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Abstract

Various molecular interaction networks have been claimed to follow power-law decay for
their global connectivity distribution. It has been proposed that there may be underlying
generative models that explain this heavy-tailed behavior by self-reinforcement processes
such as classical or hierarchical scale-free network models. Here we analyze a comprehensive
data set of protein-protein and transcriptional regulatory interaction networks in yeast, an
E. coli metabolic network, and gene activity profiles for different metabolic states in both
organisms. We show that in all cases the networks have a heavy-tailed distribution, but
most of them present significant differences from a power-law model according to a stringent
statistical test. Those few data sets that have a statistically significant fit with a power-law
model follow other distributions equally well. Thus, while our analysis supports that both
global connectivity interaction networks and activity distributions are heavy-tailed, they are
not generally described by any specific distribution model, leaving space for further inferences
on generative models.

Key words: cellular networks, fat-tailed distributions, maximum likelihood estimation,
hypothesis test.
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1 Introduction

Over the last few years it has been extensively argued that the connectivity distributions of
various molecular interaction networks follow power-law distributions that are best approxi-
mated by classical (Barabási and Albert, 1999) or hierarchical (Ravasz et al., 2002) scale-free
network models (reviewed in Refs. (Albert, 2005; Barabási, 2004)). Although this does not
imply that power-law distributions do in fact describe the observed degree distributions, it
has been used as motivation for developing generative models that yield power laws. More-
over, power-law models also appear to characterize the distribution of activity levels. For
example, both calculated metabolic flux values (Almaas et al., 2004), and measured gene ex-
pression values (Ueda et al., 2004) seem to follow such a distribution, which is in agreement
with theoretical predictions for load distribution on scale-free networks (Almaas et al., 2004;
Goh et al., 2001).

Using a statistical framework similar to the one employed in this paper, a recent work
(Edwards et al., 2007) revisited several enhanced datasets of foraging patterns in wild an-
imals and concluded that the distributions previously classified as power-law were better
described by a Gamma distribution. The previous spurious results were attributed in part
to the limited magnitude of the dataset (also typical of biological datasets) and to the
graphical method used to assess the character of the distributions. It has been suggested
(Khanin and Wit, 2006; Stumpf et al., 2007; Tanaka et al., 2005) that the charactheristic
observation that biological networks follow a power-law distribution may have been reached
due to the same methodological shortcomings. Specifically, it has been argued that analysing
relatively small cellular networks, having only a few hundred to a few thousands data el-
ements using the commonly employed frequency-degree or intensity plots, does not have
sufficient power to differentiate among various network models having heavy-tailed distri-
butions, and that the use of rank-degree (intensity) plots proves superior for this purpose
(Khanin and Wit, 2006; Stumpf et al., 2007; Tanaka et al., 2005). Furthermore, a rigorous
quantification of goodness-of-fit is also required to establish relatedness to various network
models, and the quality of the underlying data set (i.e., the quality of network reconstruction)
is critical for proper analysis.

1.1 The Models and the MLE Analytical Framework

Assessment of the best model explaining a given data distribution has typically been done
using simple linear regression methods. These methods are suitable for normal distribution
functions, but not for highly skewed distribution functions. Essentially, the problem arises
from the fact that skewed distributions are characterized by the scale of the tail, which forms
most of the support for the distribution but that is barely populated (i.e. contains less than
10% of the data points). Because of this, simple least square fits of the probability density
distribution computed via histogram methods are very poor estimators of the distribution
parameters (see (Tanaka et al., 2005) for a review of possible problems) due to the noisy
poor sampling of the tails.

2



Therefore, it has been argued that density plots should not be used as a base for the fitting
of these types of data, as several more reliable methods are available. A simple and better
strategy is to use rank-plots as commonly used in engineering and economics (Tanaka et al.,
2005). Logarithmic binning (Albert et al., 1999) has also been used as a more robust alter-
native, but it has been reported that this procedure fails to retrieve the value of the exponent
as the slope of the graph for power-law distributions (Tanaka et al., 2005; Goldstein et al.,
2004; Clauset et al., 2009). Finally, one could apply a logarithmic transformation to the
data and fit the corresponding distribution function (De Fabritiis et al., 2003) thus avoiding
the problem of skewed data from the outset. In this case the appropriate transformation
of the probability distribution has to be performed (for instance a normal distribution for
log-transformed, log-normally distributed data), a procedure which could be cumbersome
for some distribution functions.

Below we focus on the discrimination of different models (see Section 2.2) for several types
of molecular interaction and expression data sets by using probability-based techniques to
perform comparative analyses. In order to have a good mathematical representation of
the probability distribution we use cumulative distribution functions (cdf) that are directly
related to rank-plots (Tanaka et al., 2005). In addition, instead of graphical-based estimation
methods we utilize maximum likelihood estimation (MLE) (see Section 2), which is not
dependent on the graphical representation and allows us to perform a statistical test of
the proposed models (Goldstein et al., 2004; Stumpf and Ingram, 2005; Hoogenboom et al.,
2006; Clauset et al., 2009).

