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ABSTRACT

Motivation:  Microarray technology for profiling gene expression
levels is a popular tool in modern biological research. Applications
range from tissue classification to the detection of metabolic net-
works, from drug discovery to time-critical personalized medicine.
Given the increase in size and complexity of the data sets produced,
their analysis is becoming problematic in terms of time/quality trade-
offs. Clustering genes with similar expression profiles is a key initial
step for subsequent manipulations and the increasing volumes of data
to be analyzed requires methods that are at the same time efficient
(completing an analysis in minutes rather than hours) and effective
(identifying significant clusters with high biological correlations).
Results: In this paper we propose K-Boost, a novel clustering
algorithm based on a combination of the Furthest-Point-First (FPF)
heuristic for solving the metric k-centers problem, a stability-based
method for determining the number of clusters (i.e. the value of k),
and a k-means-like cluster refinement. K-Boost is able to detect the
optimal number of clusters to produce. It is scalable to large data-sets
without sacrificing output quality as measured by several internal and
external criteria.

Availability: http://bioalgo.iit.cnr.it/
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1 INTRODUCTION

is obtained by a refinement of thi-1)-clustering), thus it works
without any need for an initial guess fr

For detecting the optimal number of clusters we use a stability-
based technique for cluster validation psediction strength(Tibs-
hirani et al, 2005) that guides the selection of the “best” number
of clusters in which the data-set should be partitioned. The stability
based criterion is well founded in an Information Theoretic frame-
work. Moreover, since we can interleave and make incremental the
computation of both FPF and SB, including the latter only adds a
small cost to the computation time.

In the last phase we use the centers previously computed in an ite-
rative loop that associates the other data-points to the closest center
and iteratively updates center representation of each cluster.

The FPF heuristic has been applied also in the context of micro-
array clustering for time-series by (Ernst al, 2005). However
our approach is different. We apply the FPF algorithm directly to
real-world input data. In (Ernsdt al, 2005) it is applied to a set
of artificially generated data points that are meant to uniformly
cover the parametric space of possible experimental outcomes. This
second approach suffers of scalability problems as the cardinality of
the discrete search space grows exponentially in the parameters of
the experiment.

The scalability of our algorithm can find applications in a num-
ber of different settings. One parameter is the sheer dimension of a
single data-set: the technology of Tiling Arrays is capable of pro-

Several obstacles still lie on the path to exploiting the full poten-ducing a complete profile of the transcript index of an individual

tial of microarray technologies (Trent and Bexevanis, 2002). Ongd€nome (up to 50,000 transcript sequences and 60 tissues and cell

issue is the scalability of the data processing software. In particulaf"€S can be mapped in a single chip experiment (Scleadil,
a critical initial phase is often the clustering of gene expression dat§004))- The second parameter is the trade-off between the number of

into groups with homogeneous expression profile. In this paper wéxperiments and the response time. Microarray technology, adapted
tackle this problem by proposing-Boost a clustering algorithm towards the needs of personalized medicine, might be used to screen
based on a combination of the Furthest-Point-First (FPF) heuristi@ Vastrange of different pathological conditions over large populati-
for the k-centers problem (Gonzalez, 1985), a stability-based (SBPNS: In_some applications there is the need to repeat the experiments
method for determining the optimal number of cluster@ibshi- ~ Many times and to have a prompt result. For example, data taken
rani et al, 2005), and &-meansdike refinement. The experiments &t different times from the same patient in a healthy state and in
we report here demonstrate that our algorithm is scalable to larg@ Pathological state could be clustered to highlight differences in
data-sets without sacrificing output quality. the metabolism due to the pathology, filtering out the background

