
ar
X

iv
:0

90
1.

15
98

v2
 [

q-
bi

o.
PE

]
 2

0
Ja

n
20

09

constNJ: an algorithm to reconstruct sets of

phylogenetic trees satisfying pairwise topological

constraints

Frederick A. Matsen
UC Berkeley Dept. Statistics

367 Evans Hall #429
Berkeley, CA 94720-3860

USA
phone: +1 510 642 2450
fax: +1 510 642 7892
matsen@berkeley.edu

http://www.stat.berkeley.edu/̃ matsen/

October 31, 2018

Abstract

This paper introduces constNJ, the first algorithm for phylogenetic
reconstruction of sets of trees with constrained pairwise rooted subtree-
prune regraft (rSPR) distance. We are motivated by the problem of con-
structing sets of trees which must fit into a recombination, hybridization,
or similar network. Rather than first finding a set of trees which are op-
timal according to a phylogenetic criterion (e.g. likelihood or parsimony)
and then attempting to fit them into a network, constNJ estimates the
trees while enforcing specified rSPR distance constraints. The primary
input for constNJ is a collection of distance matrices derived from se-
quence blocks which are assumed to have evolved in a tree-like manner,
such as blocks of an alignment which do not contain any recombination
breakpoints. The other input is a set of rSPR constraints for any set of
pairs of trees. constNJ is consistent and a strict generalization of the
neighbor-joining algorithm; it uses the new notion of “maximum agree-
ment partitions” to assure that the resulting trees satisfy the given rSPR
distance constraints.

1 Introduction

Since the pioneering paper of Sneath (1975), tens of thousands of papers have
been published on the subject of “reticulate evolution.” “Reticulate evolution”

1

http://arxiv.org/abs/0901.1598v2

has generally come to mean evolution where genetic material for a new lin-
eage may come from two or more sources, as in the case of recombination and
hybridization. The Oxford English Dictionary (1989) defines “reticulated” to
mean “constructed or arranged like a net; made or marked so as to resemble a
net or network.” Correspondingly, rather than evolutionary history being rep-
resentable as a tree, a network is more appropriate. A considerable amount of
effort has gone into the phylogenetic reconstruction of these networks.

Algorithms for phylogenetics in the presence of reticulation have followed
a curiously different path then the mainstream of phylogenetics. As surveyed
below, current algorithms fall into three types: first, there are algorithms which
attempt to find the phylogenetic network displaying some fixed characteristics
(such as splits in an alignment or some set of trees) which contain the mini-
mum number of reticulation events. Secondly, there are algorithms to construct
“splits networks,” which do an excellent job of representing conflicting signals in
the data, but do not give an explicit evolutionary history. The third approach
is to sample from the posterior distribution of a population-genetics model,
such as the coalescent with recombination. None of these approaches furnish a
practical solution for certain cases, such as HIV researchers who would like to
reconstruct the evolutionary history of an alignment which includes recombi-
nant sequences. Indeed, first fixing a set of characteristics and then minimizing
the number of reticulation events ignores the balance between number of retic-
ulation events and phylogenetic optimality, the splits network approach does
not tell a complete evolutionary story, and population-genetic algorithms are
are not yet sufficiently fast for DNA sequence datasets which have thousands
of nucleotides. As there are no algorithms which are practical for doing phylo-
genetic reconstruction in this setting, HIV researchers who wish to reconstruct
evolutionary history typically proceed in one of two ways: they either treat the
whole alignment as having a single tree-like history, which cannot possibly be
correct, or they build trees on sub-alignments independently, which does not
take into account the underlying network structure. These two extremes, of as-
suming all trees have the same topology or allowing their topologies to differ in
arbitrary ways, leave a substantial gap in the middle, where the correct balance
of optimality and discord should be found.

The goal of constNJ is to begin filling this gap in a manner analogous to
classical phylogenetic inference algorithms. To do so, we make a different set of
assumptions than has previously been done considering the input and desired
output. Regarding the data, we assume that that the given alignment has been
segmented into “alignment blocks”, each of which can be described by a sin-
gle tree. For example, in the case of recombination, the alignment blocks are
the segments of an alignment which do not contain recombination breakpoints.
(Note that for the purposes of this paper we will be using the word “recom-
bination” in the general sense, including processes such as gene conversion.)
Although the assumption that the data comes pre-segmented is a substantial
one, we don’t think that it is unreasonable. From a practical standpoint, some
assumption needs to be made, as algorithms which attempt to find a correct
segmentation of the data and a sequence of trees simultaneously have a difficult

2

Figure 1: An example “reticulate” network and the two trees that it contains.
Those two trees are related by a single rooted subtree prune regraft (rSPR)
move, whereby the middle subtree is cut off of the tree and reattached at another
location. The node v will be called a reticulation node.

time searching the complete space. Furthermore, sometimes a segmentation is
clear, such as the distinct RNA strands of the influenza genome. Other times,
such as for recombination, it is not so clear, but even in this more difficult case
the inference of recombination breakpoints has seen significant progress in the
last 10 years (reviewed below). We will also assume that an outgroup has been
selected. Such a choice is crucial, as it establishes directionality for reticulation
events.

Regarding desired output, rather than actually building a single reticulate
network, this paper will focus on building “correlated sets of trees,” which dis-
play the sorts of constraints found on trees which fit in a reticulate network.
We are focused on building trees because each alignment block is correctly de-
scribed by a single tree. However, this set of trees must fit into a network,
which forces constraints on their topology. Specifically, the trees which sit in
these networks must be related by rooted subtree-prune-regraft (rSPR) moves,
whereby a rooted subtree is cut from the original tree and then re-attached in
another location (Figure 1). We describe below how it is necessary for trees
sitting in a reticulate network to be related by rSPR moves, though this is not
a sufficient condition.

For constNJ, we assume that the user can supply a series of constraints
describing the number of rSPR moves allowable between pairs of alignment
blocks. For example, if the alignment contains “pure” types and a single class
of recombinants which are derived from a pair of types, then there should be
two alignment blocks and the trees for those blocks should be related by one
rSPR move as in Figure 1. The challenge, then, is to reconstruct a set of trees
which satisfy the constraints and which together optimize some phylogenetically
relevant criterion, such as likelihood, parsimony, or balanced minimum evolu-
tion. Note that constNJ actually constructs a number of such sets of trees, in
order to display the balance between optimality of the individual trees and the
number of reticulation events needed to fit the trees together into a network.