Based on these considerations, here we reexamine both the global topological connec-
tivity distributions and absolute gene and protein expression value distributions in cellular
networks, with a focus on the most completely reconstructed, highest quality data sets. We
have tested the empirical distributions against several plausible models with heavy-tailed dis-
tribution. Note also that generative models in the context of biological networks have been
proposed for power-law (Barabási and Albert, 1999; Qian et al., 2001; Rzhetsky and Gomez,
2001; Bhan et al., 2002; Pastor-Satorras et al., 2003) and broad-scale (Amaral et al., 2000)
distributions but not for the rest of the tested distributions. We examine the extent to
which several types of distributions, some with plausible underlying generative models, can
provide a similar probabilistic framework for the experimental data being analyzed. We
show that for the analyzed molecular interaction distributions, only the high-throughput
protein-protein interaction data set and the out-degree distribution of the transcriptional
regulatory network significantly fitted the power-law model. In the case of the distributions
of global gene and protein expression values, only two mid-log cultures of E. coli showed
a statistically significant fit. At any rate, all experimental data sets having significant fits
for the power-law distribution, showed equally good fits for other distributions which leads
to inconclusive results for the support of a single specific distribution. We discuss the im-
plications of this finding for the uniqueness of generative models solely from topology and
activity data distributions.
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2 Materials and Methods

For model classification, we have basically used the methods developed and implemented in
(Clauset et al., 2009). However, we provide here sufficient details about the mathematical
foundations to make the analytical procedure clear.

2.1 Probability Based Estimation Method

The likelihood of a given probability distribution p
v
(xi) depending on parameters v and

describing a given dataset of independent data (x1, ..., xN), is defined as l(v|x1, ..., xN ) =
N
∏

i

p
v
(xi). Our datasets are built of the (discrete) number of edges in interaction networks

or the (continuous) amount of expression of the nodes in activity networks. Therefore, from
a group of edges or nodes (x1, ..., xN ), we obtain the probability associated with each value
(p

v
(x1), ..., pv(xN)).
Here we use different model distributions with their corresponding set of parameters v.

In each case a maximum likelihood estimation (MLE) based on the log-likelihood function,
L(v|x) = log l(v|x), is used to compute the set of parameters vopt which maximizes L.
A special case represents the parameter xmin which is the lower bound of the power-law
distribution (see Section SI 2). For its calculation we followed the alternative procedures
developed and implemented at (Clauset et al., 2009). Once the vector vopt has been obtained,
we move on to find if there are differences between the empirical data and the model. An
intuitive approach would be to perform a Kolmogorov-Smirnov (KS) test using the empirical
distribution set and the estimated model distribution (Goldstein et al., 2004). However the
two distributions are not independent, which is one of the required premises of the KS test,
because the model was estimated from the same data with which we want to perform the test.
Instead, a Monte Carlo protocol can be used to avoid such direct comparison. As described
in (Clauset et al., 2009), the KS statistic D is calculated for many Monte Carlo generated
data sets from the estimated distribution. Our p-value will be simply the fraction of times
that D for the empirical data is larger than D for the generated data sets (Clauset et al.,
2009). We define the null hypothesis H0 as, no statistical difference between the data and
the model. In our case, the confidence value of p = 0.1 will in fact be more appropriate than
p = 0.05 for the statistical test, following (Clauset et al., 2009; Mayo and Cox, 2006). The
rationale is that we are looking for differences in only one tail of the distribution, we look
for p-values that are larger than that associated with the experimental fit.

2.2 Distribution Functions Estimation

Both continuous and discrete model distributions are used depending on the nature of the
data analyzed in each case. As described in Section 2.2.1, we have tested seven models
of probability distribution against the studied data. In turn, five model distributions were
tested against the continuous data sets: power-law, log-normal, exponential, Weibull and
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broad-scale. It is worth noting that only some of the distributions tested (e.g., power-law and
broad-scale) have been put forward as distributions agreeing with plausible generative models
in the biological context (Barabási and Albert, 1999; Amaral et al., 2000). The intention of
this work is to expand the application of the methods to other a priori suitable distributions
to give a more general scope to the study.

2.2.1 Distribution Functions

Power-law model: A random variable X is said to follow a power-law distribution with
index α when the scaling law of P [X > x] is power-law, such as P [X > x] = 1 − P [X ≤
x] ≈ cx−α for x→ ∞. We used the Pareto distribution for the continuous data: probability

density function (pdf): p(x) = α−1
xmin

(

x
xmin

)−α
, cumulative distribution function (cdf): P [X ≤

x] =
(

x
xmin

)−α+1
and for the discrete case we used Zipf’s law with the following terms,

pdf: p(k) = k−α

ζ (α,kmin)
, cdf: P [K ≤ k] = ζ (α,k)

ζ (α,kmin)
. The Hurwitz zeta function is defined as

ζ (α, k) =
∞
∑

n=0

(n+k)−α. The reader is referred to (Goldstein et al., 2004) and (Clauset et al.,

2009) for further explanations. Specifically, for the determination of xmin (or kmin), we have
used the methods described in (Clauset et al., 2009).