The Furthest-point-first (FPF) heuristic is known to attain a resulteffects of healthy individual metabolic profilé&-Boost might be
that is within a factor two of the optimum clustering according to the USeful in this context, where the great amount of data to be managed

k-center criterion (i.e., minimizing the maximum diameter of any IS 0ne of the main bottlenecks for the existing techniques.
cluster). This theoretical guarantee, coupled with a small compu- Scalability should by no means be paid for by a decrease in output
tational complexity and with a careful implementation, makes thisduality. Ideally one would like new algorithms to be both faster and
algorithm an ideal candidate for attaining scalability. The FPF algo-nore accurate at the same time. Clustering is an inherently appro-

rithm constructs the clusters incrementally (that is, kkeustering ximate activity and the issue of validating the quality of clusterings
is an open area of research. Broadly speaking there are “internal”

quality criteria (based on an inter-point metric that is assumed to be
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significant), or “external” quality criteria based on cross-referencing In general we can split the algorithms for clustering field into

the produced clustering with a “golden standard” such as that deritwo large groups: methods that take a suggested number of clusters

ved by Gene Ontology annotations. We will use both methodologiess input and methods that are able to determine an optimal num-

to measure and compare clustering quality. ber of clusters (according to some internal criterion). Our proposal
K-Boostis in the second category thus we will compare its perfor-
mance with methods like CLICK and FPF-SB that are in the same
class. We also do comparisons with methods like k-means and SOM,
where we feed them a plausible number of clusters (as suggested by

1.1 State of the art. K-Boostor CLICK), thus giving them an advantage they do not have

The papers by Eisen et al. (Eisehal, 1998), Alon et al. (Alon  when applied in a stand-alone fashion.

et al, 1999) and Wen et al. (West al., 1988) have shown the rich According to several measures of quality both internal and exter-

potential of microarray gene expression data clustering as an explaal for a variety of data setd-Boostshows significantly better

ratory tool for finding relevant biological relationships amidst large performance than CLICK and FPF-SB. The time complexit|ef

gene expression datasets. Since the late nineties a growing bo®oost while being higher than that of FPF-SB, it is still orders of

of knowledge has been built up on several algorithmic aspects ofmagnitude faster than CLICK even on relatively small data sets.

the clustering task (see,g, general surveys in (Jiargt al.,, 2004;

Shamir and Sharan, 2002)).

Among the most popular approaches we can broadly find those

“distance based” such dsmeans (Tavazoiet al, 1999), Self

Organized Maps (SOM) (Tamayt al., 1999), Hierarchical Agglo- 2 PRELIMINARIES

merative Clustering (HAC) (Eiseet al, 1998), and several variants 1 Clustering

thereof. A second broad class of algorithms is graph-based (CLICIg' ] N

(Sharanet al, 2003), CAST (Ben-Dokt al, 1999) and CLIFF Let N = {e1,...,e.} be a set ofn vectors inR™, a partition

(Xing and Karp, 2001) all use weighted graph min cuts (with vari- ¥ = {N1,..., Ni} of N is aclustering where eachV;, for

ants among them)). Excavator (¥t al, 2002) is based instead ¢ € {1,2,...,k}, is called acluster Given a clusteringV, two

on Minimum Spanning Tree clustering. Other large families are€léments:,e; € N arematesaccording toV if they belong to the

those models-based (Ramaitial, 2002), fuzzy-logic-based (Bela- Sa@me clustelNV; C N, "non-mates” otherwise.

cel et al,, 2004), or based on principal component analysis (PCA)

(Hastieet al, 2000). 2.2 Distance function
Among the main issues related to clustering there are 1) the prose want mates to be "similar” in some measurable sense that cap-
blem of guessing the optimal number of clusters (Tibshieral,  tures their common biological behavior (co-expression). It turns out

2001; Giurcaneanet al, 2003; Tibshiraniet al, 2005) and 2) that, by duality, one can define a "distance” function among points.
cluster validation (Gibbons and Roth., 2000; Yeustgal, 2001;  Given two vectors;,e; € N (with components; ¢, s € {i, 5}
Gat-Vikset al,, 2003). In biological data analysis a further issue isto and1 < ¢ < m), we denote withi; ; their distance and we say that
provide metrics supported by ad hoc external biological knowledgehey aresimilar (respectivelygifferen) if d; ; is small (respectively,
(Huang, 2006; Hanischt al, 2002). A large and promising are of large). Our definition ofi; ; is based on th&earson Coefficient
research is that of feature selection (Dugasal, 2004; J Taylor,  P(e;, e;), given by
2006) leading to the more general concept of bi-clustering (Tanay

