a genome

�0 that minimizes the median score. We also define the perfect median score as
l

d.�1;�2/Cd.�1;�3/Cd.�2;�3/

2

m

,

which is a lower bound of the score for a median problem.

The median problem is NP-hard (Caprara, 1999a; Pe’er and Shamir, 1998) even for simple distance

definitions such as breakpoint distance. Seeking a median that minimizes the breakpoint distance can be

transformed into a special instance of the well-studied Traveling Salesperson Problem (Blanchette and

Sankoff, 1997) and can be solved relatively fast. But in practice, the breakpoint median is not effective—it

is easy to obtain trivial solutions (where the median gene-order coincides with one of the input genomes),

and thus using breakpoint median is not as accurate as using the reversal median for genome rearrangement

analysis (Moret et al., 2002).

The reversal median problem is to find a median genome that minimizes the sum of reversal distances

from it to the three input genomes. Several reversal median solvers have been proposed. Caprara’s solver

(Caprara, 2001) is based on an extension of the breakpoint graph, while that developed by Siepel and Moret

(2001) runs a direct search, which is later improved to use sorting reversals (Siepel, 2001). Both Caprara’s

and Siepel’s median solvers are exact and are included in GRAPPA. In practice, Caprara’s median solver is

faster than Siepel’s solver when the genomes are not close (Moret et al., 2002). The solver provided by

MGR (Bourque and Pevzner, 2002) uses a heuristic approach: it seeks good reversals that bring a genome

closer to the ancestral genome. For three genomes, the MGR algorithm evaluates all possible reversals for

each of the three genomes �1, �2 and �3, identifying good reversals that bring a genome closer to the

ancestral genome. Since the ancestral genome is unknown, the algorithm chooses reversals which make

�1 closer to both �2 and �3 as good reversals. Thus, the algorithm will iteratively carry on good reversals

in the three genomes until all three are transformed into an identical genome, which is viewed as the most

likely ancestral median.

All these median solvers become extremely slow for large and distant genomes. A common speedup

process used by all methods makes use of the concept of conserved adjacency. A gene pair .i; j / is

conserved adjacent if .i; j / or its inverse .�j; �i/ is present in all genomes as consecutive elements

(Hannenhalli and Pevzner, 1996). A block of k conserved adjacent genes can be replaced by a new gene

and the total number of genes reduced by k �1 (Bourque and Pevzner, 2002). This condensation procedure

improves memory performance and is most effective when the genomes are close: a median of genomes

with 1000 genes and 50 reversals per edge can be condensed to �200 genes only.

3. REVERSAL MEDIAN COMPUTATION USING COMMUTING REVERSALS

We set out to find an improved reversal median heuristic which has a better tradeoff between speed and

accuracy than existing methods. The new algorithm is different from MGR in that it will conduct a direct

search from one of the known genomes, using sorting reversals to limit the search space. Our algorithm also

improves over Siepel’s (2001) median solver by using commuting reversals in the set of sorting reversals

from the start genome to the other two genomes. Our new median solver will also report multiple solutions,

a property lacking in almost all existing methods.

IMPROVING REVERSAL MEDIAN COMPUTATION 1083

FIG. 3. Examples of commuting reversals (a,b) and non-commuting reversal (c).

3.1. A naive approach

Let us first present a naive approach. Suppose the three input permutations are �1, �2, and �3. Define a

recursive function which has input �1, �2, �3, and �4, where �4 is initially set equal to �1. This function

first computes two sets of sorting reversals: set ˛ which contains sorting reversals from �4 to �2, and set

ˇ which contains sorting reversals from �4 to �3. Let set be the intersection of ˛ and ˇ. If is empty,

then determine the reversal median score of �4 relative to �1, �2, and �3. If this median score is less than

or equal to the lowest score yet seen then report, as a pair, �4 and the median score. If is not empty,

then repeat the following process until it is: remove one reversal from and apply it to �4 to obtain � 0

4,

and call the function recursively with arguments �1, �2, �3, and � 0

4.