Log-normal model: A random variableX is log-normally distributed if Y = log(X) follows
a normal distribution. We have used the following distributions for the continuous case: pdf:

p(x) = 1
xσ

√
2π
e−

(ln(x)−µ)2

2σ2 , cdf: P [X ≤ x] = 1
2
+ 1

2
erf( ln(x)−µ

σ
√
2

). Numerical approximations of

(Clauset et al., 2009) have been used for the discrete models.
Poisson model: We have used the discrete Poisson distribution to model the discrete data

sets using the following probability mass function (pmf): f(k, λ) = λke−λ

k!
.

Yule model: Again this is a discrete distribution that we have only used for discrete
data sets. We used the following forms, pdf: p(k) = ρB(k, ρ + 1) and cdf: P [K ≤ k] =
1− kB(k, ρ+ 1), where ρ > 0 and B is the Beta function.

Exponential model: Exponential models have no biological relevance in the framework of
our study. However, we have included it in some cases for methodological comparison as a
representative model of a non fat-tailed distribution. For a random variable X distributed
exponentially we have used the following forms: pdf: p(x) = λe−λx, cdf: P [X ≤ x] = 1−e−λx

for the continuous data sets; we have taken the pmf: f(k, λ) = (1 − e−λ)eλkmin eλk as the
discrete model.

Weibull model: Also referred to as stretched exponential, we have used pdf: p(x) =
(k/λ)(x/λ)k−1e−(x/λ)k and cdf: P [X ≤ x] = 1 − e−(x/λ)k for the continuous data sets. For
the discrete data we have used the code available from (Clauset et al., 2009) that uses the
Nakagawa-Osaki (Nakagawa and Osaki, 1975) method for the discretization of the Weibull
distribution. pmf: f(k; q, β) = qk

β

.
Broad-scale model: Broad-scale distribution functions, also referred to here as power-

law with cut-off or power-law plus exponential, identify a class of distributions that are
characterized by a scaling law p(x) ≈ ce−λxx−α for x → ∞. Note that the broad-scale
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is very similar to the Gamma distribution. Both contain a shape and a scale parameter.
The Gamma distribution in addition contains a normalizing constant. For the Gamma
distribution, the pdf would be p(x) = βα

Γ(x)
e−βxxα−1, being Γ(x) = (α − 1)! for α > 0.

The broad-scale distribution is a type of nested function, which implies a specific statistical
treatment in Section 2.3. In the current case the broad-scale consists of a power-law behavior
and after a given threshold it has an exponential decay. Numerical routines available from
(Clauset et al., 2009) have been used to calculate the corresponding pdf and cdf.

2.3 Distribution Comparison

To compare the feasibility of the different models with respect to the power-law distribution,
we applied a likelihood ratio test, which compares the fits of two given competing distri-
butions. Note that we are not comparing a model against the empirical distribution but
two different distributions with each other. Strictly speaking in this case we compare differ-
ent models with each other to indirectly assess how well the distributions explain the data.
We have again applied the methods developed in (Clauset et al., 2009) and (Vuong, 1989)
to evaluate the normalized log-likelihood ratio (NLLR). If the NLLR has a positive value
the power-law model is supported, whereas the alternative distribution offers a better fit if
NLLR has a negative value. In order to determine significant positive or negative values, we
calculated the associated p-value. Given the different experimental design with respect to
the one described in Section 2.1, we take here as confidence value the most commonly used
p = 0.05 (Mayo and Cox, 2006). We search for differences on both sides of the distribution
and therefore we use p = 0.05 as level of significance.

The broad-scale distribution requires a special comment, as it is a nested function contain-
ing both power-law and exponential terms. In fact, if we compare the power-law distribution
fit with the broad-scale distribution fit, the NLLR test will always be zero or negative, fa-
voring the broad-scale, as it reproduces the power-law behavior plus an additional term. To
solve this problem, we used a correction of the p-value calculated for the log-likelihood ratio
(LLR) as described in (Vuong, 1989) and (Clauset et al., 2009).

2.4 Data Sets Used

Molecular interaction maps were obtained from different sources: S. cerevisiae protein-
protein interaction networks (Reguly et al., 2006), S. cerevisiae transcriptional regulatory
network (MacIsaac et al., 2006), E. coli metabolic networks (Feist et al., 2007). Yeast ex-
pression values were taken from (Ghaemmaghami et al., 2003). Global mRNA expression
data for E. coli cells and protein expression data for S. cerevisiae cells were obtained from
(Beg et al., 2007).
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3 Results

3.1 Global Topological Organization of Molecular Interaction Net-

works

The aim of this paper is to test by means of a probabilistic approach the ability of heavy-tailed
distribution functions to explain the experimental data distributions for given datasets. Due
to the nature of the experimental data being considered here, we have differentiated between
global interaction networks and global activity networks. Global interaction measurements
refer to the number of interactions of a given molecule. Thus, measurements are counted as
natural numbers and the studied models will be discrete. On the other hand, global activity
interactions are defined in terms of cellular expression, measurements are expressed using
positive real numbers and the applied models will be continuous.

