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FOLDING 3-NONCROSSING RNA PSEUDOKNOT STRUCTURES

FENIX W.D. HUANG, WADE W.J. PENG AND CHRISTIAN M. REIDYS ⋆

Abstract. In this paper we present a selfcontained analysis and description of the novel ab

initio folding algorithm cross, which generates the minimum free energy (mfe), 3-noncrossing,

σ-canonical RNA structure. Here an RNA structure is 3-noncrossing if it does not contain more

than three mutually crossing arcs and σ-canonical, if each of its stacks has size greater or equal

than σ. Our notion of mfe-structure is based on a specific concept of pseudoknots and respective

loop-based energy parameters. The algorithm decomposes into three parts: the first is the

inductive construction of motifs and shadows, the second is the generation of the skeleta-trees

rooted in irreducible shadows and the third is the saturation of skeleta via context dependent

dynamic programming routines.

1. Introduction and background

In this paper we introduce the ab initio folding algorithm cross which folds RNA (ribonucleic acid)

sequences [49] into pseudoknot structures. We give a selfcontained presentation and analysis of

cross, whose source code is publicly available at

www.combinatorics.cn/cbpc/cross.html

Supplementary material, such as detailed description of the loop-energies and all implementation

details can be found at the above web-site. Let us begin by providing some background on RNA

sequences and structures. An RNA molecule is firstly described by its primary sequence, a linear

string composed by the four nucleotides A, G, U and C together with the Watson-Crick (A-U, G-

C) and (U-G) base pairing rules. Secondly, RNA, structurally less constrained than its chemical

relative DNA, folds into helical structures by pairing the nucleotides and thereby lowering their

minimum free energy, see Fig.1 Accordingly, RNA exhibits a variety of 3-dimensional structural
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Figure 1. The phenylalanine tRNA (re)visited: (a) represents the structure of pheny-

lalanine tRNA, as folded by ViennaRNA [17, 19]. (b) shows the phenylalanine structure

as folded by cross with minimum stack size 3. Note that cross does not contain any stack

which size ≤ 3, therefore (b) is different from (a) slightly in 48 to 60.

configurations, the so called tertiary structures, determining the functionality of the molecule.

Besides the noncrossing base pairings found in RNA secondary structures there exist further types

of nucleotide interactions [53]. These bonds are called pseudoknots and occur in functional RNA

like for instance RNAseP [30] as well as ribosomal RNA [29]. Indeed, RNA exhibits a diversity of

biochemical capabilities [2], proved by the discovery of catalytic RNAs, or ribozymes [30], in 1981.

Like proteins, RNA is capable of catalyzing reactions whereas transfer RNA acts as a messenger

between DNA and protein.
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Figure 2. The HDV-pseudoknot structure: (a) displays the structure as folded by

Rivas and Eddy’s algorithm [40]. (b) shows the structure as folded by cross with minimum

stack size 3.
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k 2 3 4 5

growth rate 2.6180 4.7913 6.8541 8.8875

k 6 7 8 9

growth rate 10.9083 12.9226 14.9330 16.9410

Table 1. The exponential growth rates of k-noncrossing RNA structures (minimum

arc-length greater or equal than two).

In light of these RNA functionalities the question of RNA structure prediction appears to be of

relevance. The first mfe-folding algorithms for RNA secondary structure are due to [12, 28, 8]

and the first DP folding routines for secondary structures were given by Waterman et al. [46, 52,

54, 34], predicting the loop-based mfe-secondary structure [49] in O(n3)-time and O(n2)-space.

The general problem of RNA structure prediction under the widely used thermodynamic model

is known to be NP-complete when the structures considered include arbitrary pseudoknots [31].

There exist however, polynomial time folding algorithms, capable of the energy based prediction

of certain pseudoknots: Rivas et.al. [40], Uemura et.al. [50], Akutsu [3] and Lyngsø[31]. In the

following we shall use the term pseudoknot synonymous with cross-serial dependencies between

pairs of nucleotides [45, 4]. As for the ab initio folding of pseudoknot RNA, we find the following

two paradigms: Rivas and Eddy’s [40] gap-matrix variant of Waterman’s DP-folding routine for

secondary structures [46, 51, 20, 52, 34], maximum weighted matching algorithms [11, 13] and

the latter taylored for pseudoknot prediction [5, 47]. The former method folds into a somewhat

“mysterious” class of pseudoknots [41] in polynomial time. Algorithms along these lines have been

developed by Dirks and Pierce [9], Reeder and Giegerich [36] and Ren et al. [39]. Additional ideas

for pseudoknot folding involve the iterated loop matching approach [42] and the sampling of RNA

structures via the Markov-chain Monte-Carlo method [33].

Let us now have a closer look at the DP-paradim by means of analyzing the algorithm of Rivas

and Eddy [40, 41, 10]. In the course of our analysis we shall make two key observations: first, DP

algorithms inevitably produce arbitrarily high crossing numbers, see Tab.1 and second that not all

3-noncrossing RNA structures can be generated by dynamic programming algorithms–at least not

with the implemented truncations. The generation of high crossing numbers is insofar problematic

as it implies a very large output class. Already for k = 4, i.e. for RNA structures exhibiting three

mutually crossing arcs, we have an exponential growth rate of 6.8541–a growth rate exceeding that

of the number of natural sequences. In other words, only for an exponentially small fraction of

these structures we will find a sequence folding into it. Remarkably, this growth rate appears to
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Matrices (i, j) (r, s) Matrices (i, j) (r, s)

whx(i, j; r, s) unknown unknown vhx(i, j; r, s) paired paired

yhx(i, j; r, s) unknown paired zhx(i, j; r, s) paired unknown

Table 2. Table shows the gap-matrix whx, vhx, yhx and zhx.

grow linearly in k, see Tab.1. Any type of study, along the lines of [44, 23, 43, 38, 18, 15, 16],

which is based on such an algorithm, is purely computational and does not allow to deduce generic

properties in the sense of [48].

Let us define now the non gap-matrices (vx, wx) and the gap-matrices (whx, vhx, zhx and yhx).

[40, 35] The non gap-matrices, vx and wx are two triangular n× n matrices, where vx(i, j) is the

score of the best folding between position i and j, provided that i, j are paired to each other and

whereas wx(i, j) is the score of the best folding between the position i and j, regardless of whether

i, j are paired or not. See Tab.2. The gap-matrices are pairs of matrices, αhx(i, j; r, s), where

i j i j

i jm n i jm n i jm ni jm n

whx vhx

wx vx

zhxyhx

Figure 3. Non gap- and gap-matrices. The non gap-matrices wx, vx and gap-matrices

whx, vhx, yhx and zhx.