Several concerns make this method undesirable. First, the amount of computation required increases

exponentially with the number of reversals separating the three permutations, as the method is searching

all orderings of all reversals which sort towards both �2 and �3. Second, it can be shown, by exhaustively

searching permutations against a small reversal median problem, that a median permutation does not

necessarily lie on a sorting path between two of the three initial permutations. The presented naive approach

thus cannot guarantee an optimal solution because some and possibly all paths to medians would require

that one or more reversals which are never members of be chosen. We will not attempt to improve this

aspect of the naive method, since doing so would require a large number of additional reversals to be

considered in set with relatively little return compared to the massive amount of additional computation

being performed.

Another problem of the naive approach, one that can be addressed, is that it performs a large amount

of redundant computation by visiting the same permutation multiple times. This can be reduced by using

information about commuting reversals. Imagine a set of sorting reversals which sort �1 towards both �2

and �3. Select any pair of these reversals A and B which occur along the path to a median. If reversals A and

B do not commute, then changing the order in which A and B are applied affects the resulting permutation

(Fig. 3c); If A and B commute (Fig. 3a,b) then the naive method will search the same permutation at least

twice because both choices of ordering the application of A and B result in the same permutation.

3.2. An improved algorithm

The above analysis leads to a method to speed up the search by removing a large portion of the

redundancy. Obtain from a set of reversals with the additional property that all pairs of reversals commute.

This allows the order of applying these reversals to be ignored; every permutation that can be reached

by applying any number of these commuting reversals can be enumerated and have its median score

checked one time instead of enumerating permutations by the paths which lead to them. If n is the number

of commuting reversals, then 2n permutations can be reached, but the total number of paths to these

permutations is O.nn/.

Which subset of the 2n permutations should be chosen? We have experimented with three methods:

� Method 1 is a brute force method which scores each of the 2n permutations and chooses the one with

the best median score as � 0

4, with good results but an obvious time complexity drawback.

1084 ARNDT AND TANG

� Method 2 draws samples from the 2n permutations and chooses the best median score found among

them as � 0

4. This approach reduces both the time required and the accuracy; in general the quality of

the results is proportional to the fraction of the space being searched.
� Method 3, the simplest method of all and surprisingly effective, is to apply all reversals in the set, that

is, obtaining � 0

4 by applying all commuting reversals to �4. This approach works well until the number

of events among the genomes is 30%–40% of the number of genes. Beyond that point each search step

normally increases the median score and tends to converge with worse results than a trivial solution.

The fact that applying all commuting reversals can result in a worse median score suggests there is

a more complex interaction between the application of a single sorting reversal to a permutation and its

influence on other sorting reversals. This interference between sorting reversals comes from the breaking

of cycles in the breakpoint graphs of the problem instance. Imagine a breakpoint graph with one cycle

containing two sorting reversals that commute. Applying either of those sorting reversals will alter the

breakpoint graph to create two cycles. Afterwards, two possibilities exist: either both of the reality edges

of the second reversal will remain in the same cycle, in which case this reversal will be a sorting reversal,

or the reality edges of the second reversal will be separated into different cycles, in which case it will

no longer be a sorting reversal. This line of thought leads to an explanation of breakpoint graph cycle

interactions which shares similarities with finding and using commuting reversals.

3.3. Parallel and perpendicular sorting reversals

We call a pair of sorting reversals parallel on a breakpoint graph if they both commute and only break

reality edges in the same cycle of the breakpoint graph and if applying both reversals to the permutation

creates two additional cycles. On the other hand, a pair of sorting reversals is perpendicular on a single

breakpoint graph if they commute and break reality edges in the same cycle of the breakpoint graph and

if applying both reversals to the permutation creates one additional cycle.

When multiple breakpoint graphs are considered, we can also call a pair of reversals parallel if in all

graphs the reality permutation is the same (the need for the desired permutation to be the identity is

relaxed), both reversals are sorting reversals on all graphs, and the reversals are not perpendicular on at

least one of the considered graphs. A pair of reversals is perpendicular over multiple breakpoint graphs if

in all considered graphs the reality permutation is the same, the reversals sort each graph, and the reversals

are perpendicular on one or more graphs. If any of the reversals acts on two different cycles then the pair

is also perpendicular.

Parallel reversals are very useful because the median score almost always decreases by k when applying

k parallel reversals, due to the role played by the cycles of the breakpoint graph in the reversal distance

formula and the low probability of hurdles.

Figure 4 describes a simple graph method to visualize the parallel and perpendicular reversal properties.