We now present a motivating example. The CRF14 BG circulating recom-
binant form (CRF) of HIV is known to be a mosaic of subtype B and subtype
G viruses, and the breakpoints of the recombination events are known (Thom-
son et al., 2001). We will call the region of the alignment where BG derives

3

Figure 2: Phylogenetic trees of the pure subtypes of HIV and the BG recombi-
nant clade constructed independently using the no-recombination blocks of the
HIV genome. The single letters (e.g. A,B,C. . .) label clades of subtypes, and
BG denotes a clade of circulating recombinant forms (CRFs) made from B and
G subtypes. Tree (a) is built from the “G region,” i.e. the region where the
BG CRF derives from the G subtype, and tree (b) is built from the “B region,”
where BG derives from the B subtype. As noted in the text, although these
trees do place the recombinant strains in the correct locations, they differ in a
number of important ways which are not explained by recombination events. It
is the perspective of this paper that these extra differences represent phyloge-
netic error, and that accuracy can be improved by constraining the trees to fit
into a recombination network.

from the G subtype the “G region,” and the region where BG derives from
the B subtype the “B region.” As in Thomson et al. (2001) and all similar
papers we could find in the area, researchers build trees independently on the
no-recombination blocks. We have repeated such an analysis in Figure 2, build-
ing PHYML maximum likelihood phylogenetic trees using the F84 model and
rooted using CPZ.CD.90.ANT.U42720 (removed from tree for clarity). As one
would hope, the trees do indeed show that the BG CRF derives one portion of
its RNA from the G subtype, and the other part from the B subtype. However,
there are many more differences between the two trees than should occur for an
alignment with a single recombinant strain. For example, the rooting changes
between the two trees, as does the location of the C and the F-K clades. Build-
ing a recombination network out of these trees would lead a number of spurious
hypothesized recombinations.

In contrast, for this dataset constNJ returns a collection of pairs of trees
displaying the balance between the number of allowed rSPR moves between
pairs of trees and phylogenetic optimality. This balance is described in the text

4

output of constNJ, which is shown in Table 1 for the BG dataset. The first
column shows the rSPR distance between the two reconstructed trees (in this
case the G region tree and the B region tree). As described below, the notion of
optimality for constNJ is total tree length, which is a trivial generalization of
the balanced minimum evolution (BME) criterion (Desper and Gascuel, 2004).
It is displayed in the second column for the pairs of trees. Thus the second line
states that constNJ found a pair of trees which differ by a single rSPR move,
and which have total tree length about 7.119. The third column just shows
the difference between the second column values between rows. Thus 0.0942
signifies that there is a decrease of magnitude 0.0942 in total tree length by
allowing a single rSPR difference between the two trees.

In this way we can achieve an understanding of the balance between phylo-
genetic optimality and number of recombination events. For example, we can
see that the decrease in allowing a single recombination event is significantly
greater in magnitude than that for allowing two rather than one. And sur-
prisingly, allowing nine rSPR moves does not significantly decrease the total
tree length compared to allowing three. Because the improvement in total tree
length when allowing one rSPR move is significantly greater than that for any
subsequent rSPR moves, we believe that Table 1 suggests that the data prob-
ably arose from one recombination event, which agrees with the established
knowledge concerning these taxa.

rSPR distance total tree length tree length difference
0 7.213 0.0942
1 7.119 0.0076
2 7.111 0.0149
3 7.096 0.0139

9 (independent NJ) 7.082

Table 1: The balance between discord and optimality for the example HIV
dataset. On the left side is the number of SPR moves required to go from the
tree built on the G region to the tree built on the B region. In the center is the
total tree length (see Equation 2), which is our notion of optimality. On the
right is the difference of the total tree length between the rows. As described
in the text, the largest drop in total tree length comes when allowing a single
rSPR move (i.e. recombination event) between the two trees, indicating that
one recombination event is needed to explain the data.

Furthermore, the trees which constNJ finds assuming a single recombination
event agree with the accepted recombination history of the BG recombinant
circulating form (Figure 3). In particular, the only difference between them
is the location of the BG clade, which switches from the G to the B subclade
depending on the region analyzed. Importantly, these two trees can fit into a
recombination network with a single reticulation node, in contrast to those in
Figure 2.

We believe that constNJ is the first algorithm of its kind, but will now review

5

Figure 3: One pair of phylogenetic trees constructed for the same dataset using
constNJ. In contrast to Figure 2, the only difference between the two trees is
the location of the BG recombinant clade. These two trees fit into a recombi-
nation network with a single recombination event, as should be the case for a
tree for the pure subtypes with a single recombinant strain like we have here.
constNJ correctly identifies that the BG subtype is a recombinant of the B and
G subtypes.

literature on related topics, starting with common terminology. The currently
accepted term for the class of networks including both hybridization and recom-
bination networks is “reticulate network”.1 If we consider a rooted tree to be
a directed graph such that edges are directed away from the root, a reticulate
network is a rooted phylogenetic tree with additional directed edges making
a directed acyclic graph with “tree nodes” of in-degree one and “reticulation
nodes” of in-degree two (Huson et al., 2005).

A considerable amount of work has gone into the problem of constructing
a reticulate network given a set of phylogenetic trees which it must contain.
This problem was initiated by Maddison (1997) and considerable progress has
been made by Baroni et al. (2005), Nakhleh et al. (2005), Huson et al. (2005),
and Bordewich and Semple (2007a,b). As described above, we differ from these
approaches as we would like to estimate the trees while ensuring that they fit
into a reticulate network.

A related problem (which was the original motivation for fitting trees into
a network) is to reconcile distinct gene trees into a single species tree. This
problem has received an appropriately large amount of attention, and has found
a more realistic model-based formulation in Ané et al. (2007) and Edwards et al.
(2007). These differ from the present paper because they assume that there is
a single species tree, and that “correctness” of a gene tree should in part be

1This terminology is redundant, as the word “reticulate” already means network-like.

6

judged by the degree to which it fits within a species tree due to a coalescent
model. In our setting, however, there is no single species tree, and the coalescent
model may not be appropriate.

Sometimes a related assumption is made, which is not that complete species
trees are known, but that the resulting recombination network must display
a specified collection of bipartitions, which are typically called splits. This is
equivalent to assuming a supplied alignment evolves according to the infinite
sites model of mutation. The problem again is to find a network which mini-
mizes the number recombination events. This problem was first formulated by
Hudson and Kaplan (1985), and was shown to be NP-hard in Wang et al. (2001).
Progress was made in a sub-case by Gusfield et al. (2004) and a simpler related
(and in some ways more realistic) problem was solved by Song and Hein (2005).
In Huson and Kloepper (2005), the authors note that the algorithm in Huson
et al. (2005) can be extended to this case. Although a different formulation, this
splits/infinite sites approach represents a different version of the same strategy:
find the network displaying a certain set of characteristics which minimizes the
number of reticulation events.