etal, 2006; Madeira and Oliveira, 2004). Special attention has been  P(e;, e;) = iz (Gt = i) (650 = 1y)

recently paid to particular kinds of micro-array experiments, nota- \/(Z;":l (eie — 110)%) (7%, (€40 — 115)%)
bly time-series, in which there is a natural ordering and correlation .
for the conditions tested (Ernet al,, 2005; Bar-Joseph, 2004). wherey; andy; are the means af; ande;, respectively.

At the present state of the art there is no clear overall winner in 1€ Pearson Coefficient is a very popular measure of similarity

the area of clustering algorithms for gene expression data as arf) € context of gene expression micro-array data clustering but
method has strong and weak points. However, one can safely sdy'S Ot a distance. To come up with a measure suitable for the
that the drive for higher quality results is always paid for by higher Metric space method, we first defidg; = 1 — P(ei, ¢;), with

computational costs; therefore all these methods exhibit poor scd) < 9i. < 2 (since—1 < P(e;, e;) < 1). This quantity, which

lability or need educated guesses as to the setting of some criticat " tur_n a W'de|¥ acgepted valld_dlssm_llarlty measure in gene
parameter. In our approach we show that the two goals are not ifXPression analysis, violates the triangle inequality constraint, and
contrast: scalability need not entail lower quality thus is not a metric in a strict sense. However, the square root of

In a previous paper (Geraet al, 2007) we have proposed a sca- d;,; is proportional to the Euclidean distance betwe_aergnd e
lable method for clustering gene expression data ciiR@-SBthat  (5€€ (Clarkson, 2006)), and hence can be adopted within algorithms
combines stability based computation of the optimal cluster numbefStch as FPF) designed for metric spaces. Our definitiah pfis
with the FPF heuristic for the k-center problem. Although FPF-SBpre‘:'SE‘Iy this, i.e.,
was very effective in detecting the optimal number of clusters (a dij = \/‘E
feature inherited byK-Boos) the final cluster decomposition was
not tight enough to compete with traditional methods kkmeans 2-3  Thek-center problem
and SOMK-Boostrepresents a non-trivial evolution of FPF-SB and We approach the problem of clustering microarray data as the one
attains much better performance. of finding a solution to thé&-center problem, defined as follows:
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Given a set of point$V on a metric spacé/, a distance function distance withd(p, cp), the minimum distance to centers ©f. According
d(p1,p2) > 0 satisfying the triangle inequality, and an integera to the result of this comparison, can be updated or not. Hence, if for each
k-center setis a subsét C N suchtha{C| = k. The k-center pro-  p the valued(p, cp) is stored, then each iteration can be execute@ (n)
blem is to find ak-center set that minimizes the maximum distanceSPace and a-center set can be computed@t{(kn) distance computations.

of each pointp € N to its nearest center id',i.e., minimizes the T%aftuallx_tgo:%uyst; C'”Etezg\? assocj'\";‘ted tOhS“‘H:r”ter:ds_ﬁt']:f
quantitymax, ¢ y minoco d(p., c). is simply partitioned intdk subsetsVy, . .., N, each corresponding to a

center inC'y, and such that
The problem is known to be NP-hard. The optimum value is

approximable within a factor 2 by FPF (Gonzalez, 1985), but not N; ={p € Nlcp = ¢;} 1)
within a factor 2¢, for anye > 0, unlessP = NP (Feder and
Greene, 1988). In other words, the clusteN; is composed of all points for which;

is the closest center, for eagh= 1,..., k. Here we use the FPF algo-

. . rithm with the technique improvement described in (Tibshigral., 2005).
the number of gene probes in the dataset antb the number of Taking advantage of the triangle inequality, the modified algorithm avoids