We first obtain the set of sorting reversals between two permutations, but additionally save the cycle

membership and order in which each of the reality edges appears when traversing a cycle. For each cycle,

do the following: create a vertex called a break location node for each reality edge in the cycle and label

the node with the vertex labels that appear on each side of the edge in the cycle. Place the break location

nodes in the order that they appear when traversing the cycle. After all break location nodes have been

arranged draw an edge called a cut chord connecting both of the corresponding break location nodes in

the ring for each sorting reversal which acts on two reality edges in the same cycle (not reversals which

merge hurdles or cut a hurdle or fortress). These chords correspond to the cut that divides the cycle into

two smaller cycles when a reversal is applied, and shows which break location nodes will remain in the

same cycle and which will be separated. For every pair of reversals in the same cycle, if the cut chord for

each intersects, then this pair of reversals is perpendicular, otherwise, the reversals are parallel.

A special case exists where two reversals share a break location node, since sometimes such reversals will

be parallel and sometimes perpendicular depending on the permutation layout. For example, in Figure 4,

reversals a and f share a reality edge and are parallel, yet reversals f and b share a reality edge but

are perpendicular. We have been unable to determine a simple, general case rule to differentiate these two

situations. As a result, our definitions and implementation sacrifice a small bit of performance by marking

all reversals which share a reality edge as perpendicular.

IMPROVING REVERSAL MEDIAN COMPUTATION 1085

FIG. 4. Graph representation of cycle interferences on a set of commuting reversals, genes 0 and 6 represent linear

chromosome endpoints.

A necessary consideration is the method used to find sets of parallel reversals. Taken separately, sets

of commuting reversals and sets of parallel reversals fit conveniently into circle graph descriptions, so an

independent set algorithm can find maximal sets in low polynomial time. However, our problem requires the

simultaneous satisfaction of two sets of constraints for each of two breakpoint graphs. Casual investigation

has shown that the combined constraints often do not produce a valid circle graph; consequently we

instead implemented two simple heuristics which produce fair results in all situations. These heuristics are

described in Section 3.4.

3.4. The implemented algorithm

The overall algorithm of our new unichromosomal median solver is presented in Algorithm 1.

Function ReversalMedianSolver begins the search of the median space by calling RecursiveSearch.

RecursiveSearch generates the two relevant lists of sorting reversals and calls UseGamma to generate lists

of reversals with the desirable commuting and parallel properties. UseGamma is a combination of the

following two heuristics which attempt to maximize the size of a set of reversals that are both parallel and

commute.

The first heuristic tries to find a maximal set of commuting reversals. The input is a set of reversals

which sort �1 towards both �2 and �3, and each reversal is assigned an initial weight of 0. Each pair of

the input reversals are then checked and if two reversals do not commute, the weight of each is increased

by 1. Until all reversals have a weight of 0, the reversal with the highest weight is repeatedly removed

from the set and all reversals that does not commute with this reversal will have their weight decreased

by 1. The set of reversals which have not been removed are then used as input to the second heuristic,

which follows the exact same pattern, except it is modified to produce a set with no pairs of perpendicular

reversals. It additionally uses the breakpoint graph cycle traversal orderings of reality edges; this allows it

to add weights based upon if pairs of reversals are perpendicular.

Several details are worth mentioning as well. First, the choice of the start permutation has some impact

on the results and our experiments show that, of the three initial permutations, using the one with the lowest

sum of its pairwise reversal distances with the other two will produce the best median scores. Second,

despite our efforts to prevent it, a very large amount of redundant computation, in the form of scoring the

same permutation multiple times, still occurs. We used a permutation hash table to check for redundant

search paths. This is not a critical aspect and can be removed without significant impact—in fact, due

to memory constraints it must be removed for genomes larger than approximately 400 genes. Third, we

use the set � to contain some reversals at the current level of depth first search which have not yet been

applied. Our implementation preserves in � the reversals which have been removed due to commuting

constraints, but does not preserve reversals which have been removed due to perpendicular interference.

This decision was made primarily as a tradeoff of some loss in search thoroughness for increased speed;

preserving either or both groups of reversals in � would also be possible.

1086 ARNDT AND TANG

Algorithm 1. Algorithm overview for the new reversal median solver.