Splits network methods are a biologically useful and mathematically inter-
esting way of understanding conflicting signals in phylogenetic data. The first
method to construct splits networks from distance data was the split decompo-
sition approach of Bandelt and Dress (1992a,b). Another successful approach
has been the “neighbor-net” algorithm created by Bryant and Moulton (2004)
and further analyzed by Levy and Pachter (2008). These methods form a useful
complement to phylogenetic analysis in the traditional tree-based sense, but do
not reconstruct an explicit evolutionary history. We also note that recombina-
tion networks need not be circular split systems, which are the sorts of splits
networks returned by neighbor-net.

On the other end of the spectrum lie likelihood-based methods using the
coalescent with recombination (Hudson, 1983). Major recent advances have
been made in this area. The full likelihood is quite daunting to compute, but
Lyngsø et al. (2008) have a parsimony-based approach which saves on compu-
tation by several orders of magnitude. Importance sampling (Griffiths et al.,
2008) is also promising, but is not yet efficient enough for the long alignments
typically encountered in phylogenetics. Also, it is the intent of this paper to
construct a method which is independent of population genetics models such as
the coalescent.

A related though distinct line of research is the inference of recombination
breakpoints. One of most basic and most commonly used methods for the infer-
ence of recombination breakpoints is called “bootscanning”, whereby a window
is scanned along the alignment and a phylogenetic tree is built for each posi-
tion of the window; a change in topology between sections of the window can
be interpreted as evidence for a recombination breakpoint (Lole et al., 1999).
There are many different variations on this theme. One promising line of re-
search by Marc Suchard and collaborators apply multiple change-point models
and reversible-jump MCMC to estimate trees and model parameters along the
alignment (Suchard et al., 2003; Minin et al., 2005). We also note that some-

7

times recombination breakpoints can be seen “with the naked eye” as in Thom-
son et al. (2001). In contrast to our paper, it is not the intent of these methods
to accurately infer phylogeny; furthermore they do not posit any relationship
between trees in neighboring no-recombination blocks. Furthermore, some of
the more computationally intensive methods actually require a fixed reference
tree.

In summary, we are not aware of any available method for building reticulate
networks which gives an explicit rooted phylogenetic history for each column of
the alignment, which elucidates the balance of discord between the trees and
optimality for those trees, and which is efficient enough to be useful for mod-
ern data sets. The lack of practical phylogenetic algorithms in the presence
of recombination was recently demonstrated in a simulation study by Woolley
et al. (2008). Huggins and Yoshida (2008) have noted the lack of useful recon-
struction algorithms for host-parasite relationships and have noted the need for
an algorithm which balances tree concordance and optimality as constNJ does.
Although far from a complete solution for these cases, we believe that constNJ
is a first step in the right direction.

2 General description of constNJ

The primary input for constNJ is a collection of alignment blocks, which as
described are disjoint subsets of columns of the alignment which are assumed
to evolve in a tree-like manner. In the case of alignments with recombinant
sequences, the alignment blocks are simply the no-recombination blocks. Note
that the alignment blocks need not be contiguous; for example a single recom-
bination event with two recombination breakpoints will result in two, not three,
alignment blocks. The other input for constNJ is a sequence of constraints
on the rSPR distance between the trees constructed for the no-recombination
blocks as described below. Given this input, the goal of constNJ is to exhibit
the balance between discordance among the alignment-block trees on one hand,
and optimality of the trees in some phylogenetic sense on the other.

constNJ is a deterministic distance-based approach to reconstruction; we
chose this direction for several reasons. First, the underlying space for a likeli-
hood optimization scheme is even larger than usual, making a heuristic search
even less appealing: there are [(2n − 3)!!]k k-tuples of rooted bifurcating phy-
logenetic trees on n taxa. The sorts of constraints we will be imposing reduces
this number substantially, but little is known about the resulting graph under
the sorts of moves typically used in heuristic phylogenetic searches. Further-
more, likelihood-based approaches are substantially improved by starting with a
reasonable tree, which in modern applications is typically a distance-based tree.
Thus, even if a likelihood-based approach was the eventual goal, a distance-
based approach would be useful as a “seed” for the heuristic likelihood search.
Finally, we feel that distance- and likelihood-based algorithms occupy distinct
and complementary roles in the world of computational phylogenetics.

Our goal is to design an approach which generalizes the remarkably accurate

8

and hugely popular neighbor-joining algorithm (Saitou and Nei, 1987). Remark-
ably, it took almost 20 years for the phylogenetics community to learn the objec-
tive function of neighbor-joining; during that time it was even claimed that no
such objective function existed. However, it is now known that neighbor-joining
greedily optimizes the “tree length” ℓ(T,D) (defined below in Equation 1) for
the given distance matrix D. constNJ generalizes this objective function, as it
attempts to minimize the total length of all of all k trees (2) by a combination
of greedy steps.

The trees resulting from constNJ are constrained by the user to be some
specified number of rooted subtree-prune-regraft (rSPR) moves from one to an-
other. As displayed in Figure 1, reticulation events such as recombination and
hybridization correspond to rSPR tree rearrangements. The converse is not true:
arbitrary rSPR tree rearrangement events need not correspond to reticulation
events. For recombination or hybridization to take place, the participants in the
event need to exist at the same time; it is not hard to set up examples of rSPR
move combinations which violate this fact (see, e.g., Song and Hein, 2005) .
Methods have been developed which take timing restrictions into account (Song
and Hein, 2005; Bordewich and Semple, 2007a), but we do not incorporate these
ideas into a phylogenetic reconstruction framework. This may be an interesting
avenue to for future research, but on the other hand seeing such timing viola-
tions can actually be informative. First, there may be something wrong with
the data. Second, it has been noted (Baroni et al., 2006) that reticulation net-
works can appear to violate timing constraints if certain taxa are not sampled.
The problem of determining the minimal number of “missing” taxa required to
explain timing constraints has been analyzed by Linz et al. (2008). Therefore
we have left interpretation of timing issues up to the user of the program.

We now make a more formal statement of the problem constNJ attempts to
solve; note that a similar formulation was made independently by Huggins and
Yoshida (2008) in the context of host-parasite relationships.

Problem 1 (rSPR-constrained balanced minimum evolution). Given k n × n

distance matrices D1, . . . , Dk and a symmetric k×k constraint matrix C, find the
set of trees T1, . . . , Tk minimizing

∑k

i=1 ℓ(Ti, Di) such that drSPR(Ti, Tj) ≤ Ci,j

for each i and j.

Theorem 2. constNJ is a consistent algorithm to solve Problem 1.