C‘?”d't'ons teSt_Ed on eac_h probe, the metric spdds R™ with the_ considering points that cannot change their closest center. To this aim, at

distance function;,; defined above. Once the centers are definedgach iteration we maintain, for each centey € C;, the setN; of points

the natural induced cluster decomposition is obtained by associatingy which ¢; is the closest center, defined as in (1), foe 1,.. . ,i (i.e., we

each point to its closest center. build the clusters associated to intermediate solutions). We store the points
in N; in order of decreasing distance from. When we scan the set of
points to find the closest center, we follow the order given by ihes:

3 K-BOOST ALGORITHM givenp € Nj, with 1 < j < 4, if d(p,c;) < 1d(cj, c;) then we stop
scanningl;, as there cannot be any other point closes;tthan toc;. The

In this section, we present tfé-boost algorithm which is essentially struc- distances between centers must be stored, requiring addi@al) space.

tured in two main steps. In the first phase it attempts to guess the hiddeAs a consequence, storage consumption is linear anly provided that

number of classes in which elements are divided in. After which, for eacht < \/n.

class, k-boost initializes a cluster containing its most representative ele-

ment. In the second phagé-boost incrementally updates clusters by adding 3.2 Stability-based technique

each of the remaining elements to the closest cluster, each time updating i'Fhe FPF algorithm must be fed with the numienf clusters into which\V
centroid acct_)rdmgly. has to be partitioned. To appropriately estimate this number, here we use an
To determine the numbérof clusters-boost extracts a S"_]a” TePresen- efficient variant of the prediction strength method developed by Tibshirani et
tative sample from the input set and obtains two partitions: the sample e}y (Tipghiraniet al, 2005). Here we briefly describe the original prediction
and the target set. After that, both sets are clustered with an enhanced V&fength method, and in next section we give details of how we embed it in
sion of thefurthest-point-firs(FPF) algorithm (Gera@t al, 2006). Ateach . 66t To obtain the estimate, the method proceeds as follows. Given the
iteration FPF generates a new cluster for the sample and a new one for tl%%tN of n elements, randomly choose a sample of cardinalityr. Then
target, and a stgpility-based technique ((_Tibshietm'tI:, 2005)) is used to . forincreasing values df(t = 1, 2, .. .) repeat the following steps: (i) using
comp_ut_e the ability of t_he sample clt_Jsterlng to predlgt the target clusterlnqhe clustering algorithm, cluster boffiys = N\N, andN, into t clusters,
(pregimuon strengyh K is the dlmeq5|pn of the clustering correspondent to obtaining the partitions; (ds) andCy (r), respectively; (i) measure how
the first local maximum of the prediction strength values. well the t-clustering of N, predicts co-memberships of matesiy; (i.e.,
Before to enter in the details ok-boost we describe the enhanced ., how many pairs of elements that are mateSiifs) are also mates
FPF algorithm and our implementation of the stability-based method foraccording to the centers 6f, (1)).
determiningk. Formally, the measure computed in step (i) is obtained as follows. Given
3.1 Furthest-Point-First clustering algorithm t, cIustermgsC?(ds) andCt(r), and elementgi ande; belonging toNg;,
let D[i, j] = 1if e; ande; are mates according to bott (ds) andC'(r),
FPF is based on a greedy approach: it increasingly computes the set of CeBtherwiseD[i, j] = 0. Let Cy(ds) = Cy.1(ds), ..., Cy.¢(ds), then the
tersCy C C2 C ... C Gy, whereCy, is the solution to the problem. The  prediction strengthPS(t) of Cy (ds) is defined as:
first setC contains only one randomly chosen painte N. Each iteration
3, with 1 < ¢ < k — 1, has the set of centefs; at its disposal and works as

1
follows: PS(t)= min —— = Dli,j 2
® 1?2% #pairs in Cy ¢(ds) Z i @

In our problem,N is represented asrax m matrix, wheren is

i,jeCtv{{(ds)
1. for each poinp € N\C; compute its closest centey, i.e., the point i<J
cp satisfying: ' where the number of pairs @@, ¢ (ds) is given by its binomial coefficient
d(p, cp) = 2a d(p; ¢); over 2. In other wordsPS(t) is the minimum fraction of pairs, among