1: function ReversalMedianSolver (input three permutations �1, �2, �3)

2: Compute the pairwise reversal distances between �1, �2, �3

3: Choose the one with the smallest sum of its two distances as �4

4: if �1 was not assigned to �4 then

5: swap it with the permutation assigned as �4

6: end if

7: BestSoFar (1

8: Call function RecursiveSearch with �1, �2, �3, �4

9: return list of saved � 0

4 with score equal to BestSoFar

10: end function ReversalMedianSolver

11:

12: function RecursiveSearch (input four permutations �1, �2, �3, �4)

13: ˛ (sorting reversals from �4, �2

14: ˇ (sorting reversals from �4, �3

15: (intersection of ˛ and ˇ

16: � (UseGamma(, �1, �2, �3, �4)

17: while set � contains elements do

18: Set to � and clear �

19: � (UseGamma(, �1, �2, �3, �4)

20: end while

21: end function RecursiveSearch

22:

23: function UseGamma (input set and permutations �1, �2, �3, �4, output set �)

24: Initialize the weight of each reversal to 0

25: for each pair of reversals in do

26: if reversals do not commute then add weight 1 to each

27: end for

28: repeat

29: Find the reversal A with largest weight

30: Remove A from and place it in set �

31: Reduce weight of each reversal not commuting with A by 1

32: until the weight of all reversals in is 0

33: for each pair of reversals in do

34: if pair is perpendicular then add 1 weight to each

35: end for

36: repeat

37: Find the reversal A with largest weight and remove A from

38: Reduce weight of each reversal perpendicular to A by 1

39: until the weight of all reversals in is 0

40: Apply the reversals in set to �4 to create � 0

4

41: Calculate the median score of � 0

4 with respect to �1, �2, �3

42: if median score of � 0

4 � BestSoFar then

43: Assign the score to BestSoFar and save � 0

4

44: end if

45: if median score of � 0

4 < median score of �4 then

46: Call function RecursiveSearch with �1, �2, �3, � 0

4

47: end if

48: return �

49: end function UseGamma

IMPROVING REVERSAL MEDIAN COMPUTATION 1087

4. EXPERIMENTAL RESULTS ON THREE GENOMES

4.1. Setup of simulations

We examine the performance (in terms of speed and accuracy) of the new method using simulated

datasets. Because all existing median solvers have very good performance when genomes are close, we

only test distant genomes and compare our method against Caprara’s solver (slower but exact), and MGR

(faster but less accurate).

We focused our experiments on organelle genomes and generated datasets of three genomes with

100 genes for each genome (larger genome sizes were also tested). We first generated trees with three

leaves and one internal node, assigned the identity permutation on the internal node, and generated the

three leaves by applying rearrangement events along each edge respectively. The number of events on

each edge is governed by two parameters: the number of overall evolutionary events and the tree shape.

We used various number of evolutionary rates: letting r denote the total number of events along all three

edges, we used values of r in the range of 80 to 140. We found from our experience that the tree shape

plays an important role in median computation, so we used three tree shapes for each r : a tree with

almost equal length edges, i.e., the ratio of three edges are (1:1:1); a tree with one edge a bit longer than

the other two, i.e., of ratio (2:1:1); a tree with one edge much longer than the other two, i.e., of ratio

(3:1:1). While all computations were based on reversal distances and reversal medians, we generated the

data with a deliberate model mismatch to test the robustness of the method, using a mix of 80% reversals

and 20% transpositions. For each combination of parameter settings, we ran 10 datasets and averaged the

results. Experiments were conducted on a Linux cluster with 152 Intel Xeon CPUs, but each CPU works

independently on a test task. MGR command line options -c -H1 were used.

4.2. Accuracy

Caprara’s median solver had no problem finishing all the datasets with evolutionary rate r D 80 and

r D 100; however, it finished only a very small number of datasets for r D 120 and r D 140: only four

out of 60 datasets finished within 48 hours of computation. Here we report the results separately using

slightly different criteria for r � 100 and r � 120.