α = w, v, z, y, are the scores of the best folding depending on the relation between the positions

i, j and the relation between positions r, s, respectively, see Fig.3. The key idea in Rivas and

Eddy’s algorithm is to use gap-matrices as a generalization of the non gap-matrices wx and vx. In

particular, both concepts merge for r = s− 1, where we have for any i ≤ r ≤ j

whx(i, j; r, r + 1) = wx(i, j)(1.1)

zhx(i, j; r, r + 1) = vx(i, j).(1.2)

In Fig.4 we illustrate the recursion for wx and vx in the pseudoknot algorithm truncated at

O(whx + whx+ whx). We can draw the following two conclusions:

• by design–the inductive formation of gap-matrices generates arbitrarily high numbers of mutually
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Figure 4. The basic recursions: recursion for vx and wx truncated at O(whx+whx+

whx) in Rivas and Eddy’s algorithm.

crossing arcs, see Fig.5.

• nonplanar, 3-noncrossing pseudoknots cannot be generated by inductively forming pairs of gap-

matrices, see Fig.6.

In order to avoid any confusion: gap-matrices can and will generate nonplanar arc configurations,

however, they can only facilitate this via increasing the crossing number, Fig.5. Fig.6 makes evident

that the situation is more complex: nonplanarity is not tied to crossings–there are planar as well

as nonplanar 3-noncrossing structures.

2. Specifying an output: k-noncrossing, canonical RNA structures

The previous section showed that, for RNA pseudoknot structures, DP-algorithms fold into an

uncontrollably large set of structures. This phenomenon is in vast contrast to the situation for

RNA secondary structures. The standard DP-routine cannot produce any crossings, whence they a
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Figure 5. No control over crossings: Here we show how to build a 4-noncrossing RNA

pseudoknot with gap-matrices. Iterating the formation of gap-matrices will produce

higher and higher crossings.

21 3 4 5 6 7 8 9 10

21 3 4 5 6 7 8 9 10

Figure 6. Two nonplanar, 3-noncrossing RNA structures, which cannot be generated

by pairs of gap-matrices.

priori produce secondary structures. We now follow in the footsteps of Waterman by generalizing

his strategy for the case of secondary structures to pseudoknot structures. Accordingly, the first

step is to specify a combinatorial output class. To this end we shall provide some basic facts on a

particular representation of RNA structures.

A k-noncrossing diagram is a labeled graph over the vertex set [n] with vertex degrees ≤ 1,

represented by drawing its vertices 1, . . . , n in a horizontal line and its arcs (i, j), where i < j,

in the upper half-plane, containing at most k − 1 mutually crossing arcs. The vertices and arcs

correspond to nucleotides and Watson-Crick (A-U, G-C) and (U-G) base pairs, respectively.

Diagrams have the following three key parameters: the maximum number of mutually crossing
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arcs, k − 1, the minimum arc-length, λ and minimum stack-length, σ ((k, λ, σ)-diagrams). The

length of an arc (i, j) is given by j − i and a stack of length σ is the sequence of “parallel“ arcs of

the form

(2.1) ((i, j), (i+ 1, j − 1), . . . , (i+ (σ − 1), j − (σ − 1))),

see Fig.7. We call an arc of length λ a λ-arc.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10

Figure 7. k-noncrossing diagrams: we display a 4-noncrossing, arc-length λ ≥ 4 and

σ ≥ 1 (upper) and 3-noncrossing, λ ≥ 4 and σ ≥ 2 (lower) diagram.

We are now in position to specify the output-set. We shall consider RNA pseudoknot structures

that are 3-noncrossing, σ ≥ 3-canonical and have a minimum arc-length λ ≥ 4. The 3-noncrossing

property is mostly for algorithmic convenience and the generalization to higher crossing numbers

represents not a major obstacle. We consider 3-canonical structures, i.e. those in which each stack

has length at least three, since we are interested in minimum free energy structures. Finally, the

minimum arc-length of four is a result of biophysical constraints. Accordingly, we shall identify

pseudoknot RNA structures with 〈k, 4, σ〉-diagrams and refer to them simply as 〈k, σ〉-structures,
implicitly assuming the minimum arc-length λ ≥ 4. In Fig.8 we present a particular 3-noncrossing,

3-canonical RNA structure: the HDV-virus as folded by cross.

We next present some of the combinatorics of 〈3, σ〉-structures. Let T
[4]
k,σ denote the number of

k-noncrossing, σ-canonical RNA structures over [n]. The generating function,

T
[4]
k,σ(z) =

∑

n≥0

T
[4]
k,σ(n)z

n k, σ ≥ 3

of k-noncrossing, σ-canonical RNA structures has been obtained in [32]. This function is closely

related to Fk(z) =
∑

n fk(2n, 0)z
2n, the ordinary generating function of k-noncrossing match-

ings. Beyond functional equations implied directly by the reflection-principle [14], the following
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1 10 20 30 40 50 60 70 80 87

( )a

( )b

Figure 8. The HDV-virus pseudoknot structures as folded by cross (b). This structure

differs from the natural structure displyed in (a) [1] by exactly seven base pairs.

asymptotic formula has been derived [27]

(2.2) ∀k ∈ N, fk(2n, 0) ∼ ckn
−((k−1)2+(k−1)/2)(2(k − 1))2n, ck > 0.

Setting

w0(x) =
x2σ−2

1− x2 + x2σ
and v0(x) = 1− x+ w0(x)x

2 + w0(x)x
3 + w0(x)x

4

we can now state

Theorem 2.1. Let k, σ ∈ N, where k, σ ≥ 3, x is an indeterminate and ρk the dominant, positive

real singularity of Fk(z). Then T
[4]
k,σ(x), the generating function of 〈k, σ〉-structures, is given by

(2.3) T
[4]
k,σ(x) =

1

v0(x)
Fk

(

√

w0(x)x

v0(x)

)

.

Furthermore, the asymptotic formula

(2.4) T
[4]
k,σ(n) ∼ ckn

−(k−1)2−(k−1)/2

(

1

γ
[4]
k,σ

)n

, for k = 3, 4, . . . , 9.
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k 3 4 5 6 7 8 9

σ = 3 2.0348 2.2644 2.4432 2.5932 2.7243 2.8414 2.9480

σ = 4 1.7898 1.9370 2.0488 2.1407 2.2198 2.2896 2.3523

σ = 5 1.6465 1.7532 1.8330 1.8979 1.9532 2.0016 2.0449

σ = 6 1.5515 1.6345 1.6960 1.7457 1.7877 1.8243 1.8569

σ = 7 1.4834 1.5510 1.6008 1.6408 1.6745 1.7038 1.7297

σ = 8 1.4319 1.4888 1.5305 1.5639 1.5919 1.6162 1.6376

σ = 9 1.3915 1.4405 1.4763 1.5049 1.5288 1.5494 1.5677

Table 3. Exponential growth rates of 〈k, σ〉-structures.

holds, where γ
[4]
k,σ is the minimal positive real solution of the equation

√
w0(x)x

v0(x)
= ρk.

