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ABSTRACT

Identifying genes (biomarkers) and predicting the clinical outcomes with censored survival
times are important for cancer prognosis and pathogenesis. In this article, we propose a novel
method with L1 penalized global AUC summary maximization (L1GAUCS). The L1GAUCS
method is developed for simultaneous gene (feature) selection and survival prediction. L1

penalty shrinks coefficients and produces some coefficients that are exactly zero, and there-
fore selects a small subset of genes (features). It is a well-known fact that many genes are
highly correlated in gene expression data and the highly correlated genes may function
together. We, therefore, define a correlation measure to identify those genes such that their
expression level may be low but they are highly correlated with the downstream highly
expressed genes selected with L1GAUCS. Partial pathways associated with the correlated
genes are identified with DAVID (http://david.abcc.ncifcrf.gov/). Experimental results with
chemotherapy and gene expression data demonstrate that the proposed procedures can be
used for identifying important genes and pathways that are related to time to death due to
cancer and for building a parsimonious model for predicting the survival of future patients.
Software is available upon request from the first author.

Key words: biology, cancer genomics, combinatorial optimization, DNA arrays, functional ge-

nomics, gene clusters, gene expression, HMM, statistics.

1. INTRODUCTION

Because of the differences at molecular levels, patients may respond very differently to the same

treatment. It is, therefore, very important to identify a small group of genes and pathways associated with

survival. Gene selections with survival data in the statistical literature are mainly within the penalized Cox

or additive risk regression framework (Tibshirani, 1996, 1998; Gui and Li, 2005; Van Houwelingen et al.,

2006; Segal, 2006; Ma and Huang, 2007; Liu, 2007). The L1 and Lp ( p< 1) penalized Cox regressions do
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simultaneous gene (feature) selection and survival prediction, and have been extensively studied in the

bioinformatics literature. Cox proportional hazards model is a semi-parametric model in which the baseline

hazard is estimated nonparametrically, while the covariate (gene) effect is estimated by partial log likelihood

maximization. The performance of the survival model is evaluated by the global area under the ROC curve

summary (GAUCS) (Heagerty and Zheng, 2005).

The receiver operating characteristic (ROC) curve was originally proposed for evaluating the perfor-

mance of binary classification (Bradley, 1997). An ROC curve provides complete information on the set of all

possible combinations of true-positive and false-positive rates, but is also more generally useful as a graphic

characterization of the magnitude of separation between the case and control distributions. AUC is known to

measure the probability that the marker value (score) for a randomly selected case exceeds the marker value

for a randomly selected control and is directly related to the Mann-Whitney U-statistic (Pepe, 2003, 2005).

For survival data, a survival time can be viewed as a time-varying binary outcome. Given a fixed time t, the

instances that ti¼ t are regarded as cases and samples with ti> t are controls. The global AUC summary is

then defined as GAUCS¼P(Mj>Mk|tj< tk), which indicates that the subject who died earlier has a larger

value with the score, where M is a score function. Heagerty and Zheng (2005) have shown that GAUCS is a

weighted average of the area under time-specific ROC curves. When the survival model is measured with the

global AUC summary (GAUCS), it is reasonable to build a model with direct GAUCS maximization. Due to

the very high-dimensional space of the covariates (genes), L1 penalized global AUC summary (L1GAUCS)

maximization is proposed for simultaneous gene selection and survival prediction.

It is a known fact that genes are highly correlated in gene expression data. However, standard statistical

learning methods can only select a small subset of highly differentiated genes that lead to either the highest

prediction accuracy or the smallest p-values, while most biologists recognize that the magnitude of dif-

ferential expression does not necessarily indicate biological significance. From the biological prospective,

even a very small change in expression of particular gene may have dramatic physiological consequences if

the protein encoded by this gene plays a catalytic role in a specific cell function. Many other downstream

genes may amplify the signal produced by this truly interesting gene, thereby increasing their chance to be

selected by current gene selection methods. For a regulatory gene, however, the chance of being selected by

current methods may diminish as these methods can only select downstream genes with bigger changes in

expression. The characteristic of the regulatory genes is that their gene expression changes may be low, but

they are highly correlated with the downstream highly expressed genes. We will catch those genes with our

newly defined correlation measure.