For constNJ we proceed in a manner analogous to that for neighbor-joining.
The neighbor-joining algorithm starts with all taxa connected to a central node,
then at every stage, chooses the “coalescence” (in other papers, “amalgamation)
of trees which most decreases the value of the total tree length. We mimic this
philosophy by evaluating coalescences based on how they affect the total tree
length. However, in the end we must come up with a collection of trees T1, . . . , Tk

that satisfy the prescribed rSPR constraints. This raises the question of how one
might bound the rSPR distance of the eventual trees “ahead of time,” i.e. before
the termination of the coalescence steps. For instance, if in the developing trees
one has the subtrees (a, b) for the first distance matrix, and (a, c) for the second

9

Figure 4: Schematic diagram of the constNJ algorithm. As described in the
text, at every stage we attempt to find the optimal pair of partially coalesced
trees which could eventually be at most some fixed number of rSPR moves
apart. As shown in Theorem 19, the m value for a pair of partially coalesced
trees forms a sharp lower bound for the eventual rSPR distance between those
trees. Therefore pairs of partially coalesced trees which have m value exceeding
the constraint on rSPR distance can be thrown out, as shown by the X.

distance matrix, it is clear that the resulting trees must have rSPR distance at
least one between trees T1 and T2.

The question of how to bound eventual rSPR distance is solved by Theo-
rem 19. Specifically, we generalize m, the size of the maximum agreement forest
(Bordewich and Semple, 2005) to these partially coalesced trees, which forms
a sharp bound. In short, the m value for a pair of partially coalesced trees
T and S is the minimum rSPR distance possible among trees resulting from
coalescences of T and S; thus once a pair of partially coalesced trees achieves
an m value above the corresponding constraint, we can throw that pair out, as
the eventual resolved trees will never satisfy the constraints.

Using this m we construct our greedy algorithm, as shown in Figure 4. Say
that we only have two trees, and that we want to find the minimal-total-length
pair of trees which are only one rSPR move apart. At every stage, we attempt
to find the best pair of partially coalesced trees with m values zero and one.
We start with two star trees; m applied to this pair is zero. The first-step
coalescence must also lead to a pair of trees which have m value zero, as one
of the trees is still completely unresolved. Say the optimal, in terms of total
tree length, second step NJ-type coalescence leads to a pair of trees which have
m value one (indicated by the first diagonal arrow in Figure 4). Then we go
down the list of second-step coalescences for the trees, and find the best one
which does not increase the m value at all (indicated by a horizontal arrow in
Figure 4). Next we repeat the process for each of the trees from the previous
stage, saving the best pair of trees which have m values zero and one. In the
end, we will have the best pair of trees which have rSPR distances zero and one
which were achievable via a series of greedy steps. Although not guaranteed to

10

be the optimal pair of trees, the algorithm is consistent.

3 Technical preliminaries

In this section we review some definitions and clarify our notion of optimality.
As stated in the introduction, we will always assume that an outgroup taxon has
been chosen, and will label it ρ. Thus we always assume that ρ is contained

in any taxon set X . We will use the following definitions. For the purpose of
this paper, a tree on a finite taxon set X will be a rooted binary phylogenetic
X-tree. A forest on taxon set X will be a collection of trees on disjoint taxon
sets such that the union of the taxon sets is X . We will sometimes consider a
tree on X to be a forest with a single tree. An unrooted tree on a finite taxon
set X will be an unrooted phylogenetic X-tree (note that unrooted trees will be
allowed to have multifurcating nodes.) L(R), E(R), and V(R) will denote the
leaves, edges, and vertices of a tree, unrooted tree, or forest R.

Although ρ represents the true rooting of the phylogenetic tree, we will not

always assume that our trees or forests are rooted at ρ. We must do so
because the NJ-type coalescences will not in general root the tree at the edge
leading to ρ. Therefore, we must allow alternative rootings, but at the same
time keep in mind that the rSPR distance between the trees must be calculated
with respect to the edge leading to ρ. Thus we use the following definition of
rSPR on an unrooted tree: given an unrooted tree U on a taxon set X ∋ ρ, a
single SPR move first cuts some edge of the tree except for that leading to ρ,
resulting two rooted trees R and S. Say ρ ∈ L(R). Suppress the degree two
root node of R, and attach S to some edge of the resulting unrooted tree by
inserting a degree two node onto the chosen edge, then connecting the root of S
to that new node. This definition is the same as that of Bordewich and Semple
(2005) when considering trees rooted at the edge leading to ρ.

As with any distance function defined implicitly in terms of a graph, the
minimum number of rSPR moves required to transform one tree T into another
S is a metric; we define drSPR(T, S) to be this number.

3.1 Tree length and the balanced minimum evolution cri-

terion

As reviewed by Gascuel and Steel (2006), phylogenetics researchers now under-
stand the optimality function of the neighbor-joining algorithm (Saitou and Nei,
1987). Let p(i, j) denote the path from i to j in the unrooted tree T , and define
the weight of a path from leaf i to leaf j as

w(i, j) =
∏

v∈p(i,j)

1

deg(v) − 1
.

11

Then the “length” of an n taxon tree T with respect to an n×n distance matrix
D is (Semple and Steel, 2004):

ℓ(T,D) =
∑

i,j

w(i, j)Di,j . (1)

The name “tree length” comes from the fact that if D is a distance matrix
derived from some assignment of branch lengths to the edges of T , then ℓ will
be the total length of all of the edges. However, the name may be somewhat
confusing initially, because ℓ need not be defined as sum of the branch lengths
of any specific tree.

The tree T which minimizes ℓ(T,D) for some distance matrix D is known
as the balanced minimum evolution (BME) tree for the distance matrix D. The
BME criterion is consistent (Desper and Gascuel, 2004), and neighbor-joining
is a consistent tree-building heuristic which greedily minimizes total tree length
(Desper and Gascuel, 2005) As described in Problem 1, constNJ attempts to
minimize

k
∑

i=1

ℓ(Ti, Di) (2)

while enforcing pairwise constraints on the rSPR distance between pairs of trees.
When k = 1 constNJ is simply neighbor joining, while for k > 1 constNJ is a
strict generalization of NJ.

4 Rooted SPR and maximum agreement parti-

tions

This section describes the primary technical content of this paper. As described
in the introduction, we would like to proceed via coalescences in a manner similar
to neighbor-joining, while ensuring that the eventual rSPR distance between
the trees is not too large. In order to assure adherence to the rSPR criterion,
we develop the notion of maximum-agreement partition, which generalizes the
notion of maximum agreement forest from Bordewich and Semple (2005). As
shown in Theorem 19, maximum agreement partitions and the associated m

value allow us to bound the rSPR distance between the two partially resolved
trees “in advance.”

4.1 Compatibility and coalescence

We will use the following definitions. A split on a taxon set X is a bipartition of
X . Because the set X will be clear, we will often abuse notation by identifying
A ⊆ X with the partition A|(X \ A). Furthermore, because we have a special
element ρ, we can distinguish between the two sides of a split; the side not
containing ρ will be called the rsplit (short for rooted split) of the split. It is
clearly equivalent to describe a given partition in terms of a split or an rsplit,
and we will use the two descriptions interchangeably.