Theorem 1 implies exact enumeration results as well as an array of exponential growth rates indexed

by k and σ. The latter are presented in Tab.3 and are of relevance in the context of the asymptotic

analysis of the algorithm. In addition, Tab.3 shows that 3-noncrossing, σ-canonical RNA structures

have remarkably moderate growth rates. σ-canonical structures with higher crossing numbers

exhibit also moderate growth rates, indicating that generalizations of the current implementation

of cross from k = 3 to k = 4 or 5 are feasible.

3. Loops, motifs and shadows

Suppose we are given a 〈3, σ〉-structure, S. Let α be an S-arc and denote the set of S-arcs that

cross β by AS(β). Clearly we have

(3.1) β ∈ AS(α) ⇐⇒ α ∈ AS(β).

An arc α ∈ AS(β) is called a minimal, β-crossing if there exists no α′ ∈ AS(β) such that α′ ≺ α.

Note that α ∈ AS(β) can be minimal β-crossing, while β is notminimal α-crossing. We call a pair of

crossing arcs (α, β) balanced, if α is minimal, β-crossing and β is minimal α-crossing, respectively.

3-noncrossing diagrams exhibit the following four basic loop-types 3-noncrossing diagrams:

(1) a hairpin-loop, being a pair

((i, j), [i+ 1, j − 1])
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Figure 9. The standard loop-types: hairpin-loop (top), interior-loop (middle) and

multi-loop (bottom). These represent all loop-types that occur in RNA secondary struc-

tures.

where (i, j) is an arc and [i, j] is an interval, i.e. a sequence of consecutive vertices (i, i+1, . . . , j−
1, j).

(2) an interior-loop, being a sequence

((i1, j1), [i1 + 1, i2 − 1], (i2, j2), [j2 + 1, j1 − 1]),

where (i2, j2) is nested in (i1, j1).

(3) a multi-loop, see Fig.9, being a sequence

((i1, j1), [i1 + 1, ω1 − 1], Sτ1
ω1
, [τ1 + 1, ω2 − 1], Sτ2

ω2
, . . . )

where Sτh
ωh

denotes a pseudoknot structure over [ωh, τh] (i.e. nested in (i1, j1)) and subject to the

following condition: if all Sτh
ωh

= (ωh, τh), i.e. all substructures are simply arcs, for all h, then h ≥ 2.

We finally define pseudokont-loops:

(4) a pseudoknot, see Fig.10, consists of the following data:

(P1) a set of arcs

P = {(i1, j1), (i2, j2), . . . , (it, jt)} ,

where i1 = min{is} and jt = max{js}, such that

(i) the diagram induced by the arc-set P is irreducible, i.e. the line-graph of P is connected and

(ii) for each (is, js) ∈ P there exists some arc β (not necessarily contained in P ) such that (is, js)

is minimal β-crossing.



FOLDING 3-NONCROSSING RNA PSEUDOKNOT STRUCTURES 11
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30
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20

1
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30

Figure 10. Pseudoknots: we display a balanced (top) and an unbalanced pseudoknot

(bottom). The latter contains the stack over (3, 24), which is minimal for the arc (9, 30),

which is not contained in the pseudoknot.

(P2) all vertices i1 < r < jt, not contained in hairpin-, interior- or multi-loops.

We call a pseudoknot balanced if its arc-set can be decomposed into pairs of balanced arcs.

3.1. Motifs and shadows. Let≺ denote the partial order over the set of arcs (written as (i, j), i <

j) of a k-noncrossing diagram, given by

(3.2) (i1, j1) ≺ (i2, j2) ⇐⇒ i2 < i1 ∧ j1 < j2.

A k-noncrossing core is a k-noncrossing diagram without any two arcs of the form (i, j), (i+1, j−1).

Any k-noncrossing RNA structure, S has a unique k-noncrossing core, c(S) [25], obtained in two

steps: first one identifies all arcs contained in stacks, inducing a contracted diagram and secondly

one relabels the vertices. Note that the core-map does in general not preserve arc-length.

1 5 10 13 1 5

length=4
length=2

Figure 11. Core-structures: A structure, S, (lhs) is mapped into its core c(S)

(rhs). Clearly S has arc-length ≥ 4 and as a consequence of the collapse of the stack

((4, 13), (5, 12), (6, 11)) (the red arcs are being removed) into the arc (2, 5). c(S) contains

the arc (1, 3). This arc becomes, after relabeling, a 2-arc.
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Definition 1. (Motif) A 〈k, σ〉-motif, m, is a 〈k, σ〉-structure over [n], having the following

properties:

(M1) m has a nonnesting core.

(M2) All m-arcs are contained in stacks of length exactly σ ≥ 3 and length λ ≥ 4.

The set of all motifs is denoted by Mσ
k (n) and we set µ∗

k,σ(n) = |Mσ
k (n)|.

Property (M1) is obviously equivalent to: all arcs of the core, c(m), are ≺-maximal.

Let S be a 〈3, σ〉-structure. We call two k-noncrossing diagrams δ1, δ2 adjacent if and only if δ2 is

derived by selecting a pair of isolated δ1-vertices, i < j such that (i − 1, j + 1) is a δ1-arc. With

respect to this notion of adjacency the set of k-noncrossing diagrams over [n] becomes a directed

graph, which we denote by Gk(n).

Definition 2. (Shadow) A shadow of S is a Gk(n)-vertex connected to S by a Gk(n)-path.

Intuitively speaking, a shadow is derived by extending the stacks of a structure from top to bottom.

Theorem 3.1. Suppose k, σ ≥ 2.

(a) Any k-noncrossing, σ-canonical RNA structure corresponds to a unique sequence of shadows.

(b) Any 〈3, σ〉-structure has a unique loop-decomposition.

Proof. Ad (a). Suppose S is an arbitrary 〈k, σ〉-structure over [n]. We prove the theorem by

induction on the number of S-arcs. We consider the set of ≺-maximal elements, S∗ = {(i, j) |
(i, j) is ≺-maximal}. Clearly, S∗ induces a unique 〈k, σ〉-motif, mk,σ(S), contained in S. Indeed,

since S is by assumption σ-canonical, each S∗-arc occurs in a stack of size ≥ σ. By definition, any

S-arc which is contained in a stack containing an (unique) S∗-arc is an arc of an unique shadow,

mk,σ(S). Removing all arcs contained in mk,σ(S) the remaining diagram is still k-noncrossing and

σ-canonical. To see this it suffices to observe that any S-arc not contained in mk,σ(S) is contained

in a stack of size ≥ σ not containing any mk,σ(S)-arcs. Assertion (a) follows now by induction on

the number of arcs.