This goal of the current study is to develop a computationally affordable and well-behaved estimating

approach, which can effectively identify the genes for right censored survival data with L1 penalized

GAUCS (L1GAUCS) maximization. In Section 2, we formulate the penalized GAUCS model and propose

an efficient algorithm for simultaneous feature selection and survival prediction. The correlation measure

for catching the upstream regularized genes is also introduced. The proposed approach is demonstrated

with chemotherapy and gene expression examples in Section 3. Concluding remarks are discussed in

Section 4.

2. L1 PENALIZED GLOBAL AUC SUMMARY MAXIMIZATION

Consider we have a set of n independent observations fti, di, xign
i¼ 1, where di is the censoring indicator

and ti is the survival time (event time) if di¼ 1 or censoring time if di¼ 0, and xi¼ (xi1, xi2, . . . , xim)T is the

m-dimensional input vector of ith sample. Let b¼ (b1, b2, . . . , bm)T be a vector of regression coefficients,

and we define M(x)¼ bT x to be the risk score function, also denoting N�i (t)¼ 1(ti�t) and the correspond-

ing increment dN�i (t)¼N�i (t)�N�i (t�). The time-dependent sensitivity and specificity are defined by

sensitivity (c, t) : Pr (Mi[cjti¼ t)¼ Pr (Mi[cjdN�i (t)¼ 1) and specificity (c, t) : Pr (Mi � cjti[t)¼
Pr (Mi � cjN�i (t)¼ 0): Here sensitivity measures the expected fraction of subjects with a marker greater

than c among the subpopulation of individuals who die (cases) at time t, while specificity measures the

fraction of subjects with a marker less than or equal to c among those who survive (controls) beyond time t.

With this definition, a subject can play the role of a control for an early time, t< ti, but then play

the role of case when t¼ ti (Heagerty and Zheng, 2005). Then, ROC curves are defined as ROCt(p)¼
TPt{[FPt]

� 1(p)} for p 2 [0, 1], and the area under the ROC curve for time t is AUC(t)¼
R 1

0
ROCt

(p)dp, where TPt and FPt are the true and false positive rate at time t respectively, and
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[FPt]
� 1(p)¼ infc {c : FPt(c) � p}. ROC methods can be used to characterize the ability of a marker to

distinguish cases at time t from controls at time t, However, in many applications there is identified no prior

time t, thus a global accuracy summary is defined by averaging over t:

GAUCS¼ 2

Z
AUC(t)g(t)S(t) dt¼ Pr (Mj[Mkjtj\tk),

which indicates the probability that the subject who died (cases) at the early time has a larger value of the

marker, where S(t) and g(t) are the survival and corresponding density functions, respectively.

We can define the optimization problem

max GAUCS¼ max Pr(Mj[Mkjtj\tk) s:t: jbj\c, (1)

where Mj¼ bT xj and jbj ¼ L1¼
Pm

j¼ 1 jbjj. The ideal situation is that M(xj)[M(xk) or bT (xj� xk)[0, 8
couple (xj, xk) with corresponding times tj< tk (or j< k) and dj¼ 1. If we allow margins between couples

(xj, xk) for all j< k and take a quadratic loss function, the optimization problem can be defined as

min
1

2N

X
j\k

dj ¼ 1

Xn

k¼ 2

n2
jkþ kjbj

s:t: bT (xj� xk) � 1� njk,

njk ‡ 0, 8 1\k £ n, (2)

where N¼
P

j\k
dj ¼ 1

1 is the number of items with j< k and dj¼ 1. When ties in the event times are presented,

variables associated with each tied time appear in the constraints independently. Solving equation (2) is

equivalent to solving the following problem:

min J(b; k)¼ 1

2N

X
j\k

dj ¼ 1

Xn

k¼ 2

(1� bT (xj� xk))2
þ þ kjbj, (3)

where Zþ is Z if Z> 0, and 0 otherwise. Note that |b| is not differentiated at 0, we therefore introduce the

subdifferential concept (Hiriart-Urruty and Lemaréchal, 2001) for the derivatives. The subdifferential of a

convex function f (b) is defined as

qf (b)¼ {sjf (bþD)[f (b)þ sD,8D 2 R}: (4)

In other words, a subdifferential is a range of slopes s such that the line through (b, f (b)) with slope s

contains the graph of f in its upper half space. This is a set-valued generalization of the normal derivative

and reduce to the normal derivative qf (b)¼ { qf (b)
qb }. b̂b is a global minimizer of a convex function f (b) if and

only if 0 2 qf (b).