3.1.1 Global Interaction Networks

To assess the degree distribution of an undirected homotypic molecular interaction network
we used data obtained from baker’s yeast, S. cerevisiae, in (Reguly et al., 2006) that, to
date, is the most comprehensive information for a species-specific protein-protein interaction
(PPI) network. We analyzed two data sets built using two different methodologies. The first
data set was created from the combination of five different studies based on experimental
high-throughput techniques, which we refer to as HTP data (Reguly et al., 2006). The
second data set was curated manually from the literature (LC data set), and is assumed to
be more accurate than the former (Reguly et al., 2006). After the removal of redundant and
self-interactions (Reguly et al., 2006), we obtained a data set of 11,571 interactions between
4,474 proteins for the HTP data and 8,165 interactions between 2,689 proteins for the LC
data. Table 1 shows that after fitting the parameters using an MLE, only the HTP data
set provides a statistically sufficient goodness-of-fit, based on the KS test (see Materials and

Methods). Whether or not the high rate of false-discovery interactions from yeast-two hybrid
experiments in the HTP data set leads to the acceptance of the null hypothesis for the power-
law model is an open issue for discussion (Huang et al., 2007). In fact, for the same network,
if the data is retrieved manually from the literature (LC data set), the power-law model
is rejected. Furthermore, for the case of HTP data, exponential and Poisson distributions
behave significantly worse than the power-law model while for the LC data set, log-normal,
Yule, Weibull and broad-scale are better models than the power-law. Fig. 1a shows the
degree distribution of the LC network with its corresponding best fitted power-law model.
An equivalent plot for the HTP data set is shown in Fig. SI 1a.

We also analyzed the degree distribution of a directed heterotypic molecular interac-
tion network, the transcriptional regulatory (TR) network of S. cerevisiae (MacIsaac et al.,
2006), the edges of which represent interactions between transcription factors (TF) and
gene regulatory regions, distinguishing out-degree from in-degree interactions. In total the
data includes 99 TFs and 1,851 TF-regulated genes connected through 3,394 links. Table 1
clearly indicates that the degree distribution of out-degree interactions (TF→gene) provide
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a statistically significant fit for the power-law model. However, all other tested distributions
except the Poisson fit the empirical data equally well which prevents us from establishing
unequivocally the power-law distribution as the statistical model to describe the data. This
result should be taken with caution as the sample size (N = 99) is really on the limit to be
considered too small (Hart and Clark, 1999). For the case of in-degree interactions (number
of TF affecting a given gene) the range of connectivities is too small to provide conclusive
results, although it appears that all other tested models apart from the Poisson model offer
significantly better fits than the power-law. A graphical representation of the out-degree
distribution with their best-fitted power-law model is shown in Fig. 1b. Fig. SI 1c shows
the corresponding plot for the in-degree distribution.

Finally, we assessed the recent high quality reconstruction of the E. coli metabolic net-
work (Feist et al., 2007), in which substrates are connected to each other through edges that
represent the actual metabolic reactions (Jeong et al., 2000) with a total of 2,381 reactions,
of which 304 are exchange, 553 reversible and 1,524 irreversible reactions. We have studied
separately the in-degree distribution with 1,657 nodes and 3,050 links and the out-degree
distribution with 1,656 metabolites and 2,788 links. Both networks behave very similarly:
both display significant differences with the power-law model. While the log-normal model
fits the data equally as well as the power-law model, all other tested models behave signif-
icantly worse. The empirical distributions with their corresponding best-fitted power-law
models are represented graphically in Fig. SI 1e,f.

3.1.2 Clustering Coefficients

To gain further insight into the topological organization of molecular interaction networks,
we have analyzed the C(k) vs. k relationships for the HTP and LC reconstructed PPI
networks of yeast (Reguly et al., 2006), the TR regulatory network of yeast (MacIsaac et al.,
2006), and the metabolic network of E. coli (Feist et al., 2007). Fig. SI 2 shows how the
dependence of the clustering coefficient in the three types of molecular interaction networks is
not uniform. While the E. coli metabolic network displays a distribution close to C(k) = k−1

(Fig. SI 2d), as previously described (Ravasz et al., 2002), the distribution observed in the
other two networks is significantly less organized.

3.2 Global Activity Level Distributions in Molecular Interaction

Networks

Next we assessed the distribution of activity levels achieved on the underlying network
topology. First, we examined single time point snapshots for mRNA and protein expression
in E. coli and in S. cerevisiae, respectively.