) ) ] ] all clusters inCy(ds), that are mates according to both clusterings, hence
2. determine the poinp € N\C; that is farthest form its closest center  pg(¢) is a worst case measure. The procedure outlined above terminates at
cp and letitbec;y; clearly,c; ., satisfies: the largest value of such thatPS(t) is above a given threshold, settikg
d(cit1, Cc'i+1) _ pnéac)i d(p, cp); equal to sucts.
3. Cio1 = Ci UGz, 3.3 k-boost clustering algorithm

In our implementation, we extract frolv a random sampléV, by fixing
At each iteration a new center is added to the set of centers that is beinie parameten to v/n. Then we run the FPF algorithm a¥, until & = 7.
computed. The algorithm stops affer- 1 iterations giving as result the set  This makes each obtained cluster contains just the center of the cluster. Note
C. Observe that, at step+ 1, there is no need to recalculate the distance that, if one consider the order in which centers are extracted by FPF, this clu-
of p to all centers, but just the distandép, c;), the distance to the uni-  stering operation is equivalent to rank poifs = {N,.1,..., Ny ,} such
que centek; added during the previous iteration. Then, just compare thisthat IV,. ; is the center made at theth iteration of FPF. The computational
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cost of this procedure ©(n?). For convenience from here we denote\gs  value ofk, we run experiments in tables 3 and 4 with both values of
the set of the first elements in the ranked,.. k.

We then run FPF heuristic with input s&t;; = N\N,. Suppose at step In order to assess the validity of our method with an external
¢ we have computed the clustef$, 1 (ds), . .., Ct,¢(ds), and suppose, for  measure we evaluate the clusterings by means ofthe. compu-
eache € Ny,, we keep the indek= i(c, ) of its closest pointinV;.. Such o 1 ClusterJudge tool (Gibbons and Roth., 2000), also available
index can b_e updategl In constant time b{ Compafjm N”(e*i_—l?) VX'}T on lin€’. This tool scores yeast (Saccharomyces cerevisiae) genes
d(e, Nr,t), i.€., the distance af from the “current” closest point itV clusterings by evaluating the mutual information between a gene’s
and that to the poindV,. ;. L . .

Now, for eachCy 4(ds), £ = 1,...,t, we can easily count in time membership in a cluster, and the attributes it possesses, as annota-
O(|Cy.¢(ds)|) the number of elements that are closest to the same poinfed Py the Saccharomyces Genome Database @m the Gene
Nyj,j = 1,...,t, and finally compute the summations in formula (2) in Ontology Consortl_uﬁ_ﬁ In particular, CIusterJ_udge first determines
time O(| Ny,|). a set of gene attributes among those provided by Gene Ontology,

Differently from the original stability-based technique, we stop this pro- that are independent and significant; then it computes the mutual
cedure at the first value ofsuch thatPS(¢t) < PS(t—1) orwhent = \/n information of the proposed clustering and that of a reference

and setc = ¢ — 1. random clustering. Finally it returns the.ore:
After the last iteration, the simplest solution to obtain the clusteriny of

could be associate the pointsW. to their closest centers iy (ds). This MIeas — M Liandom

is what we did in (Geracét al, 2007). Despite”y, (ds) give a good predic- Zscore = )

Orandom

tion of the value of, the main disadvantage of this approach is that both the
centers ofV4, and NV, give rise to a still not enough good clustering. This is where M I,..40m iS the mean of the mutual information score for
due to the fact the use of centers for microarray data is not the best possib{ﬁe random clustering used, afghmdom is the standard deviation.
choice. We experimentally observed tlcantroidscan be more representa- The higher the: the better the clustering. Given the randomized
tive than centers in this data domain. The concept of centroid is well known seore .' . :
in the information retrieval community. In this content a centroid is a vectorrlature of the test, dlfferen_t runs produce S“gh_tly different numer_lcal
with as many components as the number of probes that genes have in tIY@IueS' h_owever the .ranklng of the method§ is stable and_cons'Stent
microarray. Thei-th component of the centroid of clustey is the average =~ @CroSS different applications of the evaluation tool. For this reason,
of the values of the-th probe of the genes in;. Thus we modified the for each data set used we repeated three times the evaluation of the
approach of (Geracét al, 2007) to take advantage from this observation. output of all the different algorithms, here reporting the average
We create &-clustering by initializing a new cluster with an element of z..... Even if the ClusterJudge methodology is available only for
NE. Each element iflV\ N is assigned to the cluster with closest centroid yeast genes, it is independent of both the algorithm and the metric
one at time, then centroid is updated accordingly. Note that the update of thgsed to produce the clustering, and thus is in effect validating both
centroid can be made in constant time without recompute the mean over all,qiceg.
the elements of the cluster, since, given alBet {p1,...,pn} of n probes As an internal measure of quality we Usemogeneitandsepa-
we have: . . . . .