For r � 100, we report the average median score from our method, Caprara’s solver, and MGR. We

also report the average perfect (lower bound) median score. We choose to show the actual median score

instead of the error rates compared to the optimal score returned by Caprara’s solver because this optimal

solution could not be produced for all tests. Table 1 shows the results, which indicate our method is very

accurate, with <1.5% difference from Caprara’s results. Our method is most accurate when all three edges

have nearly equal length. Approximately 70% of datasets report an equal median score to that found by

Caprara’s, while the other 30% differ by at most 1.

For r � 120, since Caprara’s solver does not finish all datasets, we only report the average median score

from our method and compare it to MGR and the average lower bound of the median score. Table 2 shows

the result, which indicates that our method can find better medians than MGR.

An additional measure of the usefulness of results for phylogenetic reconstruction is the reversal distance

to the simulated ancestor genome. Here we report the average distance to the ancestor for the three methods.

Test cases Caprara’s method could complete appear in Table 3, while the remaining test cases appear in

Table 4.

4.3. Speed

We recorded the running time for each test case as well. Since our method will report all results it can

find, there are two measures: (1) the time within which it finds the first result, and (2) the average number

of results it finds within the limit of one hour.

Tables 5 and 6 show the first time comparison. When the datasets are relatively easy (r D 80), Caprara’s

solver is much faster than our method. However, it slows down very quickly as the difficulty increases,

and almost no dataset can be finished for r � 120. Meanwhile, the running time of our method is quite

consistent: fewer than 30 minutes were used even for the most difficult datasets, which is comparable to

the speed of MGR.

1088 ARNDT AND TANG

TABLE 1. COMPARISON OF MEDIAN SCORES FOR r � 100

(1:1:1) (2:1:1) (3:1:1)

r D 80 r D 100 r D 80 r D 100 r D 80 r D 100

Score lower bound 86.2 104.2 89.4 105.8 85.7 101.3

New method’s median score 88.2 109.5 91.8 111.4 89.1 106.7

Caprara’s median score 87.9 107.6 91.4 109.8 88.0 105.2

MGR median score 90.3 113.7 94.3 116.8 89.8 110

TABLE 2. COMPARISON OF MEDIAN SCORES FOR r � 120

(1:1:1) (2:1:1) (3:1:1)

r D 120 r D 140 r D 120 r D 140 r D 120 r D 140

Score lower bound 116.1 123.5 116.1 122.7 110.3 117.6

New method’s median score 125.8 135.3 124.5 134.7 117.9 127.0

MGR median score 132.9 143.6 131.4 142.8 123.6 135.1

TABLE 3. COMPARISON OF REVERSAL DISTANCE TO SIMULATED ANCESTOR FOR r � 100

(1:1:1) (2:1:1) (3:1:1)

r D 80 r D 100 r D 80 r D 100 r D 80 r D 100

New method 9.3 21.7 9.6 20.4 7.2 18.2

Caprara’s method 4.5 18.2 7.2 16.8 5.2 15.7

MGR 9.3 23.5 11 25.4 9.1 18.6

TABLE 4. COMPARISON OF REVERSAL DISTANCE TO SIMULATED ANCESTOR FOR r � 120

(1:1:1) (2:1:1) (3:1:1)

r D 120 r D 140 r D 120 r D 140 r D 120 r D 140

New method 39.8 49.3 35.2 45.4 23.1 32.1

MGR 40.7 51.6 37.5 49.5 29.7 37.7

TABLE 5. COMPARISON OF RUNNING TIME FOR r � 100 (IN SECONDS)

(1:1:1) (2:1:1) (3:1:1)

r D 80 r D 100 r D 80 r D 100 r D 80 r D 100

New method’s time 324 551 123 409 1.6 9.3

Caprara’s time 3.6 12,876 57.2 31,387 4.3 6908

MGR time 11.2 51.9 11.6 78.2 10.3 35

TABLE 6. COMPARISON OF RUNNING TIME FOR r � 120 (IN SECONDS)

(1:1:1) (2:1:1) (3:1:1)

r D 120 r D 140 r D 120 r D 140 r D 120 r D 140

New method’s time 1485 1187 673 453 30 226

Caprara’s time >172,880 >172,880 >172,880 >172,880 >172,880 >172,880

MGR time 271.6 560.1 237.8 626.9 135.3 385.4

IMPROVING REVERSAL MEDIAN COMPUTATION 1089

TABLE 7. COMPARISON OF MEDIAN SCORES FOR GENOMES WITH 1000 GENES

r D 100 r D 110 r D 120 r D 130 r D 140 r D 150

New method 480.1 528.4 576.6 626.0 676.4 729.4

Caprara’s 479.7 527.1 575.4 623.0 670.1 —

— means a method cannot finish most of the datasets in that test case.