Ad (b). Let c(S) be the core of S. We shall color the c(S)-arcs, α = (i, j), as follows:

Case (1): Ac(S)(α) 6= ∅.

Since c(S) is a 3-noncrossing diagram, we have for any two (i, j), (i′, j′) ∈ Ac(S)(β), either (i, j) ≺
(i′, j′) or j < i′. Therefore for any β ∈ Ac(S)(α) there exists an unique ≺-minimal arc α∗ ∈ Ac(S)(β)
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that is nested in α. If there exists some β for which α = α∗(β) holds, i.e. α itself is minimal in

Ac(S)(β), then we color α red. In other words, red arcs are minimal with respect to some crossing

β. Otherwise, for any β ∈ Ac(S)(α) there exists some α∗(β) ≺ α. If α∗(β) is the unique ≺-maximal

substructure nested in α, then we color α green and blue, otherwise.

Case (2): Ac(S)(α) = ∅, i.e. α is noncrossing in c(S).

If there exists no c(S)-arc α′ ≺ α, then we color α purple, if there exists exactly one maximal

c(S)-arc α′ ≺ α, we color α green and blue, otherwise. It follows now by induction on the number

of c(S)-arcs that this procedure generates a well defined arc-coloring. Let i ∈ [n] be a vertex. We

assign to i either the color of the minimal non-red c(S)-arc (r, s) for which r < i < s holds, or red

if there exist only red c(S)-arcs, (r, s) with r < i < s and black, otherwise. By construction, this

induces a vertex-arc coloring with the property of correctly identifying all hairpin- (purple arcs

and vertices), interior- (green arcs and vertices), multi- (blue arcs and vertices) and pseudoknot

(red arcs and vertices). �

1 10 20 30 40 50 55

1 10 20 30 40 50 55

IV IVI

III II

Figure 12. Shadows and loops: we give the sequence of shadows (top) and the loop-

decomposition (below) illustrating Theorem 3.1. Here I (purple) is a hairpin-loop, II

(green) represents an interior-loop, III (blue) is a multi-loop and finally IV (red) is a

(balanced) pseudoknot.

In Fig.12 we show how these decompositions work.
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4. Phase I: motif-generation

The first step in cross consists in creating some kind of shelling of a 3-noncrossing, canonical

structure via motifs. One key idea in cross is the identification of motifs as building blocks. The

key point here is that, despite the fact that motifs exhibit complicated crossings, they can be

inductively generated. This is remarkable and a result of considering the “dual” of a motif which

turns out to be a restricted Motzkin-path. The latter is obtained via the bijection of Proposition 4.1

between crossing and nesting arcs.

A Motzkin-path is composed by up-, down- and horizontal-steps. It starts at the origin, stays in

the upper halfplane and ends on the x-axis. Let Moσk (n) denote the following set of Motzkin-paths:

(a) the paths have height ≤ σ(k − 1)

(b) all up- and down-steps come only in sequences of length σ

(c) all plateaux at height σ have length ≥ 3.

Let µk−1,σ(n) denote the number of Motzkin-paths of length n that (a’) have height ≤ σ(k − 2),

(b’) up- and down-steps come only in sequences of length σ. We set for arbitrary k, σ ≥ 2

G∗
k,σ(z) =

∑

n≥0

µ∗
k,σ(n)z

n

Gk−1,σ(z) =
∑

n≥0

µk−1,σ(n)z
n

G1,σ(z) =
1

1− z
.

Now we are in position to give the main result of this section:

Proposition 4.1. Suppose k, σ ≥ 2, then the following assertions hold:

(a) There exists a bijection

(4.1) β : Mσ
k (n) −→ Moσk (n).

(b) We have the following recurrence equations

µ∗
k,σ(n) = µ∗

k,σ(n− 1) +

n−(2σ+3)
∑

s=0

µk−1(n− 2σ − s)µ∗
k,σ(s) for n > 2σ(4.2)

µk,σ(n) = µk,σ(n− 1) +

n−2σ
∑

s=0

µk−1(n− 2σ − s)µk,σ(s) for n > 2σ − 1.(4.3)
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σ 2 3 4 5 6 7

ζ−1
σ 1.7424 1.5457 1.4397 1.3721 1.3247 1.2894

cσ 0.1077 0.0948 0.0879 0.0840 0.0804 0.0780

Table 4. The exponential growth rates of µ∗

3,σ(n)

where µ∗
k,σ(n) = 1 for 0 ≤ n ≤ 2σ and µk−1,σ(n) = 1 for 0 ≤ n ≤ 2σ − 1.

(c) We have the following formula for the generating functions

G∗
k,σ(z) =

1

1− z − z2σ(Gk−1,σ(z)− (z2 + z + 1))
(4.4)

Gk−1,σ(z) =
1

1− z − z2σGk−2,σ(z)
.(4.5)

and, in particular, for k = 3 we have the following asymptotic formula

(4.6) µ∗
3,σ(n) ∼ cσ

(

1

ζσ

)n

,

where cσ and ζ−1
σ are given by Tab.4.

Proof. Let m be a 〈k, σ〉-motif. We construct the bijection β as follows: reading the vertex labels

of m in increasing order we map each σ-tuple of origins and termini into a σ-tuple of up-steps

and down-steps, respectively. Furthermore isolated points are mapped into horizontal-steps. The

resulting paths are by construction Motzkin-paths of height ≤ σ(k − 1). Since motifs have arcs

of length ≥ 4 the paths have at height σ plateaux of length ≥ 3. In addition we have σ-tuples of

up- and down-steps. Therefore β is well defined. To see that β is bijective we construct its inverse

explicitly. Consider an element ζ ∈ Moσk (n). We shall pair σ-tuples of up-steps and down-steps

as follows: starting from left to right we pair the first up-step with the first down-step tuple and

proceed inductively, see Fig.13. It is clear from the definition of Motzkin-paths that this pairing

procedure is well defined. Each such pair

((ui, ui+1, . . . , ui+σ, (dj , dj+1, . . . , jj+σ))

corresponds uniquely to the sequence of arcs ((i+ σ, j), . . . , (i, j+ σ)) from which we can conclude

that ζ induces a unique σ-canonical diagram, δζ over [n]. Furthermore δζ has by construction

a nonnesting core. A diagram contains a k-crossing if and only if it contains a sequence of arcs

(i1, j1), . . . , (ik, jk) such that i1 < i2 < · · · < ik < j1 < j2 < · · · < jk. Therefore δζ is k-noncrossing

if and only if its underlying path ζ has height < σk. We immediately derive β(δζ) = ζ, whence β is
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1 10 20 30

1 10 20 30

3

6

9

b

35

35

1 10 20 30

3

6

9

35

1 10 20 30 35

pair

( )a
( )b

( )c

( )d

Figure 13. The bijection β: First we have a map from (a) to (b). Then we pair the

σ-tuples of up-steps and down-steps, see the vertical map from (b) to (c). The so derived

pairs, see the horizontal map from (c) to (d), allow to reconstruct the original motif.

a bijection. Using the Motzkin-path interpretation we immediately observe that Moσk (n)-paths can

be constructed recursively from paths that start with a horizontal-step or an up-step, respectively.