ration as defined in (Sharaet al, 2003). More precisely, calling

n ne M the set of indices of points forming unordered mate pairs, the
P Xigpin—1  pa P 9 P

= + 2= (3) average homogeneity
n n—1 n n
Thus this last clustering operation can be_done in time- /n)k = Hove = 1 Z P(ei,ej).
O(nk). The overall cost ok-boost procedure i©(n + 2k(n — \/n)) = | M| i
O(nk). '
Theaverage separatiors:

3.4 Experiments s 1

. . . = P(ei, e;).
3.4.1 Evaluation We performed experiments on data sets derived () - 1M (‘%]\[ (esse5)

1,7 VI

from yeast and other species. We compé&tBoost(and also FPF-
SB or FPF when appropriate) with some of the most used and robugoth homogeneity and separation have values in the range [-1,1].
clustering algorithms for microarray gene expression data, namelgigher value of homogeneity indicate higher quality. Lower values
CLICK, k-means, and SOM. The CLICK-means and SOM algo- of separation indicate higher quality. Note that singletons do not
rithms have been run under EXPANDERE Xpression Analyzer  contribute to the average homogeneity, but do contribute to the sepa-
and DisplayER) (Sharaet al., 2003), a java-based tool for analysis ration. Since both measures are greatly influenced by the number of
of gene expression data, that is capable of clustering and visualizingusters, they are most significant in comparing solutions having the
the correspondent results. Among the clustering algorithms used f@ame value of.

comparison, CLICK is the only one that does not need to know the We tested our algorithm on some of the most used yeast datasets
number of clusters in advance, while bdthmeans and the basic in literature (Choet al, 1998; Eiseret al, 1998; Spellmaret al,,

FPF need the value df as input. The SOM method requires the 1998) and our results show that, on the average, we achieve a better
grid dimension (not always corresponding to the required numbescore than that obtained by the other clustering algorithms, while
of cluster§). SinceK-Boostand CLICK usually suggest a different using far fewer resources, especially time.

L http://www.cs.tau.ac.ill rshamir/expander. 3 http://llama.med.harvard.edu/cgi/ClusterJudge/clusigge.pl.
2 Note, for example, that in Table 3 the grid for Spellman et al. dataset wad http://www.yeastgenome.org.
set to9 x 3 but the execution returned only 18 clusters instead of 27. 5 http://www.geneontology.org.
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3.4.2 Datasets for yeastThe algorithms were tested on three the bulk of the cost is paid for in the set up and the initial iterati-
well studied yeast datasets. The first is the yeast cell cycle datans. In contrasK-Boost(and FPF-SB) has a lower asymptotic cost
set described by Cho et al. in (Clet al, 1998). In their work  O(nmk).
the authors monitored the expression levels of 6218 Saccharomycesin two out of three cases CLICK atdBoostmake different choi-
cerevisiae putative gene transcripts (ORFs). Probes were collectents as to the optimal value fér A hint to the fact that our choice
at 17 time points taken at 10 min intervals (160 minutes), coveringdf k might be closer to the natural value for the data sets considered
nearly two full cell cycle§. The second dataset, described by Spell-can be drawn comparing the.o.. of k-means and SOM in Tables 3
man et al. in (Spellmaet al, 1998), is a comprehensive catalog and 4: when fed witlK-Boosts estimate they attain equal or higher
of 6178 yeast genes whose transcript levels vary periodically withirescore Value. Note that internal measures are not suitable for such a
the cell cycle (for a total of 82 conditiorfs)The third dataset, des- comparison since both homogeneity and separation have drift due
cribed by Eisen et al. (Eiseet al., 1998), contains 2467 probes to the number of clusters.
under 79 conditions, and consists of an aggregation of data from In Table 3 we use for all five methods the value foestimated
experiments on the budding yeast Saccharomyces cerevisiae (inclby CLICK. For the data set of Cho et KlBoostscores better than
ding time courses of the mitotic cell division cycle, sporulation, andall the other methods. For the data set of Eisen eKéBoostand
the diauxic shiftj. Table 1 summarizes the properties (number of SOM tie in terms ofzcore, While K-Boostexhibit slightly better
probes and number of conditions) of the three datasets. homogeneity. For the data set of Spellman eKaBoostand CLICK
tie in terms ofzscore and homogeneity.