TABLE 8. COMPARISON OF DISTANCE TO SIMULATED ANCESTOR FOR GENOMES WITH 1000 GENES

r D 100 r D 110 r D 120 r D 130 r D 140 r D 150

New method 1.3 4.7 2.8 8.4 13.9 32.3

Caprara’s 2.1 2.3 1.9 3.8 4.1 —

— means a method cannot finish most of the datasets in that test case.

TABLE 9. COMPARISON OF RUNNING TIME FOR GENOMES WITH 1000 GENES (IN SECONDS)

r D 100 r D 110 r D 120 r D 130 r D 140 r D 150

New method 42 35 29 36 51 53

Caprara’s 54 170 533 14,132 31,716 >4 days

In general, our method found 12 medians with the same score within one hour. However, the number is

not consistent: some datasets have only one result, while others have as many as 120 results. Additionally,

by checking reversals on the found medians that do not change the median score, on average for each

found median two more can be quickly located, though they are not significantly different from those

already found.

4.4. Medians of larger genomes

We tested the performance of our method on larger genomes as well. The simulations were created with

the same parameters, except the number of genes was increased to 1000. Each tested tree has three edges

with the same length, ranging from 100 to 150 events. Since the number of genes after condensation for

r � 100 is more than 600, MGR cannot finish any dataset in this test due to the extremely large search

space, thus we only present the comparison between our method and Caprara’s median.

Tables 7–9 show the results. In this study, Caprara’s median solver could not finish 20% of the datasets

when r D 130 and 140, and the results shown are averaged on the 80% of the datasets it could finish.

There is clearly a threshold for Caprara’s median solver: it could not finish any dataset when r � 150.

This experiment suggests that our method has accuracy that is comparable to Caprara’s solver, and unlike

the existing methods, the speed of our method is much more stable and will not increase dramatically as

the genomes become distant.

5. EXPERIMENTAL RESULTS ON PHYLOGENETIC RECONSTRUCTION

Our median solver has been integrated with GRAPPA so that its accuracy on phylogenetic reconstruction

can be assessed. Because our median solver will continue to search all medians until the reversal set is

empty, it may take too much time in the context of tree reconstruction since many instances of the median

problem have to be solved. To address this problem, we limit the time that each median instance can use

and report the best permutation before it is forced to stop. GRAPPA is designed to only use one solution to

a median problem, so in the event that multiple permutations with the same median score are found by our

method, only the first is used by GRAPPA. Again we performed our experiments using simulated datasets

since this allows us to know the true trees in our simulation. We measure the accuracy of a phylogeny

1090 ARNDT AND TANG

TABLE 10. RF RATES (%) FOR DATASETS WITH 100 GENES

r D 4 r D 8 r D 12 r D 16 r D 20 r D 24 r D 28 r D 32

New method 5 0 0.1 0.1 5 3.8 11.3 10

Caprara’s 2.5 0 0.1 0.1 — — — —

MGR 0 0 0.1 0.1 6.3 6.3 16.3 17.5

— means a method cannot finish most of the datasets in that test case.

TABLE 11. RF RATES (%) FOR DATASETS WITH 500 GENES

r D 20 r D 40 r D 60 r D 80 r D 100 r D 120

New method 0 0 0 0 5 6.3

Caprara’s 0 — — — — —

MGR 0 — — — — —

— means a method cannot finish most of the datasets in that test case.

method by using the Robinson Foulds (RF) error rate (the percent of edges in error with respect to the

true tree) (Robinson and Foulds, 1981).

In this simulation study, we generated model tree topologies from the uniform distribution on binary

trees, each with 10 leaves. On each tree, we evolved signed permutations of 100 and 500 genes, using an

evolutionary rate, r (the expected numbers of events along a tree edge) of 4–32 for datasets with 100 genes

and 20–120 for datasets with 500 genes. For each combination of parameters, we generated 10 trees; the

final results are averaged on the 10 datasets.