The recursions eq. (4.2) and eq. (4.3) and the generating functions of eq. (4.4) and eq. (4.5) are

straightforwardly derived. As for the particular case G∗
3,σ(z), we have

(4.7) G∗
3,σ(z) =

1

1− z − z2σ
[

1
1−z−z2σ [ 1

1−z
]
− (z2 + z + 1)

] .

The unique dominant, real singularities of G∗
3,σ(z) are simple poles, denoted by ζσ. Being a rational

function, G∗
k,σ(z) admits a partial fraction expansion

G∗
k,σ(z) = H(z) +

∑

(ζ,r)

c(ζ,r)

(ζ − z)r

and eq. (4.6) follows in view of

(4.8) [zn]
1

ζ − z
=

1

ζ
[zn]

1

1− z/ζ
=

1

ζ

(

n

0

)(

1

ζ

)n

=

(

1

ζ

)n+1

.

�
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5. Phase II: the skeleta-tree

In this section we enter the second phase of cross. What will happen here, is that each irreducible

shadow, generated during the first phase described in Section 4, gives rise to a tree of skeleta. The

intuition behind this construction is that each tree-vertex, i.e. each skeleton, represents a maximal

“non-inductive” arc configuration. This does not mean that a skeleton contains all crossings arcs

of the final structure, but all further crossings are derived by adding independent substructures.

In other words: their energy contributions are additive.

A skeleton, S, is a 3-noncrossing structure whose core has no noncrossing arcs, i.e. for any arc α

we have AS(α) 6= ∅, see Fig.14. In addition, in a skeleton over the segment {i, i+ 1, . . . , j − 1, j},
Si,j , the positions i and j are paired. Recall that an interval is a sequence of consecutive, unpaired

bases (i, i+1, · · · , j), where i− 1 and j+1 are paired. Furthermore, recall that a stack of length σ

(see eq. (2.1)) is a sequence of parallel arcs ((i, j), (i+1, j− 1), . . . , (i+(σ− 1), j− (σ− 1))), which

we write as (i, j, σ). Note that σ ≥ σ0, where σ0 is the minimum stack length of the structure,

see Fig.14. An irreducible shadow over {i, i+ 1, . . . , j − 1, j} is denoted by ISi,j . It is a particular

skeleton, i.e. a skeleton in which there are no nested arcs.

Remark 1. In our implementation of cross, the number of stacks of an irreducible shadow is an

input parameter. As default we set its maximum value to be three.

(a)
I 1 I 2 I 3 4I

1 10 20 30 1 10 20 30{ { { {
(b)

Figure 14. Irreducible shadows and skeleta: an irreducible shadow (a), containing the

stack (1, 20, 3) and (7, 30, 4). (b) A skeleton drawn with its four induced intervals

I1, I2, I3, I4.

We are now in position to construct the skeleta-tree. Suppose we are given a 3-noncrossing skeleton,

S. We label the S-intervals {I1, . . . , Im} from left to right and consider pairs (S, r), where r is an

integer 1 ≤ r ≤ m− 1. Given a pair (S, r) we construct new pairs (S′, r′) where r′ ≥ r as follows:

we replace a pair of intervals (Ip, Iq), i ∈ Ip, j ∈ Iq, i ≥ r by the stack α = (i, j, σ), subject to the

following conditions
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• S′ is a 3-noncrossing skeleton

• (i + σ − 1, j − σ + 1) is a minimal element in (S′,≺)

• r′ is the label of the first paired base preceding the interval Ip.

• i− 1 and j + 1 are not paired to each other.

Fig.15 displays the two basic scenarios via which stacks are being inserted. We refer to the above

(a)

i

r=r’

j

s

(b)

i

r

j

s

r’I Ip q I Ip q

{ { { {

Figure 15. Stack-insertion: if the origin of the inserted stack (i, j, σ) is smaller than

that of its predecessor (a), then r = r′. Paraphrasing the situation we can express this

as “left-insertion” freezes the index r. Accordingly, (b) showcases the “right-insertion”,

with its induced shift of the indices r 7→ r′, both indices are drawn in red.

procedure as (i, j, σ)-insertion and formally express it via

(5.1) (S, r) ⇒(i,j,σ) (S
′, r′).

Given a pair (S, r) subsequent insertions induce a directed graph, G(S,r), whose vertices are pairs

(S′, r′) and whose (directed) arcs are given by

(5.2) ((S, r), (S′, r′)), where (S, r) ⇒(i,j,σ) (S
′, r′).

Remark 2. Note that the algorithm checks whether (i, j, σ) can be added, i.e. (1) the bases {i, i+
1, · · · , i+ σ− 1, j− σ+1, · · · , j− 1, j} are indeed unpaired and (2) (i− 1, j+1) is not a base pair.

The second property guarantees that the core of the stack (i, j, σ) is an arc in the core of S′.

We proceed by showing that G(S,r) is in fact a tree. In other words, the insertion-procedure is an

unambiguous grammar.

Proposition 5.1. Let T1 = {S | ∃ r; (S, r) ∈ T } and S0 be a 3-noncrossing skeleton.

(a) G(S0,r0) is a tree and for any two different vertices (S′
1, r

′
1) and (S′

2, r
′
2) in G(S,r0), we have
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S′
1 6= S′

2.

(b) For k > 3, the graph morphism π : T −→ T1, given by π((S, r)) = S is not bijective.

Remark 3. For any k > 3, G(S0,r0) is a tree. However assertion (b) indicates that it is really a tree

of pairs. That means, stack-insertions will in general generate two different pairs with equal first

coordinate.