We used global gene expression data from E. coli cells grown in mid-log phase batch cul-
tures with single carbon source media, using acetate, galactose, glucose, glycerol and maltose
as individual carbon sources (Beg et al., 2007). Signals for 3,977 probes were examined for
the expression level of the corresponding genes based on their hybridization intensity (Table
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2). Activity distribution of acetate growing cells significantly fits the power-law model, in
fact representing the best fit with the data in all cases analyzed in this study. Interestingly
though the broad-scale model gives us a significantly much better fit. Maltose is another
carbon source where gene expression distribution of E. coli shows significant fit with the
power-law model. However, three other distributions, log-normal, Weibull and broad-scale
provide significantly better fits than the power-law model. Of the two cases, in which the
power-law model displays no significant differences from the empirical data but other models
are also plausible, the classification of power-law character remains uncertain. None of the
other mid-log cultures provide a significant fit with the power-law distribution. For glucose,
galactose and glycerol, log-normal, Weibull and broad-scale are significantly better models
than the power-law, while exponential is significanlty worse model. Worth noting is the
graphical comparison of Fig. 1 c and 1d. The acetate distribution displays no statistical
difference with the power-law model while the galactose distribution does differ from it. This
important difference in the nature of the empirical data is not revealed from the inspection
of the graphical representations but uniquely from the statistical test.

We also examined the transcriptome state of E. coli cells grown in chemostat cultures
at different dilution rates, representing various steady-state growth rates at different culture
densities (Vázquez et al., 2008). We find that the general pattern for gene expression dis-
tribution is largely invariant in all different growth media and at different growth rates, but
for the steady-state cultures none of the empirical data sets fit the power-law model signif-
icantly (Table SI 1 and Fig. SI 4). Curiously the broad-scale model outperforms for all
steady-state cases. Also note that the log-normal and Weibull distributions display superior
fits for dilutions 0.25 and 0.4. In all the cases, the exponential distribution fits the empirical
data significantly worse than the power-law distribution.

Protein expression values in mid-log phase of S. cerevisiae cell cultures from 3,868 dif-
ferent strains expressing a single GFP or TAP tagged protein in a rich growth media
(Ghaemmaghami et al., 2003) displayed a slightly different expression mode (Fig. SI 5),
suggesting difference in mRNA and protein expression value distributions under these growth
conditions. Yet again the empirical dataset shows significant differences with respect to the
power-law model (Table SI 2). Comparing models, the power-law distribution fits signifi-
cantly better than the exponential, although similarly to the log-normal and Weibull distri-
butions. However the broad-scale model offers a significantly better fit that the power-law
model.

Finally, to assess the transcriptome state of E. coli cells under the most complex growth
conditions, we have examined the dynamical microarray profile of E. coli cells grown in
batch culture in a mixed-substrate medium (Beg et al., 2007). At all sampled time points,
the distribution of expression of the transcriptome was differing significantly from the power-
law distribution (Table SI 3). In this mRNA expression data set the log-normal, Weibull
and broad-scale models show better statistical fit with the experimental data at all time
points, while the exponential distribution is also better for some of the cases. A graphical
representation of the best fitting power-law distribution against the empirical data is shown
in Fig. SI 6.
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4 Discussion

The structure and activity of intracellular molecular interaction networks represents a basic
tenet of life. Thus it is of great importance to correctly identify their true structural and
functional properties at the global, intermediate and local levels. Heavy-tailed probability
distributions have been used in the literature to explain the topological features of complex
biological networks. In this work we have analyzed to what extent, among others, three well
known heavy-tailed distributions (power-law, broad-scale and log-normal) can be uniquely
used to represent the observed experimental data for protein interaction, transcription reg-
ulation, metabolic pathways and expression experiments. Our results demonstrate that the
large-scale topology of the molecular interaction networks and the global mRNA and pro-
tein expression distributions examined here do not strictly follow power-law distributions.
Moreover, none of the three heavy-tailed models tested had a universal agreement with the
empirical data even when using the highest quality data sets available. Distributions are
evidently heavy-tailed and for this type of data MLE analyses prove superior to graphical
methods for assessing different tested distributions. However, we could not assess any of
the studied models with statistical reliability. Our results could be explained by several
non-exclusive arguments. First, our analyses could be affected by a biased acquisition of
the empirical data, a systematic error that would affect, for instance, proteins which have
been studied more extensively because they have a high biomedical interest. Also, such sim-
ple mathematical frameworks as considered here may not represent entirely the biological
mechanisms at work, but also be the convolution of the physicochemical constraints of the
cell (Beg et al., 2007). Finally, population-level evolutionary processes, such as activation
of a foraging program upon extracellular substrate exhaustion, clearly affect the function of
cellular networks (Beg et al., 2007) and are likely to influence the nature of the underlying
molecular interactions as well.