12

Note that the neighbor-joining algorithm is typically thought of as proceed-
ing by coalescing internal nodes of an unresolved phylogenetic tree (see Figure 4);
however for our purposes it will sometimes be easier to consider the forest ob-
tained by deleting the central node and the associated edges. The opposite
construction will be called “starification.”

Definition 3. Given a forest F , define the starification ⋆(F) of F as the
following unrooted tree. If F has one tree, then suppress the degree two root
node of F . If F has two trees, then join their root nodes by an edge. If F has
three or more trees, join all of the root nodes of trees of F to a single node. The
new introduced node will be called the star node.

We will identify any one, two, or three tree forest F with its starification, in
which case there is no designated star node.

Definition 4. Given a tree T which is part of a forest F on a taxon set X,
define the edge splits ΣE(T) to be L(T)|[L(T)]c along with the set of splits on
X induced by the edges of T . We define ΣE(F) to be the union of the edge splits
of T across all trees T in F .

For example, the rsplits {3} and {2, 3, 4} are both edge rsplits of the forest
((1, ρ), 2); (3, 4).

Definition 5. Given a forest F on a taxon set X, A is a separating split of F
if A is the union of taxon sets for a collection of at least two trees of F . The
set of separating splits of F will be denoted ΣS(F).

Given a forest F we will write Σ(F) for ΣE(F)∪ΣS(F). This will be the set of
splits used to make agreement partitions as described below.

Definition 6. Two rsplits A and B will be called compatible if either A∩B = ∅,
A ⊆ B, or B ⊆ A.

Because A and B are the sides of the splits which do not contain ρ, this is
the same as the usual criterion for split compatibility (Semple and Steel, 2003).
Therefore we have the following well known theorem.

Theorem 7 (Buneman, 1971). A collection of splits M on a taxon set X is
pairwise compatible iff there exists an unrooted tree T on taxa X such that M
is a subset of ΣE(T). There is a one-to-one correspondence between compatible
sets of splits on X and minimally-resolved unrooted trees on X.

Definition 8. Two forests F and G on taxon set X are compatible if ΣE(F)
and ΣE(G) are pairwise compatible.

Definition 9. The join T ∧ S of two trees T and S on disjoint taxon sets is
the tree obtained by joining the root nodes of T and S to a new root node. The
coalescence of T and S in the forest F is the forest {T ∧ S} ∪ (F \ {T, S})}.

Note that the operation of coalescence gives a partial order on the set of
forests on a given taxon set. Namely, we write F � G if F is a coalescence of
G. Clearly, trees are the maximal elements in this partial order.

13

Definition 10. A tree S is a subtree of an unrooted tree U if S is one compo-
nent of the disconnected graph obtained by cutting an edge of U . A tree S is a
subtree of a rooted tree T if S is a component of the disconnected graph obtained
by cutting an edge of T , and S does not include the root of T .

We emphasize that the subtree definition is different than than that of an
induced subtree, which is as follows. The existence of induced subtrees is guar-
anteed by Theorem 7 or its rooted equivalent.

Definition 11. Given a tree T and Y ⊆ L(T), T |Y is the (rooted or unrooted)
tree on taxa Y with rsplits {A ∩ Y : A ∈ ΣE(T)}.

There is also an analogous definition for forests.

Definition 12. Given a forest F and Y ⊆ L(F), F |Y is

{T |Y : T ∈ F and L(T) ∩ Y 6= ∅}.

Proposition 13. If two forests F and G on a taxon set X are compatible, and
F has more than one tree, then there exists H ≻ F such that H is compatible
with G.

Proof. If F has two or three trees, the proposition is trivial. Otherwise, let U
be the tree with split set equal to the union of ΣE(F) and ΣE(G). If U is not
resolved (i.e. if there exists an internal node of degree greater than three) then
take an arbitrary resolution. As all of the trees T of F are resolved, each T sits
as a subtree of U ; let J be the union of the nodes of the T ∈ F (considered as
nodes of U). Let p denote the longest path in U which does not contact any of
the nodes in J . Because F has at least four trees, p will be nontrivial. Pick one
end of this path, which must be connected to a pair of trees S′, S′′ of F . Let
K = L(S′) ∪ L(S′′). As the split K|Kc is already a split of U , we know that it
is compatible with ΣE(F) and ΣE(G), and thus that Σ(S′ ∧ S′′) is compatible
with ΣE(G). Let H be the coalescence of S′ and S′′ in F .

4.2 Maximum agreement partitions

In this section we introduce the notion of maximum agreement partition (MAP),
which generalizes the idea of maximum agreement forests. Maximum agreement
forests were first introduced by Hein et al. (1996), and further refined by Bor-
dewich and Semple (2005). In broad terms, given two forests F and G on a
taxon set X , we will be interested in considering partitions P which are obtain-
able from F and G independently by “combining” edge splits and separating
splits of those forests, in the same way that edge cuts are combined when mak-
ing maximum agreement forests. The appropriate notion of “combining” splits
is the infimum, which we now describe.

The set of partitions on a given finite set Y form a partial order, such that
a partition P1 ≤ P2 if P1 is a refinement of P2. In fact, the set of partitions
is a complete lattice, meaning that any set of partitions on Y has a supremum

14

and an infimum. For a collection of partitions M , we will use inf(M) to denote
their infimum.

Thus, as described below, a necessary condition for P to be an agreement
partition for two forests F and G is that P can be expressed as inf(M) and
inf(N) for M ⊆ Σ(F) and N ⊆ Σ(G). It will now be useful to connect that
definition to one in terms of convexity of characters (Semple and Steel, 2003).

Definition 14. Given a partition P on some set K, define P |J for some J ⊆ K

to be the partition {Y ∩ J : Y ∈ P}.

The following is a slight generalization of the definition of convexity given
by Semple and Steel (2003).

Definition 15. A partition P on a taxon set X is convex on a forest F on X

if there exists an H � F such that P induces a convex character on ⋆(H), i.e.
if there exists a partition P̃ on vertices V(⋆(H)) such that

(i) P = P̃ |X .

(ii) Any Ỹ ∈ P̃ separates ⋆(H) into connected components.

The following proposition relates the notions of “obtainable by a series of
cuts along edge or separating splits” with the notion of character convexity.

Proposition 16. A partition P of a taxon set X is convex on a forest F iff
there exists M ⊆ Σ(F) such that P = inf(M).

Proof. Assume M ⊆ Σ(F) such that P = inf(M). Note that K = inf(M ∩
ΣS(F) is a set of disjoint separating or root-edge splits for F ; thus we can
perform coalescences, making H , such that the splits from sets in K are edge
splits of H . Such an H will satisfy the criteria of the definition.