Proof. We prove assertion (a) by induction on the number of inserted arcs, ℓ. For ℓ = 0 there

is nothing to prove. For ℓ = 1, the pairs (S, r0) and (S′, r′) differ by exactly one stack, (i, j, σ),

whence the assertion. Our objective is now to show that for any two (S′
1, r

′
1) and (S′

2, r
′
2) obtained

from the root (S, r0) via ℓ insertions, S′
1 6= S′

2 holds. Suppose there exists some (S̃, r̃), such that

(5.3)

(S̃, r̃)

inertion

zzvv
vv

vv
vv

v
insertion

$$
HH

HH
HH

HH
H

(S′
1, r

′
1) (S′

2, r
′
2)

If the inserted stacks coincide, we have (S′
1, r

′
1) = (S′

2, r
′
2) and there is nothing to prove. Otherwise,

we obtain S′
1 6= S′

2, which implies (S′
1, r

′
1) 6= (S′

2, r
′
2), whence (a). Suppose next, we have the

following situation

(5.4)

(S0, r0)

unique path

yyttttttttt
unique path

%%
JJJJJJJJJ

(S1, r1)

insertion

��

(S2, r2)

insertion

��

(S′
1, r

′
1) (S′

2, r
′
2)

where the uniqueness of the paths ending at (S1, r1) and (S2, r2) is guaranteed by the induction

hypothesis. By assumption we have (S1, r1) 6= (S2, r2) and S1 and S′
1 as well as S2 and S′

2 differ

by exactly one stack. Again by induction hypothesis, we have S1 6= S2, whence

(5.5) (S1, r1) ⇒α=(iα,jα,σα) (S
′
1, r

′
1), (S2, r2) ⇒β=(iβ ,jβ ,σβ) (S

′
2, r

′
2) and S1 6= S2.
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We now prove the inductive step by contradition. Suppose we have S′
1 = S′

2, then we can conclude

that α 6= β and there exists some (S̃, r̃) such that

(5.6)

(S, r0)

unique path

��

(S̃, r̃)

β

zzuuuu
uuuu

u
α

$$
III

IIII
II

(S1, r1)

α

��

(S2, r2)

β

��

(S′
1, r

′
1) (S′

2, r
′
2)

Indeed, we define S̃ to be the skeleton derived from (S0, r0) by inserting all S′
1-arcs except of

α, β. It is clear that the skeleton S̃ exists since its stack-set is a subset of the stack-set of S′
1.

By construction, S̃ differs from S1 and S2 via the stacks α and β, respectively. By induction

hypothesis, there exists a unique path from (S, r0) to (S̃, r̃), which implies the existence of a

unique r̃. Furthermore, by induction hypothesis, the paths from (S0, r0) to (S1, r1) and (S2, r2)

are unique and consequently contain (S̃, r̃), whence we have the situation given in eq. (5.6).

As α and β are both minimal, without loss of generality we may assume iα < iβ . Let us consider the

insertion-path (S̃, r̃) ⇒β (S1, r1) ⇒α (S′
1, r

′
1). According to this insertion, we obtain r1 < iα and by

construction [r1+1, iβ−1] is an S1-interval. If jα < iβ , then α does not cross any arcs in S′
1, which

is impossible. If jα > jβ , we arrive at β ≺ α, which contradicts minimality of α. Therefore, we have

iβ < jα < jβ , i.e. the arcs α and β are crossing. Next we consider (S̃, r̃) ⇒α (S2, r2) ⇒β (S′
2, r

′
2).

Accordingly, α must be crossed by some (S̃, r̃)-stack, say γ = (iγ , jγ , σγ). We next put γ into the

context of the insertion-path (S̃, r̃) ⇒β (S1, r1) ⇒α (S′
1, r

′
1) and observe that γ necessarily crosses

β. Indeed, otherwise we have the following three scenarios: iγ > jβ , jγ ≤ r1 or iγ ≤ r1, jγ > jβ . In

all three cases γ cannot cross α since iγ , jγ 6∈ [r1 + 1, iβ − 1], see Fig.16. As a result, γ necessarily

crosses both stacks: α and β, which is a contradition to the fact that S′
1 is a 3-noncrossing skeleton,

whence S′
1 6= S′

2. In particular we obtain (S′
1, r

′
1) 6= (S′

2, r
′
2), the insertion path is unique and G(S,r0)

is a tree.

In order to prove (b) we provide via Fig.17 an example, where the implication (S1, r1) 6= (S2, r2) ⇒
S1 6= S2 does not hold. Note that T(S0,r0) is still a tree. �
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a bi jji a b

b
a

r1 a bi jji a b

b

a

r1 a bi jji a b

b

a

r1
g

g g

g

i
j

g gi jg gi jg

(a) (b) (c)

Figure 16. Illustration of the proof of Proposition 5.1. The three different scenarios

for a noncrossing γ, representing stacks by isolated arcs. (a) jγ ≤ r1, (b) iγ > jβ and (c)

iγ ≤ r1, jγ > jβ .

Next we prove that our unambiguous grammar indeed generates any skeleton, which contains a

given irreducible shadow.

Proposition 5.2. Suppose we are given an irreducible shadow S0 = ISi,j. Let T(S0) = G(S0,0)

denote ist skeleton-tree and let S(S0) be the set of all skeleta, that contain S0. Then we have

(5.7) T(S0) = S(S0).

Proof. Let AS denote the set of S-arcs. Obviously, for any vertex (S, r) ∈ T(S0), S is a 3-

noncrossing skeleton such that AS0
⊆ AS , whence T(S0) ⊆ S(S0) holds. For an arbitrary 3-

noncrossing skeleton S, let A ne
S denote the set of all nested stacks in S. Since each arc is either

maximal or nested we have AS = AS0
∪̇A

ne
S . Sorting A

ne
S via the linear ordering of their leftmost

paired base, we obtain the sequence Σ = (α1, α2, · · · , αn). We choose the first element αk ∈ Σ

which is intersecting S0 (not necessarily α1). Then we have

(5.8) (S0, r0) →֒αk
(S1, r1)

where, S1 ∈ T(S0). We proceed inductively, setting A ne
S = A ne

S \αk and proceed inductively until

A ne
S = ∅. By construction, each Sk is in T(S0), and Sn = S. Accordingly, we constructed an

insertion-path in T(S0) from S0 to S, from which S(S0) ⊂ T(S0) follows. �

6. Phase III: Saturation

In this section we discuss the third phase of cross. The skeleta-trees constructed in the second

phase organized the non-inductive substructures of an irreducible shadow derived in phase one.

The objective of the saturation phase is to inductively “fill” the remaining intervals of a given
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aa

ab b

b
b

a

a

b

r

r

r

r ’

r ’

1

2

1

2

Figure 17. Illustration of assertion (b) of Proposition 5.1: the case k > 3. While

T(S0,r0) is still a tree (over pairs), the implication (S1, r1) 6= (S2, r2) ⇒ S1 6= S2 does

not hold in general.

skeleton with specific substructures. Basically, all routines employed here follow the DP-paradigm.