In Table 4 (and Table 3 for the data set Eisen et al.) we can com-

Dataset Choetal. | Eisenetal.| Spellman etal. pare four algorithmsK-Boost FPF-SB, k-means and SOM) when
Probe_; 6601 2467 6178 fed with the same estimate fér(computed byK-Boos). K-Boost
Conditions 17 £ 82 attains better results in terms af.... and homogeneity on all data

sets (except for thes.or. ON Eisen et al. where SOM arktBoost
tie). On the the datas et of Cho et al. k-means come very close to
K-Boostin terms ofzs.ore but is far below in terms of homogeneity.

In terms of separation in tables 3 an&4Boostexhibit often the
best or second best (lower) value among the algorithms tested (with
3.4.3 Experimental resultsThe results reported here have been the exception of the data set Cho et al. in table 3 where CLICK and
obtained on an 1.4 GHz AMD ATHLON XP workstation with 1.5 k-means and SOM are slightly better th&Boos).

GB RAM running Linux kernel 2.6.11.4. Overall, on the tree yeast data sets, whéato be determine#{-
Experimental results are reported in Tables 2, 3 and 4. For eacBoostis superior in terms of time and quality. In the case when the
experiment we report (all or some of) the following parameters: theadvantage of an educated guess is allowed (either using one from

number of clusterk (either computed or fed as input), the num- CLICK or one fromK-Boos) K-Boostis always superior or ties
ber of singletons left out from the clusters, the computation timewith one of the competitors in one or two of the quality measures.
in seconds, thexcore (EXternal measure), the homogeneity and Almost alwaysK-Boostis significantly faster even for the relatively
separation (internal measures). small data sets employed.

Note that CLICK is the only algorithm, among those that we have
tested, that sometimes produces singletons in its clustering (136 in
Cho et al. dataset, 17 in Spellman et al. dataset and none in Eisen et
al. dataset) and put them into a single cluster labelled cluster zero.

Hence, to correctly evaluate CLICK results we created a new cluster
for each of these singletons..

In Table 2 we observe thak-Boostachieves a significantly bet-
ter zscore ON all three yeast datasets using far less computation timé CONCLUSIONS
(by a factor from 5 to 10) than CLICK. FPF-SB is still faster but
it attains lowerzscore than K-Boost though sometimes it beats  Efficient and effective analysis of large datasets from microarray
CLICK. On larger data sets the time-gap is due to increase sincgene expression data is one of the keys to time-critical personalized
CLICK asymptotically runs irO(n*m +n?). The actual number of medicine. The issue we address here is the scalability and quality
clusters computed by CLICK has little influence on its speed sinceof the data processing software for clustering gene expression data

into groups with homogeneous expression profile. In this paper we
6 The complete dataset, now containing 6601 SaccharomyProposeK-Boosta new clustering algorithm that efficiently applies
ces cerevisiae putative gene transcripts (ORFs), is available af0 Microarray data analysis, being scalable to large datasets without

Table 1. Summary of dataset properties.

http://genomics.stanford.edu/yeastl_cycle/cellcycle.html. sacrificing output quality.