We compared the results from MGR, GRAPPA with Caprara’s median solver, and GRAPPA with our median

solver. Tables 10 and 11 show the RF rates of datasets with 100 and 500 genes respectively. For 100 genes,

Caprara’s solver could not finish any dataset with r � 20 within two days of computation; hence, its result

is not shown for those cases. MGR performs the best when r D 4, but our method outperforms it when the

genomes become distant (r � 20). For 500 genes, neither MGR nor Caprara’s solver could finish datasets

with r � 40, while our method still performs very well. Compared to the experiments conducted on three

genomes (Section 4.2), we notice that Caprara’s solver fails with relatively smaller r because the scoring

procedure of GRAPPA generates some medians that are very difficult to compute. It is also worth mentioning

that, for very low values of r , both our method and Caprara’s perform poorly, because in these cases the

chance to obtain several trees with the same best score is higher and we had to choose a consensus tree

as the best.

6. DISCUSSION

We believe there is a big problem in the general approach of using the reversal median problem to

solve phylogenetic trees composed of distant genomes, a topic discussed in detail in Eriksen (2007). The

direct optimization methods (GRAPPA and MGR) are based upon minimizing the number of reversal events,

which requires either the false assumption that there is only one optimal median solution for all problem

instances, or the slightly weaker assumption that although multiple optimal solutions can exist, they are all

equally valuable for the construction of trees. Several of our test simulations demonstrate the existence of

multiple medians that form trees with equal scores but have edge lengths differing by 30% or more. This

shows that instances of a median problem do not contain the amount of exact information which current

tree methods presume they do. We do not believe that the cause is hopeless, however. Instead, the notion

that any median with optimal score is an equal representative of an internal node should be replaced; new

methods or tree building algorithms should be devised which use multiple medians as an intermediate step

moving closer to the true ancestor. To obtain more accurate results for large genomes, we may need to

find as many medians as possible and choose the one with the minimal total distance to all the others as

IMPROVING REVERSAL MEDIAN COMPUTATION 1091

the representative, or we may need to consider permutations with slightly less than optimal score if they

appear in sufficiently large clusters.

The structure of median problems has further vulnerabilities. We ran a small experiment where a random

median problem of 10 genes was created, and the median score of every permutation (21010Š) in an

exhaustive search was found. There are several findings from this experiment: (1) as confirmed by other

researchers (Bernt et al., 2007), there exist multiple medians—we found 81 medians for this experiment,

with median score of 15 reversals; and (2) some of the medians were as far as nine reversals from one

another. This experiment clearly suggests that the impact of picking distinguishing medians with the same

score in the current phylogenetic reconstruction methods should be investigated further.

7. CONCLUSIONS

In this paper we present a new reversal median solver using commuting reversals, and introduced the

concept of parallel and perpendicular sorting reversals. This is a first step towards finding reversal medians

faster by using searches which are able to step multiple events at a time. Further theoretical work can

extend the definitions to include situations we have not been able to address such as events which share a

reality edge. Also, the definitions could be extended to consider component and hurdle concerns. There is

further potential for improvement in the method of finding sets of parallel reversals. This method would

likely take advantage of the similarity with the Maximal Independent Set problem; a polynomial time

algorithm to produce the maximal parallel reversal set may exist.

We extensively tested the method and compared its performance with the leading median solvers using

simulated datasets. The experimental results show that our method is very accurate, and is much faster

than the leading solver when the datasets are difficult. Our new method is a better choice for datasets with

more than 500 genes, and will be useful when analyzing emerging small animal nuclear genomes. In the

future, we will further improve the accuracy of our method by investigating better search strategies, and

extend this work to deal with multi-chromosomal genomes.

ACKNOWLEDGMENTS

We were supported by the U.S. National Institutes of Health (NIH grant number R01 GM078991-01)

and by the University of South Carolina. W.A was also supported by the Rothburg Fellowship at the

University of South Carolina.

DISCLOSURE STATEMENT

No conflicting financial interests exist.

REFERENCES

Bader, D., Moret, B., and Yan, M. 2001. A fast linear-time algorithm for reversal distance with an experimental

comparison. J. Comput. Biol. 8, 483–491.

Belda, E., Moya, A., and Silva, F. 2005. Genome rearrangement distances and gene order phylogeny in -proteobacteria.