However, we store a vector of structures rather than energies and implement context sensitive

DP-routines.

Suppose we are given a skeleta-tree T(S0) with root S0. Let the order of S, ω(S), denote the number

of ≺-maximal S-arcs, see Fig.18. Furthermore, let Σi,j and Σ
[r]
i,j be some subset of structures over

{i, i+1, . . . , j−1, j} and those of order r, respectively. Let Mi,j denote the set of saturated skeleta

( )a ( )b

Figure 18. Order: In (a) we display a structure of order one. (b) showcases a structure

of order two.

over {i, i + 1, . . . , j − 1, j} and OSM(i, j) ∈ Mi,j be a mfe-saturated skeleton. Furthermore, let

OS(i, j) be a mfe-structure, which is a union of disjoint OSM(i1, j1), . . . OSM(ir, jr) and unpaired

nucleotides. By OSM [x](i, j) and OS[x](i, j) we denote the respective OSM and OS structures

of order x. In order to describe the context-sensitive saturation procedure in cross we denote by

OSmul(i, j), OSpk(i, j) and OS0(i, j), the mfe-structures nested in a multi-loop, pseudoknot and

otherwise, respectively.
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i j

OSM(i,j)

i j

OS(i,j)

s

(a) (b)

Figure 19. OS vers. OSM : we display a OSM(i, j) (a), and a OS(i, j) structure (b).

The OS(i, j) structure shown in (b) is evidently an union of of the structures OSM(i, s)

and OSM(s + 1, j) and the unpaired nucleotide at position i.

For a given a skeleton Si,j , we specify the mapping Si,j 7→ OSM(Si,j) as follows: suppose Si,j has

n1 intervals, I1, . . . , In1
labelled from left to right. For given interval Ir = [ir, jr] and sr ∈ Σir ,jr

we consider the insertion of sr into Ir, distinguishing the following four cases:

Case(1). Ir is contained in a hairpin-loop.

ω(sr) = 0. That is we have sr = ∅. The loop generated by the sr-insertion remains obviously a

hairpin-loop, i.e. ((ir − 1, jr + 1), [ir, jr]), with energy H(ir − 1, jr + 1).

ω(sr) = 1. Let (p, q) be the unique, maximal sr-arc. Then sr-insertion produces the interior-loop

((ir − 1, jr + 1), [ir, p− 1], (p, q), [q + 1, jr]),

with energy I(ik − 1, jk + 1, p, q). Note that p = ir implies q 6= jr and sr ∈ OSM
[1]
0 (p, q).

ω(sr) ≥ 2. In this case inserting sr into Ir creates a multi-loop in which sr is nested. Then

sk ∈ OS
[≥2]
mul , see Fig.20. Let ǫ(s) denote the energy of structure s. We select the set of all

structures sr such that

ǫ(sr) = min



























H(ir − 1, jr + 1)

I(ir − 1, jr + 1, p, q) + ǫ(OSM
[1]
0 (p, q))

∀ir ≤ p < q ≤ jr and p = ir,⇒ q 6= jk

M + P1 + ǫ(OS
[≥2]
mul (ir, jr)).

Here, M is the energy penalty for forming a multi-loop and P1 is the energy score of a closing-pair

in multi-loop.

Case(2). Ir is contained in a pseudoknot loop.

ω(sr) = 0. That is we have sr = {∅} and the unpaired bases in Ir are considered to be contained

in a pseudoknot.
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OSM(p,q)

i jr r i jr r i jr r

[1]

OS(     ,     )

i jr ri r+1 j r -1

i r+1 j r -1
[2]

=

p q

Figure 20. Saturation in hairpin-loops: the interval on the left hand side is filled with

substructures sr such that ω(sr) = 0 (left), ω(sr) = 1 (middle) or ω(sr) ≥ 2 (right).

ω(sr) ≥ 1. In this case, sr is a substructure which is nested in a pseudoknot, see Fig.21. As a

result our selection criterion is given by

ǫ(sr) = min







(jr − ir + 1) ·Qpk

ǫ(OSpk(ir, jr)).

where (jr − ir + 1) ∈ N is the number of unpaired bases in Ir , and Qpk is the energy score of the

unpaired bases in a pseudoknot.

i jr r i jr r i jr r

OS(     ,     )i r+1 j r -1

i r+1 j r -1

=

Figure 21. Saturation of interval nested in a pseudoknot.

Case(3). Ir is contained in a multi-loop. In analogy to case (2), we distinguish the following cases:

ω(sr) = 0. That is we have sr = {∅}. The unpaired bases in Ir are considered to be contained in

a multi-loop.

ω(sr) ≥ 1. In this case, sr is a substructure nested in a multi-loop, see Fig.22. Accordingly, we

select all structures satisfying

ǫ(sr) = min







(jr − ir + 1) ·Qmul

ǫ(OSmul(ir, jr)),

where Qmul denotes the energy score of the unpaired bases in a multi-loop.

Case(4) Ir is contained in an interior-loop. By construction, the latter is formed by the pair (Ir , Il),

where r < l. We then select pairs sr in Σir ,jr and sl in Σil,jl . Note that only the first coordinate
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i r j r i r j r

=
OS(     ,     )i r+1 j r -1

j r+1i r+1i r j r

Figure 22. Saturation of an interval contained in a multi-loop.

of the pair (Ir , Il) is considered.

ω(sr) = 0 and ω(sl) = 0. Obviously, in this case the loop formed by Ir and Il remains an interior-

loop

((ir − 1, jl + 1), [ir, jr], (jr + 1, il − 1), [il, jl]),

whose energy is given by I(ir − 1, jl + 1, jr + 1, il − 1).

ω(sr) ≥ 1 and ω(sl) = 0. In this case, sl = {∅}. Ir and Il create a multi-loop, in which sr and the

substructure Gjr+1,il−1 are nested.

ω(sr) = 0 and ω(sl) ≥ 1. Completely analogous to the previous case.

ω(sr) ≥ 1 and ω(sl) ≥ 1. In this case, Ir and Il create a multi-loop, in which sr, sl and Gjr+1,il−1

are nested, see Fig.23.

Accordingly, we select all pairs of structures (sr, sl) satisfying

ǫ(sr) + ǫ(sl) = min



























I(ir − 1, jl + 1, jr + 1, il − 1)

M + 2P1 + ǫ(OSmul(ir, jr)) + (jl − il + 1) ·Qmul

M + 2P1 + ǫ(OSmul(il, jl)) + (jk − ik + 1) ·Qmul

M + 2P1 + ǫ(OSmul(ir, jr)) + ǫ(OSmul(il, jl))

Accordingly, we inductively saturate all intervals and in case of interior loops interval-pairs and

thereby derive OSM(Si,j). Then we select an energy-minimal OSM(i, j) substructure from the

set of all OSM(Si,j) for any skeleton Si,j .