Additional problems can have their origin in data acquisition. In some cases, the ex-
perimental data might be incomplete or noisy, specially for the HTP data which derives
partially from yeast two-hybrid experiments. There has been several efforts (Huang et al.,
2007; Scholtens et al., 2008) to infer statistically the actual PPI network from such experi-
ments and consequently our results of the analysis refer to the data, not the actual network.
Indeed, the analysis of the reconstructed network from literature, in a manually curated way,
considered to be more correct, yields different results. The inference of the actual network
is out of the scope of the current work.

We should also note that the topology of cellular networks can be viewed at various
levels of complexity. For example, in the metabolic representation considered here each
metabolite that participates in an interconversion reaction is considered equal (Jeong et al.,
2000). However, in alternative representations molecules that only act as donor or acceptor
(e.g., ATP or ADP) or that do not contribute a carbon or nitrogen atom to a metabolic
reaction can be excluded (Arita, 2004), or they can be pre-classified according to their
perceived biochemical role (Tanaka, 2005). Similarly, in TR networks, genes and their protein
products are usually defined as common nodes with regulatory links among them being
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mediated by the binding of TFs to the promoter regions of the genes (Shen-Orr et al., 2002).
At other times, however, genes and their protein products are considered as separate nodes
(Yeger-Lotem et al., 2004). While certain properties are unaffected by alternative network
representations, others are affected (Arita, 2004; Tanaka, 2005) potentially complicating the
interpretation of subsequent analytical results.

Finally, our analyses also reveal highly similar, but dynamically regulated global mRNA
and protein expression profiles, in which expression values are significantly variable. Thus,
while the global function of cellular networks is expected to be greatly influenced by their
underlying topology (Almaas et al., 2004; Ueda et al., 2004; Goh et al., 2001), mRNA or
protein expression data reflect the dynamic physicochemical state of the cell, likely neces-
sitating an explicit dynamical model for establishing a relationship between topology and
expression.
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Figure 1: The connectivity degree distribution of (a.) LC derived S. cerevisiae protein-protein interaction;
(b.) out-degree distribution of the transcriptional regulatory network of S. cerevisiae and (c., d.) intensity
distribution of mRNA expression values in E. coli cells from mid-log (OD 0.2) cultures with (c.) acetate
and (d.) galactose as single carbon source. Points represent the empirical distribution, lines represent the
most likely power-law models.
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Power-Law Log-Normal Poisson Yule Exponential Weibull PL + Exp.
data set p NLLR p NLLR p NLLR p NLLR p NLLR p LLR p diagnosis
HTP 0.76 -0.67 0.50 3.62 0.00 -1.00 0.32 2.71 0.01 -0.25 0.80 -0.74 0.22 ambiguous
LC 0.01 -2.14 0.03 4.30 0.00 -4.29 0.00 -0.52 0.60 -2.16 0.03 -6.86 0.00 reject

TR In 0.00 -4.49 0.00 2.08 0.04 -7.98 0.00 -2.86 0.00 -4.64 0.00 -26.40 0.00 reject
TR Out 0.75 -0.23 0.82 2.22 0.03 -0.24 0.81 0.25 0.80 -0.23 0.82 -0.10 0.65 ambiguous
Met In 0.04 -1.95 0.05 2.24 0.02 2.94 0.00 4.00 0.00 5.66 0.00 0.00 1.00 reject
Met Out 0.00 -1.11 0.27 2.62 0.01 4.59 0.00 4.68 0.00 3.03 0.00 0.00 1.00 reject

Table 1: Summary of probabilistic analyses for representative examples of the discrete data sets. The Supplementary Information includes
the further results discussed in the text. The second column shows the p-value associated with the differences between the data and the
power-law model. The next six columns correspond to the log-likelihood ratio tests comparing the power-law model with other plausible
models. Positive values support the power-law model. The normalized log-likelihood ratio (NLLR) is used for non-nested functions while
the raw log-likelihood ratio (LLR) is used for the power-law with exponential cutoff model. p-values here are associated with the differences
between the two models. Significant p-values are denoted in bold.
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Power-Law Log-Normal Exponential Weibull PL + Exp.
data set p NLLR p NLLR p NLLR p LLR p diagnosis
Acetate 0.28 -1.86 0.06 14.49 0.00 -1.89 0.06 -10.61 0.00 ambiguous
Galactose 0.00 -2.19 0.02 10.84 0.00 -2.26 0.02 -10.91 0.00 reject
Glucose 0.05 -2.40 0.01 12.16 0.00 -2.48 0.01 -13.31 0.00 reject
Glycerol 0.04 -2.68 0.01 11.38 0.00 -2.77 0.00 -14.58 0.00 reject
Maltose 0.21 -2.26 0.02 12.90 0.00 -2.32 0.02 -12.33 0.00 ambiguous

Table 2: Summary of probabilistic analyses for representative examples of the continuous data sets. The
Supplementary Information includes the other results discussed in the text. Interpretation of the table as
for Table 1.
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1 Clustering Coefficient Analysis

The clustering coefficient is defined as C(i) = 2ei
ki(ki−1) , i denoting a given node, ki the number of

links of i, and ei the number of connections among the links. The clustering coefficient ranges from
0 (low connected network) to 1 (highly connected network). In relation to the connectivity distribu-
tion, k, scale-free and modular networks have been reported to display constant C(k) distributions
(Ravasz et al., 2002), while hierarchical networks display C(k) = k−1 distributions (Ravasz et al.,
2002). In our analyses, we do not find a conclusive agreement between any of the models and the
experimental data (Figure 2).