Mol. Biol. Evol. 22, 1456–1467.

Bergeron, A., Chauve, C., Hartman, T., et al. 2002. On the properties of sequences of reversals that sort a signed

permutation. J. Biol. Inform. Math., 99–108.

Bernt M., Merkle, D., and Middendorf, M. 2007. Using median sets for inferring phylogenetic trees. Bioinformatics

23, 129–135.

Bhutkar, A., Gelbart, W., and Smith, T. 2007. Inferring genome-scale rearrangement phylogeny and ancestral gene

order: a Drosophila case study. Genome Biol. 8, R236.

Blanchette, M., Bourque, G., and Sankoff, D. 1997. Breakpoint phylogenies, 25–34. In Miyano, S., and Takagi, T.,

eds., Genome Informatics. Universal Academy Press, Tokyo.

1092 ARNDT AND TANG

Blanchette, M., and Sankoff, D. 1997. The median problem for breakpoints in comparative genomics. Lect. Notes

Comput. Sci. 1276, 251–263.

Bourque, G., and Pevzner, P. 2002. Genome-scale evolution: reconstructing gene orders in the ancestral species.

Genome Res. 12, 26–36.

Braga, M., Sagot, M., Scornavacca, C., et al. 2007. The solution space of sorting by reversals. Lect. Notes Bioinform.

4463, 293–304.

Caprara, A. 1999a. Formulations and hardness of multiple sorting by reversals. RECOMB 1999 84–93.

Caprara, A. 1999b. Sorting permutations by reversals and Eulerian cycle decompositions. SIAM J. Discrete Math. 12,

91–110.

Caprara, A. 2001. On the practical solution of the reversal median problem. Lect. Notes Comput. Sci. 2149, 238–251.

Downie, S.R., and Palmer, J.-D. 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny,

14–35. In: Soltis, D., Soltis, P., and Doyle, J.J., eds. Molecular Systematics of Plants. Chapman and Hall, New

York.

Eriksen, N. 2007. Reversal and transposition medians. Theoret. Comput. Sci. 374, 111–126.

Hannenhalli, S., and Pevzner, P. 1995. Transforming cabbage into turnip (polynomial algorithm for sorting signed

permutations by reversals). Proc. 27th Annu. Symp. Theory Comput. 178–189.

Hannenhalli, S., and Pevzner, P. 1996. To cut : : : or not to cut (applications of comparative physical maps in molecular

evolution). Proc. 7th ACM-SIAM Symp. Discrete Algorithms 304–313.

Moret, B., Siepel, A., Tang, J., et al. 2002. Inversion medians outperform breakpoint medians in phylogeny recon-

struction from gene-order data. Lect. Notes Comput. Sci. 2452, 521–536.

Moret, B., Tang, J., and Warnow, T. 2005. Reconstructing phylogenies from gene-content and gene-order data, 321–352.

In Gascuel, O., ed. Mathematics of Evolution and Phylogeny. Oxford University Press, New York.

Moret, B., Wyman, S., Bader, D., et al. 2001. A new implementation and detailed study of breakpoint analysis. Proc.

6th Pacif. Symp. Biocomput. 583–594.

Pe’er, I., and Shamir, R. 1998. The median problems for breakpoints are NP-complete. Elec. Colloq. Comput.

Complexity 71.

Pevzner, P., and Tesler, G. 2003. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian

evolution. Proc. Natl. Acad. Sci. USA 100, 7672–7677.

Robinson, D., and Foulds, L. 1981. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147.

Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol.

Biol. Evol. 4, 406–425.

Sankoff, D., and Blanchette, M. 1998. Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5,

555–570.

Siepel, A. 2001. Exact algorithms for the reversal median problem [Master’s thesis]. University of New Mexico,

Albuquerque, NM.

Siepel, A. 2003. An algorithm to enumerate sorting reversals for signed permutations. J. Comput. Biol. 10, 575–597.

Siepel, A., and Moret, B. 2001. Finding an optimal inversion median: experimental results. Lect. Notes Comput. Sci.

2149, 189–203.

Address reprint requests to:

Dr. Jijun Tang

Department of CSE

University of South Carolina

315 Main Street

Columbia, SC 29208

E-mail: jtang@cse.sc.edu