To find the optimal solution of b, we first rewrite the first part J(b; 0) of equation (3) as a function

of the i-th parameter bi and treat remaining parameters b� i as fixed constants.

Let I(xj, xk)¼ 1, if 1� bT (xj� xk)[0

0, otherwise

�
, we have

J(bi; 0)¼ 1

2N

X
j\k

dj ¼ 1

Xn

k¼ 2

(1� bT (xj� xk))2
þ ,

¼ 1

2N

X
j\k

dj ¼ 1

Xn

k¼ 2

(1� bT
� i(xj� xk)� iþ bi(xji� xki))

2
þ ,

¼ 1

2N

X
j\k

dj ¼ 1

Xn

k¼ 2

(1� bT
� i(xj� xk)� iþ bi(xji� xki))

2I(xj, xk)

¼ 1

2
bib

2
i þ cibiþ di, (5)
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where

bi¼
1

N

X
j\k

dj ¼ 1

Xn

k¼ 2

(xji� xki)
2I(xj, xk),

ci¼
1

N

X
j\k

dj ¼ 1

Xn

k¼ 2

(xji� xki)(1� bT
� i(xj� xk)� i)I(xj, xk),

di¼
1

2N

X
j\k

dj ¼ 1

Xn

k¼ 2

(1� bT
� i(xj� xk)� i)

2I(xj, xk):

Equation (5) is a quadratic function of bi, the first order derivative w.r.t. bi is

qJ(b; 0)

qbi

¼ bibiþ ci:

Then the subdifferential of J(b; k) w.r.t. bi is

qbi
J(b; k)¼ qbi

J(b; 0)þ kqbi
jbj ¼ qJ(b; 0)

qbi

þ kqbi
jbj: (6)

According to equation (4), the subdifferential of the L1 penalty is

qbi
jbj ¼

{� 1}, bi\0,

[� 1, þ 1], bi¼ 0,

{þ 1}, bi[0,

8<
:

We have

qbi
J(b; k)¼

{(bibi� ci)� k}, bi\0

½ � ci� k, � ciþ k�, bi¼ 0

{(bibi� ci)þ k}, bi[0

8<
: (7)

The subdifferential qbi
(b; k) is a piece-wise monotonically increasing linear function with the slope

bi> 0. To find the global minimum, we set Jbi
(b; k)¼ 0. The value of ci (relative to l) controls which part

of Jbi
(b; k) is set to zero. (1) if ci<�l, then �ci� l> 0, so that bi< 0 for the zero-intercept. Solving

bibi� (ciþ l)¼ 0, we have b̂ibi¼ ci þ k
bi

\0. (2) if ci 2 ½� k, k�, then � ci� k £ 0 £ � ciþ k, or 0 2 ½� ci� k,

� ciþ k� ¼ qbi
J(0; k). Hence, the global minimum occurs at b̂ibi¼ 0. (3) if ci> l, then �ciþ l< 0, so that

the zero intercept is greater than zero, we set bibi� ciþ l¼ 0, for the global minimum. we have

b̂ibi¼ ci � k
bi

[0. Putting these results together, the optimal solution b̂ibi is a piece-wise linear, monotonically

increasing function of ci:

b̂ibi(ci)¼
(ciþ k) / bi, ci\� k
0, ci 2 ½� k , + k�
(ci� k) / bi ci[þ k

8<
: (8)

Therefore, we can update the coefficient of each input with fixed left coefficients. The coordinator-wised

algorithm is very easy to implement and converges in O(mN).

In gene expression analysis, after we select a small subset of downstream genes with bigger change in

expression, we will identify those regularized genes that may have low expression but are highly correlated

with each of the highly expressed genes using a newly defined correlation measure (R). R(x, y)¼
cov(x, y)

min {var(x), var(y)}
, where cov(x, y)¼

P
(xi� �xx)(yi� �yy)T is the standard covariance and var(x)¼

P
(xi� x̂x)

(xi� x̂ixi)
T is the variance. Based on this definition, we have R(x, y)¼R(y, x), and R¼ 0 when x and y are

independent. This R is different from the standard correlation coefficient r¼ cov(x, y) /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(x)var(y)
p

in

its denominator. It can catch the genes that have very small change in expression but are highly corre-

lated with significant expressed (downstream) genes. For instance, given cov(x, y)¼ 0:01, var(x)¼ 0:01,

and var(y)¼ 1, we have R¼ 1 but r¼ 0.1. Therefore, we can identify several highly correlated gene

clusters with R and find the related partial pathways associated with these gene clusters using DAVID