2 Analysis Protocol

In order to give a broad idea of the methods we used, we explain here the mathematical protocol
we followed, which is the same as the one described in Clauset et al. (2009). The protocol was
newly developed by them and we used their own implementation in MATLAB (Clauset et al., 2009).
We have applied it to the biological data sets of interest.

The main idea of the protocol is to answer two very well defined questions:

• Given the power-law model, which is the most probable parameter combination for a given

data set?

• Once we have an inferred model, is there any significative difference between the model and

the data set?

For the first question we use maximum likelihood methods to find the most probable parameters
from a given model in order to explain the data set. In the case of the power-law model, we have
two parameters, α, which is the scaling parameter and xmin which is the lowest x from which the
distribution behaves as power-law. The parameter xmin is inferred in a special way as it represents
one of the bounds of the distribution but does not affect the shape of it. The method used, described
and implemented by Clauset et al. (2009), consists in a very practical approach: xmin is chosen so
the difference between the inferred model and the data set is minimized. The rationale behind it
is that if xmin is underestimated, the scaling parameter will be wrongly inferred while if xmin is
overestimated the reduced data size will provoke random fluctuations on the estimation.

Once we have in hands a data set and its corresponding inferred model, we want to know if there
are differences between the data and the model in order to know whether or not the data set follows
the power-law distribution. In this context of non-normality an appropriate and common test used
to compare a reference distribution and an empirical distribution is the Kolmogorov-Smirnov (KS)
test. However one of the premises of the KS is that the two distributions need to be independent.
In our case the model is inferred from the same data set we want to compare it with and the premise
of independency is not hold as correlations are introduced. Therefore Monte Carlo methods are
used to generate synthetic data from the inferred model. A D statistic of the KS test is calculated
for each synthetic data set. At this point we have a distribution of D values. The position of the
D statistic calculated from the empirical data set and the inferred model, within the distribution
of D values calculated from the Monte Carlo generated data sets, gives us the p-value associated to
the empirical D. Specifically the way of calculating the p-value is simply counting the number of
times the empirical D is larger than the synthetic D. As we are looking for deviations in one side
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(larger than) the confidence value that should be used is p = 0.1. We have elaborated a simplistic
graphical flow of the protocol to facilitate the comprehension of the methods used (Figure 8).

Finally, we have an additional question:

• Is there any other model that fits better the data than the power-law distribution?

Once we know to which extent is the power-law model able to explain the empirical data distribu-
tion, we wonder if there is any other model that could equally well describe the experimental data.
For that purpose, the normalized-log-likelihood ratio test is used. It is a simple test that compare
the log-likelihood values of two competing distributions with respect to the empirical data. For the
case of nested functions, which is the case of the broad-scale, the p-value should be corrected.

All code and data sets necessary to reproduce the results are provided upon request as a tar
file.
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Figure 1: a., b. The degree distribution of connectivity of S. cerevisiae protein-protein interaction network; c.,
d. transcriptional regulatory network and e., f. the E. coli metabolic network. Points represent the empirical
distribution, lines represent the most likely models.

5



a. b.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

k

C
(k

)

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

k

C
(k

)

c. d.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

k

C
(k

)

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

k

C
(k

)