For the converse implication, cutting any edge (u, v) of⋆(H) for any H � F

gives a split in Σ(F). We then define M as the set of such splits su,v such that

such that (u, v) is an edge and u and v are in distinct sets of the partition P̃ .
By construction, P = inf(M).

The following definition generalizes the notion of agreement forest.

Definition 17. We say that a partition P of taxon set X is an agreement
partition for a pair of forests F,G on X if

(i) for every pair of rsplits A ∈ ΣE(F), B ∈ ΣE(G), and Y ∈ P , A ∩ Y is
compatible with B ∩ Y .

(ii) P is convex on F and G.

We say that P is a maximum agreement partition (MAP) if the number of sets
of P is less than or equal to that of any other agreement partition. Let m(F,G)
be the number of sets in the MAP minus one.

15

Note that by Theorem 7, for two resolved unrooted trees U, V on a taxon set
X ∋ ρ, the size of the maximum agreement partition is the same as the size of the
maximum agreement forest of the trees (rooted at ρ) in the sense of Bordewich
and Semple (2005). Recall that the definitions of maximum agreement forest in
Bordewich and Semple (2005) differs from that of Hein et al. (1996) and Allen
and Steel (2001).

Proposition 18. Assume F , G, and H are forests on a taxon set X such that
H � F , and P is an agreement partition for H and G. Then P is also an
agreement partition for F and G.

Proof. Part (i) of the definition is clear as ΣE(F) ⊆ ΣE(H). Next we check
(ii), i.e. that P is convex on F . Note that H � F implies Σ(H) ⊆ Σ(F), as
the “extra” edge splits of H will be separating splits of F . By Proposition 16,
there exists an M ⊆ Σ(H) such that P = inf(M); by the previous sentence
M ⊆ Σ(F) and so by Proposition 16 again P is convex on F .

The following theorem is the main motivation for studying the maximum
agreement partition. Thus the proposition says that the size of the maximum
agreement partition of the two forests F and G is the same as the rSPR distance
in the best case.

Theorem 19. The minimum of drSPR(U, V) across all unrooted trees U � F

and V � G is equal to m(F,G).

The proof of this proposition will come after two lemmas.

Lemma 20. Given a partition P convex on F and Y ∈ P such that F |Y
includes two distinct trees T and S, then there exist distinct trees T̃ , S̃ ∈ F such

that
(

T̃ ∧ S̃
)∣

∣

∣

Y
= T ∧ S. Furthermore, for any Z ∈ P not equal to Y and any

R ∈ {T̃ , S̃}, we have either Z ⊂ L(R) or Z ∩ L(R) = ∅.

Proof. Let H and P̃ be as in Definition 15. Let Ỹ ∈ P̃ be such that Ỹ ∩L(F) =
Y . Let T̃ (resp. S̃ ∈ F) be the tree such that T̃ |Y = T (resp. S̃|Y = S). Let
Q = L(T) ∪ L(S).

We now show that T̃ 6= S̃. The contrary would imply ⋆(H)|Q = T̃ |Q.

Because Q ⊂ Y and ⋆(H)|Y is connected by definition, T̃ |Q is connected so T

and S would not be distinct. This is a contradiction. Thus L(T̃) ∩L(S̃) = ∅ so
(

T̃ ∧ S̃
)∣

∣

∣

Y
= T̃ |Y ∧ S̃|Y = T ∧ S.

We now show the second statement of the lemma. Let r(W) denote the
root node of any tree W ∈ F . Note that r(T̃) and r(S̃) must be in Ỹ because
⋆(H)|Q is connected and the path between any a ∈ L(T) and b ∈ L(S) passes

through r(T̃) and r(S̃).
Now assume that for some R ∈ {T̃ , S̃} we have that some Z 6= Y of P

intersects L(R) but is not contained in it. Take c ∈ Z∩L(R) and d ∈ Z∩[L(R)]
c
.

Let Z̃ ∈ P be such that Z̃∩L(F) = Z. By the same argument as in the previous
paragraph, r(R) is in Z̃. This is a contradiction as Ỹ and Z̃ are disjoint.

16

Lemma 21. Assume that F and G are forests on a taxon set X, and P is an
agreement partition for F and G. Then there exist resolved trees U � F and
V � G such that P is an agreement partition for U and V .

Proof. It is enough to show that if one of the forests, say F , has at least four
trees then there exists an H0 ≻ F such that P is an agreement partition for H0

and G.
If for every Y ∈ P we have that F |Y is a single tree, then we can make H0 by

taking an arbitrary coalescence of F ; any such coalescence will be “broken” by
P and thus will not introduce any splits violating (i) of Definition 17. Thus we
assume that F |Y has at least two trees. By Proposition 13, there exist nontrivial
T, S ∈ F |Y such that the coalescence of T and S in F |Y is compatible with G|Y .

By Lemma 20, there exist T̃ and S̃ in F such that
[

T̃ ∧ S̃
]∣

∣

∣

Y
= T∧S. LetH0

be the coalescence of T̃ and S̃ in F ; the second statement of Lemma 20 implies
that the coalescence of T̃ and S̃ does not introduce any new edge splits when
restricted any Z 6= Y in P , and so H0 satisfies the criterion (i) of a maximum
agreement partition.

Also, P is convex on H0, establishing criterion (ii). Indeed, by Proposi-
tion 16, let M ⊆ Σ(F) be such that P = inf(M); we need to show that
M ⊆ Σ(H0). The only difference between Σ(F) and Σ(H0) is that Σ(H0)
does not have separating partitions which separate T̃ and S̃, but M cannot
contain such a partition because T and S both have taxa in the same partition
of P .

Proof of Proposition 19. Lemma 21 shows that the minimum of m(U, V) is less
than or equal to m(F,G). The other inequality follows from Proposition 18.

Now note that for a resolved tree on X rooted at ρ, the notions of maximum
agreement forest and maximum agreement partition coincide. Thus by Theo-
rem 2.1 of Bordewich and Semple (2005), m(U, V) is equal to the rSPR distance
between U and V for any resolved U � F and V � G.

4.3 Calculating the maximum agreement partition

As introduced above, and described more clearly below, constNJ needs to find a
great number of agreement partitions. Indeed, a sample constNJ run with three
distance matrices, 27 taxa, with pairwise constraints of size two required 5867
calls to the subroutine finding the size of a MAP. Therefore a speedy calculation
of the MAP is essential.

In the present implementation of constNJ, the MAP is calculated is via a
simple extension of the algorithm by Bordewich and Semple (2005). As with the
usual Bordewich-Semple algorithm, we contract isomorphic subtrees and replace
chains of pendant subtrees with chains of three pendant edges. However, we
consider separating rsplits as well as edge rsplits to find the agreement partition.