(http://david.abcc.ncifcrf.gov/ ).
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3. COMPUTATIONAL RESULTS

3.1. Breast cancer prognosis and chemotherapy data

Our first example is a publicly available data with 253 breast cancer patients (Wolberg et al., 1999). The

data set contains patients’ 32 nuclear features, survival time, and chemotherapy information. The 32 features

include the mean, standard deviation, and maximum (worst) values of ten cytological nuclear measurement

of size, shape, and texture taken from the patient’s breast by a non-surgical fine needle aspirate procedure,

together with the tumor size excised from the patient’s breast during surgery and lymph node metastasis. We

want to identify a subsect of features that can predict the survival of the patients. Ten-fold cross-validations

are used to evaluate the performance of the proposed method. To prevent the bias coming from a specific

partition, we divide the data into ten-folds 100 times and overall performance of the model is evaluated. The

optimal path of the coefficient estimate and the average test GAUCS with different l are given in Figures 1

and 2, respectively. Figures 1 and 2 show that the proposed method reaches maximal global AUC summary at

l*¼ 0.2 and all bi’s are zero, when l¼ 0.9. The selected features with l*¼ 0.2 and the comparison of the

proposed methods and penalized Cox regression L1COX (Gui and Li, 2005) are given in Table 1. Table 1

shows that lymph node status, tumor size, and the largest perimeter are strongly associated with death. The

larger those three variables, the later the breast cancer stage and, therefore, the less the survival time. This is

consistent with common sense. Other nuclear features selected with L1GAUCS and L1COX methods are not

totally consistent, but most of them are either the same or related. The performance comparison with 100

partitions is given in Figure 3. L1GAUCS performs statistically significant better than L1Cox methods with

two more features. The optimal l*¼ 0.2 and average test GAUCS¼ 0.8 with L1GAUCS, and the optimal

l*¼ 4.5 and the average test GAUCS¼ 0.77 with L 1COX method.

3.2. MCL microarry data

A survival study for mantle cell lymphoma (MCL) patients with gene expression data was reported by

Rosenwald et al. (2003). The primary goal of this study was to discover genes that have good power to

predict the patients’ survival risk. Among 101 untreated patients with no history of previous lymphoma

included in this study, 92 were classified as having MCL based on established morphologic and im-

munophenotypic criteria. Survival times of 64 patients were available, and the other 28 patients were

censored. The median survival time was 2.8 years (range, 0.02–14.05 years). Lymphochip DNA micro-

arrays were used to quantify mRNA expressions in the lymphoma samples from the 92 patients. The gene

expression data contains expression values of 8810 genes. Utilizing a two-step approach, we first built

marginal L1GAUCS models with the expression levels for each gene as a one-dimensional input. All genes

with marginal p-values less than 0.1 are then included in the second step L1GAUCS survival model. Similar

approach has been extensively used in previous studies (Ma and Huang, 2007). Out of 8810 genes, 1721 are

identified to be marginally significant at the 0.1 level. We then build a L1GAUCS model with the 1721
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FIG. 1. Optimal path of the coefficients.
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genes. L1GAUCS includes a regularization parameter, controlling the complexity of the model and the

sparsity of the model parameters, which must be chosen by the user or alternatively optimized in an

additional model selection stage. However, we cannot use the same cross-validation estimate for both

model selection and performance evaluation, as this would introduce a strong selection bias in favor of the

existing L1GAUCS model. A nested cross-validation procedure is therefore used instead. Ten-fold cross-

validation is used for performance evaluation in the ‘‘outer loop’’ of the procedure, in each iteration of

which model selection is performed individually for each classifier based on a separate leave-one-out cross-

validation procedure using the training data only. Because of the small sample size and high-dimensional

genes, leave-one-out cross-validation in the ‘‘inner loop’’ is likely to provide a reliable performance

measure for model selection. Even though this nested cross-validation is computationally expensive, it

provides an almost unbiased assessment of generalization performance as well as a sensible automatic

method of setting the value of the regularization parameter. The optimal regularized parameter is l¼ 0.3,

and the average test GAUCS¼ 0.84 with only six genes with nonzero estimates. Genes selected with the

L1GAUCS survival prediction method are listed in Table 2.