Figure 2: a., b. Clustering coefficients (C(k)) for the degree distribution of nodes in the S. cerevisiae protein-protein
interaction network built from HTP and LC data respectively; c. S. cerevisiae transcriptional regulatory network,
and d. the E. coli metabolic network. Circles represent empirical distributions, while lines represent C(k) = k−1.
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Figure 3: Intensity distribution of mRNA expression values in E. coli cells from mid-log (OD 0.2) cultures with
different molecules as single carbon source: maltose, glycerol, glucose, galactose and acetate. Lines represent the best
fitted power-law model.
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Figure 4: Intensity distribution of mRNA expression values in E. coli cells from steady-state cultures with 0.2%
glucose-restricted M9 minimal medium at different dilution rates: 0.1, 0.25, 0.4, 0.55 and 0.72. Lines represent the
best fitted power-law model.
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Figure 6: Activity distributions in a dynamical transcriptome. mRNA expression values distribution in E. coli cells in a time-series growth experiment
(between 2-8 hrs.) on mixed-carbon substrate medium are shown (Beg et al., 2007). Lines represent the best fitting models for power-law models.
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Figure 7: Distribution of the D values for the 2,500 synthetic data sets generated using Monte Carlo. Due to
computational costs we show here the graphs for 2,500 data sets, however, 250,000 have been used to calculate the
p-values associated to the power-law estimation. Red dashed line indicates the confidence level at 0.1 and black
dotted line indicates the experimental value.
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Figure 8: Several steps are used to know if a data set follows a power-law distribution. We infer first the power-law
parameters, α and xmin using MLE. We then use the KS test to find D0. D0 value is retrieved from two correlated
distributions, the experimental distribution and the model distribution inferred from the experimental data set.
Therefore the p-value associated to it is not valid. We generate several (250,000 in this article) synthetic data sets
from the inferred model using Monte Carlo. We repeat the previous step for each data set generated, MLE and KS.
At this point we have a distribution of D synthetic values. The position of D0 within the distribution of synthetic
values provides the adequate p-value. The distribution of synthetic D distribution and D0 values for the discrete
interaction data sets are shown in Figure 7.
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Power-Law Log-Normal Exponential Weibull PL + Exp.
data set p NLLR p NLLR p NLLR p LLR p diagnostic

Dil. 0.1 0.04 -1.00 0.32 18.38 0.00 -0.73 0.46 -7.61 0.00 reject

Dil. 0.25 0.00 -2.31 0.02 16.36 0.00 -2.36 0.02 -14.77 0.00 reject

Dil. 0.40 0.00 -3.57 0.00 13.58 0.00 -3.72 0.00 -24.66 0.00 reject

Dil. 0.55 0.03 -1.79 0.07 17.34 0.00 -1.78 0.07 -10.95 0.00 reject

Dil. 0.72 0.02 -0.58 0.56 23.32 0.00 0.12 0.90 -6.84 0.00 reject

Table 1: Second column shows the p-value associated to the differences between the data and the power-law model. Next four columns correspond
to the log likelihood ratio tests comparing the power-law model with other plausible models. The normalized log likelihood ratio (NLLR) is used for
non-nested functions while the raw log likelihood ratio (LLR) is used for the power-law with exponential cutoff model. p-values here are associated to
the differences between the two models. Significant p-values are denoted in bold.
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Power-Law Log-Normal Exponential Weibull PL + Exp.
data set p NLLR p NLLR p NLLR p LLR p diagnostic

Yeast 0.00 -1.91 0.06 8.74 0.00 -1.93 0.05 -8.18 0.00 reject

Table 2: Second column shows the p-value associated the differences between the data and the power-law model. Next four columns correspond to the
log likelihood ratio tests comparing the power-law model with other plausible models. The normalized log likelihood ratio (NLLR) is used for non-nested
functions while the raw log likelihood ratio (LLR) is used for the power-law with exponential cutoff model. p-values here are associated to the differences
between the two models. Significant p-values are denoted in bold.
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Power-Law Log-Normal Exponential Weibull PL + Exp.
data set p NLLR p NLLR p NLLR p LLR p diagnostic

2 hours 0.00 -4.76 0.00 -3.67 0.00 -5.02 0.00 -31.57 0.00 reject

2.5 hours 0.00 -4.46 0.00 -2.33 0.02 -4.67 0.00 -27.63 0.00 reject

3.5 hours 0.00 -4.31 0.00 -2.21 0.03 -4.49 0.00 -25.08 0.00 reject

4 hours 0.00 -4.08 0.00 -1.60 0.11 -4.31 0.00 -25.82 0.00 reject

4.5 hours 0.00 -4.56 0.00 -4.37 0.00 -4.79 0.00 -29.10 0.00 reject

5 hours 0.00 -5.91 0.00 -4.37 0.00 -6.26 0.00 -52.34 0.00 reject

5.5 hours 0.00 -5.22 0.00 -0.48 0.63 -5.48 0.00 -38.72 0.00 reject

6 hours 0.00 -6.38 0.00 2.74 0.00 -6.70 0.00 -54.69 0.00 reject

6.5 hours 0.00 -4.73 0.00 0.50 0.61 -4.99 0.00 -33.91 0.00 reject

7 hours 0.00 -5.42 0.00 4.48 0.00 -5.69 0.00 -43.84 0.00 reject

7.5 hours 0.00 -2.88 0.00 -0.02 0.99 -3.01 0.00 -12.29 0.00 reject

8 hours 0.00 -8.20 0.00 17.77 0.00 -8.60 0.00 -98.07 0.00 reject

Table 3: Second column shows the p-value associated the differences between the data and the power-law model. Next four columns correspond to the
log likelihood ratio tests comparing the power-law model with other plausible models. The normalized log likelihood ratio (NLLR) is used for non-nested
functions while the raw log likelihood ratio (LLR) is used for the power-law with exponential cutoff model. p-values here are associated to the differences
between the two models. Significant p-values are denoted in bold.
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