An alternative would be to consider an integer linear programming (ILP)
approach to the MAP problem based the work of Yufeng Wu, who has re-
cently developed an ILP approach to finding a maximum agreement forest (Wu,

17

2008). Although Wu’s ILP approach is many orders of magnitude faster than
the Bordewich-Semple algorithm for finding the size of the maximum agreement
forest in the “hard” case when two trees are quite different, our tests have shown
that it is slower in the “easy” case. This difference is probably because there
is overhead to creating the linear programming matrix, which does not scale
strongly with respect to the difficulty of the problem, while the Bordewich-
Semple algorithm is very fast for easy problems. It is possible that some of
the ILP overhead could be amortized by clever re-use of portions of the matrix
across coalescences, or a combination of Bordewich-Semple and Wu ideas, but
we have not followed these directions.

5 The constNJ algorithm

Assume constNJ is given k distance matrices on a taxon set X . On the way
to constructing our trees T1, . . . , Tk on X we will be constructing collections
of forests F = F1, . . . , Fk; we will call such a collection F an “instance.” For
example, each boxed pair of trees in Figure 4 is an instance (after deleting the
central “star” nodes). The agreement profile for an instance F is the k × k

matrix α(F) where α(F)ij is m(Fi, Fj). It describes the degree to which the
forests agree. The identical agreement profile is the k × k zero matrix. Define
the instance tensor to be a partially filled tensor of instances indexed by N

k2

,
where F is stored in the “slot” indexed by its agreement profile α(F).

Algorithm 22 (constNJ). Given n × n distance matrices D1, . . . , Dk and a
k × k constraint matrix C,

1. Let F(0) be the trivial instance, i.e. F
(0)
i is the trivial forest on n taxa for

each 1 ≤ i ≤ k. Let H(0) be the instance tensor containing only F(0).

2. Repeat the following until termination:

a. Let H be the instance tensor from the previous step.

b. Rank all possible coalescences of all of the instances of H by how
much they will decrease total tree length.

c. Make a “step” by walking down this ranked list in order as follows:

i. Perform the chosen coalescence, say of an instance F, and as-
sume that the resulting instance F′ has agreement profile X.

ii. If some entry of X is greater than the corresponding element of
C, discard F′ and test the next coalescence.

iii. If not, and F′ is the first in this step to have agreement profile X,
then save it. If, on the other hand, another instance has already
been found in this step with agreement profile X, then discard F′

as it must have a larger total tree length.

iv. Stop walking down the list if X is the identical agreement profile.

d. Terminate if each of the Fi have three trees or fewer.

18

We now show that this algorithm is consistent.

Proof of Theorem 2. In broad terms, Algorithm 22 is consistent because of the
consistency of neighbor-joining (Gascuel, 1997; Bryant, 2005) and because the
coalescence which most decreases the total tree length must be a neighbor-
joining step (Desper and Gascuel, 2005). We are given a sequence of distance
matrices D1, . . . , Dk and a symmetric k×k constraint matrix C. By hypothesis,
these distance matrices come from a sequence of trees T1, . . . , Tk such that the
rSPR distance between Ti and Tj is bounded above by Ci,j . First, by the consis-
tency of neighbor-joining, NJ applied to each distance matrix independently will
recover the correct collection of trees. Say the sequence of neighbor-joining coa-
lescences making Ti gives a series of forests F1,i, . . . , Fn−1,i, where Fn−1,i = Ti.
Thus by Theorem 19 (more specifically, Proposition 18) and our assumptions
about the Ti,

m(Fa,i, Fb,j) ≤ Ci,j (3)

for any 1 ≤ a, b ≤ k and 1 ≤ i, j ≤ n. Thus the constraints will always be
satisfied as long as we follow the sequence of NJ steps for each tree.

Next we show by induction that given this data, at every step every constNJ

forest will one of the Fr,j for 1 ≤ r < n and 1 ≤ j ≤ n− 1. This is clearly true
at initialization. By induction, assume the assertion is true at some constNJ

step. Consider the coalescence which decreases total tree length as much as
possible irrespective of constraints; say it occurs in Fk,i. As the coalescence
decreases the tree length of Fk,i compared to other coalescences of Fk,i, is also
a neighbor-joining step for Fk,i, making Fk+1,i. By the previous paragraph,
we know that this coalescence will preserve the constraints, and thus is also a
constNJ step (recall that each constNJ step decreases the total tree length as
much as possible amongst coalescences which preserve the constraints). Thus
at the end we get Fn−1,i for each i by induction. Because Fn−1,i = Ti, constNJ
is a consistent algorithm.

5.1 Implementation

We have implemented constNJ in the fast functional/imperative language ocaml
(Leroy et al., 2007). The implementation has a simple command line interface,
which is documented in the accompanying manual. It is available for download
from the author’s website, at http://www.stat.berkeley.edu/̃matsen/constNJ/
.

As described above, the primary input for constNJ is a series of distance
matrices, with one for each alignment block. The program is designed to ac-
cept distance matrices from the DNADIST program of the PHYLIP package,
although longer lines and taxon names are allowed. The first taxon is assumed
to be the outgroup. The program assumes that the taxa in the distance matrices
are ordered in a corresponding way. For instance, if one is using constNJ to
investigate recombination, all of the taxa should be listed in the same order, so
that the taxa in the no-recombination blocks correspond to one another. On the

19

other hand, if one is using constNJ to investigate host-parasite relationships,
the ith taxon in the parasite alignment should parasitize the ith taxon in the
host alignment. If, for example, a given parasite is present in multiple hosts,
this will require duplication of that parasite sequence in the alignment.

The second input for constNJ is a set of constraints for the resulting corre-
lated set of trees. There are two options for specifying these constraints: first,
via a file, or second, by enforcing “linear” constraints. For example, assume we
supply three distance matrices: D0, D1, and D2, and would like to construct
trees T0, T1, and T2. To specify constraints for these matrices, one writes one
constraint per line, with first the indices of the distance matrices then the num-
ber of rSPR moves allowed between those distance matrices. For example, a
line saying 0 2 1 would mean that T0 and T2 are constrained to be one rSPR
move apart. On the other hand, one may specify a linear constraint with a
linear constraint parameter. If the linear constraint parameter is L, then trees
Ti and Tj are constrained to be L · |i − j| rSPR moves apart. So if we apply a
linear constraint with parameter 2 in our example, then both T0 and T1 and T1

and T2 are constrained to be at most 2 rSPR moves apart, while T0 and T2 are
constrained to be at most 4 rSPR moves apart.