The description of the six genes can be found at the NCBI website (www.ncbi.nlm.nih.gov). Gene

Hs.497741 (CENPF) encodes a protein associated with the centromere-kinetochore complex, 3210 amino

acids (aa), 367594 Da, containing internal repeats, coiled-coil (potential) and NLS (potential). Over-

expression of CENPF mRNA was associated with larger tumor size as well as estrogen receptor (ER)–

negative, high-grade tumors. CENPF mRNA expression correlated significantly with worse overall survival

and a decreased probability of remaining metastasis-free, which may indicate that CENPF itself is a good

candidate for biomarker for MCL. Studies show that gene Hs.156346 (TOP2A) is a proliferation marker, an

indicator of drug sensitivity, and a prognostic factor in mantle cell lymphoma. This gene encodes a DNA
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FIG. 2. Average test GAUCS with different lambda values.

Table 1. Selected Features with Different Survival Model

L1GAUCS L1COX

Features Estimators Features Estimators

Texture �0.191 Perimeter 0.472

Concave point �0.079 Symmetry �0.42

SD compactness 0.083 Fractal dimension �0.55

Largest perimeter 0.316 SD radius 0.78

Tumor size 0.168 Tumor size 0.188

Lymph node status 0.134 Lymph node status 0.301

Worst smoothness 0.759

Worst concavity 0.788

l*¼ 0.2 GAUCS¼ 0.80 l*¼ 4.5 GAUCS¼ 0.774
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topoisomerase, an enzyme that controls and alters the topologic states of DNA during transcription. The

gene encoding this enzyme functions as the target for several anticancer agents, and a variety of mutations

in this gene have been associated with the development of drug resistance. Reduced activity of this enzyme

may also play a role in ataxia-telangiectasia. Gene Hs.241517 (DNA Pol theta) has a specialized function in

lymphocytes and in tumor progression. Three other genes (Hs.532755, Hs.142442, and Hs.521101) are also

either directly associated with lymphoma or important in tumor proliferation.

We then identify the highly correlated genes with |R|> 0.9 for each of the six selected genes and find the

associated partial pathways for the highly correlated genes with DAVID. The associated pathways are

given in Table 3. Pathways identified in Table 3 play a crucial role in regulating the growth and survival of

MCL. For instance, TGF-beta signaling pathway is involved in many cellular processes in both the adult

organism and the developing embryo including cell growth, cell differentiation, apoptosis, cellular ho-

meostasis, and other cellular functions. Studies (Moller et al., 2007) showed that upregulation of the

TGFbeta signaling pathway has implications for hemopoietic cell growth and chronic myeloid leukemia.

P53 signaling is another well-known cancer-related pathway. The tumor-suppressor protein p53 exhibits

sequence-specific DNA-binding, directly interacts with various cellular and viral proteins, and induces cell

cycle arrest in response to DNA damage. The p53-dependent pathways help to maintain genomic stability

by eliminating damaged cells either by arresting them permanently or through apoptosis. p53, therefore, is

frequently targeted by genetic alterations in MCL patients. Most other survival-related pathways identified

are also related to either the cell cycle machinery and senescence, DNA damage response pathways, or cell

survival signals. In this article, we discuss cell cycle and MCL in more detail.

KEGG cell cycle regulatory pathway and associated correlated genes are given in Figure 4 and Table 4,

respectively. Regulation of the cell cycle involves steps crucial to the cell, including detecting and repairing

genetic damage, and provision of various checks to prevent uncontrolled cell division. Thirteen genes

identified on the pathway are over-expressed for patients with less survival time. All 13 genes are important in

cell cycle regulation in MCL. Both Cyclin D1 (CCND1) and cyclin b1 are the key regulators of the cell cycle

and are overexpressed in patients with a shorter survival time. Elevated levels of CCND1 expression in MCL

cells may accelerate G1/S-phase transition of the cell and therefore tumor cell proliferation. Many studies

suggest that CCND1 deregulation plays an important role in pathogenesis of MCL, and the level CCND1

L1GAUCS L1COX
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FIG. 3. Test GAUCS with different methods.