7 The complete dataset and description are available at http://cellcycle- In order to validate both the choice of the algorithm and the metric
www.stanford.edu. used to produce the clusterings we used ClusterJudge, an indepen-
8 The data is fuly downloadable from http://genome- dent tool that only scores yeast (Saccharomyces cerevisiae) genes
www.stanford.edu/clustering. clusterings. Therefore, one of our future tasks will be to find metho-

9 \We report the number of singletons generated by each clustering algorithrq()k)@_lies for the evaluation of clusterings of gene datasets from other
only in this table. This is because CLICK, in these sets of experiments, is thépecies (human, mouse, rat, etc.).
only algorithm tested generating singletons.
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Dataset Cho et al. Eisen et al. Spellman et al.
Method || £ | Sg | Time | z-score Time | z-score|| k | Sg| Time | z-score
K-boost|| 8 | 0 68 | 85.77 63 | 58.70 || 16| O | 421 | 84.57
Click 30| 136| 660 | 62.77 240 | 41.40 || 27| 17 | 4200 | 65.17
FPF-SB|| 8 | O 12 | 7053 || 8 15 | 5393 || 16| 0 | 94 | 5453

oo| oo 7
wn
o|o|o|&

Table 2. Experimental results comparing algorithms that compute the optim@he results shown are the average of three independent runs. For each
algorithm and data set we report the numbaef clusters, the numbe$ g of singleton data points, the running time in seconds, anddhg. computed by
ClusterJudge.

Dataset Cho et al. Eisen et al. Spellman et al.

Method k | Time | z-score| Hom | Sep Time | z-score| Hom | Sep k | Time | z-score| Hom | Sep
Kboost || 30 | 41 72.63 | 0.696| 0.000 63 60.97 | 0.547| -0.019|| 27 | 224 | 69.13 | 0.539| 0.045
Click 30 | 660 | 59.70 | 0.681| -0.035 240 | 42.07 | 0.505| -0.174|| 27 | 4200| 71.17 | 0.545| 0.027
Kmeans|| 30 | 720 | 68.17 | 0.331| -0.019 120 | 27.63 | 0.390| 0.121 || 27 | 1140| 54.0 | 0.436| 0.084
SOM 29* | 300 | 64.40 | 0.329]| -0.050 60 61.93 | 0.513| 0.030 || 18* | 240 | 49.73 | 0.477| 0.077
FPF 30 | 22 50.13 | 0.638| 0.005 15 55.57 | 0.514| -0.018|| 27 | 80 52.27 | 0.487| 0.065

00| 00| 00| 00| COf =

Table 3. Experimental results comparing algorithms that takas input with the value computed by CLICK. The results shown are the average of three
independent runs. For each algorithm and data set we report the nkmobelusters, the numbe§g of singleton data points, the running time in seconds, the
z-score computed by ClusterJudge, Homogeneity and Separation. * denotes the number of clusters generated by SOM.
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K-Boost

Dataset Cho et al. Spellman et al.

Method || k£ | Time | z-score| Hom | Sep k | Time | z-score| Hom | Sep
K-boost || 8| 68 | 109.00| 0.601| -0.085|| 16 | 421 | 83.17 | 0.519| 0.031
FPF-SB || 8 | 12 71.50 | 0.546| -0.075|| 16 | 94 | 49.83 | 0.463| 0.049
K-means|| 8 | 420 | 104.17 | 0.264| -0.274|| 16 | 900 | 51.23 | 0.406| 0.069
SOM 8| 180 | 90.4 | 0.272|-0.079|| 16| 420 | 54.37 | 0.467| 0.091

Table 4. Experimental results comparing algorithms that tales input with the value computed by K-boost. Click is not listed since we cannot force a given

value ofk. The experiments for the Eisen et al. data set coincide with those in Table 3. The results shown are the average of three independent runs. For eact
algorithm and data set we report the numbesf clusters, the numbe$g of singleton data points, the running time in seconds, the z-score computed by
ClusterJudge, Homogeneity and Separation.
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