As for the construction of OS(i, j) via OSM(i′, j′), we consider position i in OS(i, j). If i is paired,

then i is contained in some OSM(i, s). Then OS(i, j) induces a substructure S2 over {s+1, . . . , j}.
By construction OS(i, j) = OSM(i, s)∪̇S2, whence S2 = OS(s+ 1, j) and in particular we have

(6.1) ǫ(OS(i, j)) = ǫ(OSM(i, s)) + ǫ(OS(s+ 1, j)).
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i jr r i l j l i jr r i l j l i jr r i l j l i jr r i l j l

i jr r i l j l

OS(     ,     )i l+1 j l -1

i r+1 j r+1

i r+1 j r+1 i l+1 j l+1

i l+1 j l+1

OS(     ,     )i r+1 j r -1

OS(     ,     )i r+1 j r -1

OS(     ,     )i l+1 j l -1

G
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Figure 23. Saturation of an interval contained in an interior-loop, which is obtained

by Ir and Il, where r < l.

Suppose next i is unpaired in OS(i, j). Since ǫ is a loop-based energy, we can conclude OS(i, j) =

{∅}∪̇OS(i+ 1, j), i.e. we have

(6.2) ǫ(OS(i, j)) = ǫ(OS(i+ 1, j)) +Q

where Q represents the energy contribution of a single, unpaired nucleotide. Accordingly, we can

inductively construct OS(i, j) via the criterion

ǫ(OS(i, j)) = min{ǫ(OS(i+ 1, j)) +Q, ǫ(OSM(i, s)) + ǫ(OS(s+ 1, j))}, ∀i < s ≤ j.

i s js+1 i ji+1

OSM(i,s) OS(s+1,j) OS(i+1,j)OS(i,j)

i j

=

Figure 24. Constructing OS(i, j): inductive decomposition of the optimal structure,

OS(i, j), into saturated skeleta, OSM(i, s) and unpaired nucleotides.

Now we can inductively construct the array of structures OS(i, j) and OSM(i, j) via OS and

OSM structures over smaller intervals. As a result, we finally obtain the structure OS(1, n),

i.e. the mfe-structure, see Fig.25.



FOLDING 3-NONCROSSING RNA PSEUDOKNOT STRUCTURES 27

2 3 4 5 6 7 8

2

3

4

5

6

7

8

9

OSM

step 1 step 2

1

...

2 3 4 5 6 7 8

2

3

4

5

6

7

8

9

OS

step 1 step 2

1

...

Figure 25. Inductive construction of OS and OSM structures: in the s-th step, we

first construct OSM(i, i+ s), for any 0 < i < n− s+ 1. We then construct OS(i, i+ s)

recruiting OSM -structures over intervals of lengths strictly smaller than s.

7. Synopsis

After providing the necessary background and context on pseudoknot folding routines and k-

noncrossing structures, we discussed in detail in Sections 4,5 and 6 the three phases of cross, see

Fig.26. Now, that the key ideas are presented, we proceed by integrating and discussing our results.

Cross is an ab initio folding algorithms, which is guaranteed to search all 3-noncrossing, σ-canonical

structures and derives the corresponding loop-based mfe-configuration. A detailed description of

the loop-energies as well as specific implementation particulars on how to generate the skeleta-trees

of Section 5 via a certain matrix construction can be found at

www.combinatorics.cn/cbpc/cross.html

We remark that the code is improved and new features are being added, for instance, we currently

work towards deriving the partition function version of cross, the generalization for arbitrary k

and a fully parallel implementation. The design of cross is fundamentally different from that of

the pseudoknot DP-routines found in the literature. Point in case being the algorithm of [40],

as outlined in Section 1. We showed that the latter cannot create any nonplanar 3-noncrossing

structure and furthermore cannot control the maximal number of mutually crossing arcs (crossing

number). Consequently, DP-routines generate pseudoknot complexity by “just” increasing this
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...... ......

saturation optimal

I

II

III

Figure 26. An outline of cross: the generation of motifs (I), the construction of skeleta-

trees, rooted in irreducible shadows (II) and the saturation (III), during which, via DP-

routines, optimal fillings of skeleta-intervals are derived.

very crossing number. The class of nonplanar 3-noncrossing structures illustrates however, that

structural complexity is not tantamount to the crossing number.

One key difference to any other pseudoknot folding algorithm is the fact that cross has a transpar-

ent, combinatorially specified, output class. This feature exists exclusively in secondary structure

folding algorithms, where it is by construction implied. This specification is based on a novel com-

binatorial class, the k-noncrossing RNA structures and their exact and asymptotic enumeration

[24, 25, 32]. The concept of k-noncrossing RNA structures is based on the combinatorial work

of Chen et al. [6, 7]. The implications of this framework are profound: for k = 3, 4, . . . , 6 it is

possible, employing central limit theorems for k-noncrossing structures [26, 22] to derive a variety

of generic properties of sequence-structure maps into RNA pseudoknot structures, irrespective of

energy parameters [37, 21].
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Furthermore cross is capable to generate novel classes of pseudoknots. Even in its current imple-

mentation, i.e. restriced to 3-noncrossing structures it can generate any non-planar configuration.

As mentioned already, the extension of cross to a version capable of folding any k-noncrossing

structure, is work in progress. In this context, assertion (b) of Proposition 5.1 shows that novel

constructions are required for efficient folding. Cross is by design an algorithm of exponential time

complexity by virtue of its construction of its shadows and skeleta-trees. Only in its saturation

phase it employs vector versions of DP-routines. Beyond the asymptotic analysis of motifs, given

in Section 4, a detailed study of the performance of cross is work in progress. It appears however,

that the folding times of random sequences are exponentially distributed. In Fig.27 we display the

n
80 90 100 110 120 130

ln(T)

K1

0

1

2

3

4

Figure 27. Mean folding times: we display the logarithm of the folding times of 1000

random sequences as a function of the sequence length. For 3-canonical and 4-canonical

structures the linear fits are given by 0.2263n−19.796 (left) and 0.1364n−13.659 (right),

respectively.

logarithm of the mean folding time of 1000 random sequences. These data suggest exponential

times with the exponential growth rates of ≈ 1.146 and ≈ 1.254, for 3-canonical and 4-canonical

structures, respectively. In particular, a random sequence of length 100 folded via a single core,

2.2-GHz CPU exhibits a mean folding time of 279 seconds with standard deviation of 267744

seconds.
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