Table 2. Selected Genes with Nonzero Estimates

UniGene ID Genes

Hs.497741 Centromere protein F, 350/400 ka (mitosin)

Hs.156346 Topoisomerase (DNA) II alpha 170 kDa

Hs.532755 Likely ortholog of mouse gene trap locus 3

Hs.241517 Polymerase (DNA directed), theta

Hs.142442 HP1-BP74

Hs.521101 Similar to Williams-Beuren syndrome critical region protein 19
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Table 3. Survival-Related Pathways for Correlated Genes

UniGene ID Associated KEGG pathways

Hs.497741(314) Cell cycle (13)

TGF-beta signaling pathway (6)

Ubiquitin mediated proteolysis (7)

p53 signaling pathway (5)

One carbon pool by folate (3)

Hs.156346 (228) Wnt signaling pathway (12)

Purine metabolism (11)

MAPK signaling pathway (15)

Apoptosis (8)

Insulin signaling pathway (10)

Cell cycle (14)

Hs.532755 (270) Cell cycle (12)

TGF-beta signaling pathway (6)

p53 signaling pathway (5)

Adherens junction (5)

Tight junction (5)

Hs.241517 (89) Cell cycle (5)

p53 signaling pathway (3)

Hs.142442 (34) Pathogenic Escherichia coli infection—EPEC (2)

Pathogenic Escherichia coli infection—EHEC (2)

Hs.521101 (1) None

FIG. 4. KEGG pathway: cell cycle.
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expression appears to be directly correlated with the tumor cell proliferation rate in MCL. Both CDK1

(CDC2) and CDK2 are overexpressed in patients with a shorter survival time. They are the members of a large

family of protein kinases that initiate the principal transitions of the eukaryotic cell cycle. Mutations in the

CDKs and/or their inhibitors is associated with several forms of cancer. CDKs perform a common bio-

chemical reaction, called ‘‘phosphorylation,’’ that activates or inactivates target proteins to orchestrate co-

ordinated entry into the next phase of the cell cycle. The interaction of cyclins (b1, d1) and CDKs determines

is a cell’s progress through the cell cycle. Polo-like kinases (Plks) are important regulators of cell cycle

progression during M-phase. Plks are involved in the assembly and dynamics of the mitotic spindle apparatus

and in the activation and inactivation of CDK/cyclin complexes. Plk1 has a role in the regulation of tyrosine

dephosphorylation of CDKs through phosphorylation and activation of Cdc25C. Other genes identified also

play very importance roles in cell cycle. Many pharmacologic strategies targeting cell-cycle regulatory

pathways have been proposed. Cyclin D1, CDKs, Plks, and other genes are all potential cancer drug targets.

4. CONCLUSION

It is of great interest to develop sound computational techniques that are capable of both identifying

disease-associated genes and related pathways, and predicting survival risks based on the selected genes. In

this article, we have developed L1 penalized global AUC summary (L1GAUCS) maximization methods for

gene (feature) selection, pathway identification, and survival prediction with right censored survival data

and high-dimensional gene expression profiles. This is the first attempt to use the penalized global AUC

maximization for survival analysis. We analyze the chemotherapy and MCL microarray data using the

proposed approach. Empirical studies have showed that the proposed approach is able to identify the small

subset of genes (features) with nice prediction performance.

Furthermore, it is well known that many genes are highly correlated in gene expression data. The standard

supervised learning methods can only identify a small subset of independent genes with the highest prediction

power. We have defined a novel correlation measure to identify those highly correlated genes. Most pathways

and related genes we find have been shown to be associated with MCL in other studies.

We have found hundreds (or tens) of genes associated with each gene identified with L1GAUCS. Only a

small number of genes are appeared on the partially known pathway. Other genes are left unexplored. We

will explore the gene-gene interaction and causal relation among the correlated genes in a separate study.
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Table 4. Correlated Genes on the Pathway

Gene symbols Gene names

CCND1 (cycD) cyclin d1

ccnb1 (cycB) cyclin b1

Plk1 polo-like kinase 1 (drosophila)

CDK2 cyclin-dependent kinase 2

CDC25C cell division cycle 25c

ywhaq tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide

CDC2 (CDK1) cell division cycle 2, g1 to s and g2 to m

WEE1 wee1 homolog (s. pombe)

Ccne1 cyclin e1

RBX1 ring-box 1

MCM5 mcm5 minichromosome maintenance deficient 5, cell division cycle 46 (s. cerevisiae)

CHEK1 chk1 checkpoint homolog (s. pombe)

MCM2 mcm2 minichromosome maintenance deficient 2, mitotin
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