The output for constNJ is collection of correlated sets of trees, each of which
get their own .tre file, along with a .lengths file, which describes the total tree
length for each of these sets of trees. constNJ returns at most one correlated set
of trees for each agreement profile within the constraints, which is labeled by
the agreement profile. If the constraints are given in a file, then the agreement
profile is written in the order given in the file. If linear constraints are given,
the agreement profile is written as a vector representing an upper triangular
matrix in the usual way. For example, the agreement profile for three trees with
linear constraints is written (drSPR(T0, T1), drSPR(T0, T2), drSPR(T1, T2)), so the
set of trees in the file example.2 1 1.tre has agreement profile (2,1,1). The
.lengths file contains the information on tree lengths, as in Table 1 of the
introduction. Namely, for each correlated set of trees returned by constNJ, it
displays the total tree length for those trees.

5.2 Speed

A rigorous worst-case runtime analysis of constNJ would show that it can be
incredibly slow. Indeed, the maximum agreement partition is a generalization
of the maximum agreement forest; thus finding the size of the MAP is NP-
hard by the corresponding theorem by Bordewich and Semple (2005). However,
constNJ does not just need to solve one such problem, it needs to solve quite
a number of them. At worst, constNJ would need to find as many MAP’s as
there are possible coalescences, just for a single step and a single instance; if
an instance had forests with ℓ1, . . . , ℓk trees, then there will be

(

ℓ1
2

)

× · · · ×
(

ℓk
2

)

possible coalescences, each of which in theory could require solving of a MAP
problem. At any step there can be as many instances as there are agreement
profiles satisfying the constraint matrices, and a problem with n taxa and k

distance matrices will require nk such steps. Such an analysis would not give a

20

very clear understanding of the practical time requirements of running constNJ.
In practice, constNJ can be used effectively for a moderate number of taxa

and a small number of closely-constrained trees. The running time depends
somewhat on the number of taxa, but quite a lot on the constraints and num-
ber of distance matrices. Indeed, the main bottleneck is the MAP calculation,
and the running time of the MAP calculation depends very strongly on the
constraints and the number of distance matrices.

However, what may be surprising is how much the running time depends on
the quality of the data. This is vividly illustrated by the simulations, where in
the case of two trees with two reticulation events and divergence of 0.1 mutation
per site per tree, the sequences with 100 sites took on average 10.3 minutes to
run, while the simulations with 6400 sites took on average 0.68 seconds each.
This represents a difference of almost three orders of magnitude. On the same
processor (Intel ® Xeon ® CPU at 2.33GHz) using real HIV data, an example
with three 38-taxon distance matrices and pairwise constraints of three for each
pair of distance matrices took 49 seconds, while an example with only two 40-
taxon distance matrices with a single constraint of size three took almost 21
minutes. The quality of the data impacts “how far” constNJ has to go down
the list of coalescences in order to find one with the desired agreement profile,
and how often it needs to calculate a new agreement partition.

We have made some coding choices to increase the speed. For example,
there is a natural partial order on agreement profiles, which is just the element-
wise numerical order. In considering which coalescences to perform, we only
investigate those coalescences which could lead to an agreement profile which is
smaller than those which have already been performed. In principle, one could
do a more comprehensive search which might lead to more optimal sets of trees;
we have not found a significant improvement following such a direction.

6 Simulations

In order to evaluate the performance of constNJ, we performed a number of
simulations. The trees in the study were generated as follows. We choose the
number of trees in the recombination network, say k, the size of the trees, say
n, and a number of rSPR moves, say m. We start with a tree T1 drawn from
the Yule distribution of trees on n taxa. After choosing the desired expected
number of substitutions on the tree (in simulations below, 0.1, 0.5, and 2), we
divided this number by the number of non-root edges in the tree to get the
expected number of substitutions per edge. We then drew the actual number of
substitutions per edge from the exponential distribution with the corresponding
mean to get the branch lengths of T1.

We then generated Ti+1 from Ti by applying k rSPR moves to Ti as follows.
For each rSPR move, first select a non-root edge uniformly; call the subtree
below the chosen edge S. Cut off S then glue it back in on a uniformly selected
edge of T1 not contained in S. The location along the chosen edge to attach S

is chosen uniformly. Then to simulate differential rates of evolution of different

21

regions, take the average of the previous branch length and a branch length
drawn from an exponential distribution as before.

Given such a series of trees T1, . . . , Tk, we generated a collection of distance
matrices D1, . . . , Dk by simulating sequences on the trees. We did so using the
Jukes-Cantor model of sequence evolution with a single rate. Distances were
then calculated using the Jukes-Cantor distance correction (Felsenstein, 2004a).
In case the Jukes-Cantor correction gave an undefined value, we repeated the
analysis with a new sequence. We chose the simple Jukes-Cantor model to focus
attention on our method rather than the distance estimator.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 1000 10000

R
ob

in
so

n-
F

ou
ld

s
di

st
an

ce

sequence length

0.1 substitutions / site / tree

constNJ
concatenated NJ
independent NJ

 0

 5

 10

 15

 20

 25

 100 1000 10000

sequence length

0.5 substitutions / site / tree

 4

 5

 6

 7

 8

 9

 10

 11

 100 1000 10000

sequence length

2 substitutions / site / tree

Figure 5: constNJ simulation results for two trees, each on 30 taxa, averaged
over 400 replicates. The first tree was drawn from the Yule distribution, and the
second tree was made by applying a random rSPR move to the first. “constNJ”
is our algorithm, “concatenated NJ” is neighbor-joining run with a concatenated
alignment, and “independent NJ” is neighbor-joining run independently on the
alignments for the different trees as described in the text.

For the first set of simulations, we wanted to understand how the topolog-
ical accuracy of constNJ compares to that of concatenating alignment blocks
or running them independently. For concatenation, we estimated a single dis-
tance for each pair of taxa by taking the Jukes-Cantor correction of the average
number of substitutions in each alignment block; such a procedure simulates the
process of concatenating equal-length alignment blocks. We then considered the
resulting tree as the output of running NJ on the concatenated alignment for
each alignment block. For independent construction, we simply ran NJ on each
distance matrix independently. For constNJ, we constrained the rSPR distance
between the trees to be less than or equal to the number of rSPR moves used
to generate the trees. The trees used in the comparison were then the shortest
(i.e. smallest total tree length) trees returned given those constraints.

To measure topological accuracy, we used the Robinson-Foulds distance
(Robinson and Foulds, 1981), which is simply one half the size of the symmetric
difference of the edge split sets. The results are shown in Figures 5, 6, and 7.
In these simulations, constNJ typically outperforms either alternate strategy.

22

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 1000 10000

R
ob

in
so

n-
F

ou
ld

s
di

st
an

ce

sequence length

0.1 substitutions / site / tree

constNJ
concatenated NJ
independent NJ

 0

 5

 10

 15

 20

 25

 100 1000 10000

sequence length

0.5 substitutions / site / tree

 4

 5

 6

 7

 8

 9

 10

 11

 100 1000 10000

sequence length

2 substitutions / site / tree

Figure 6: constNJ simulation results for two trees, each on 30 taxa, averaged
over 400 replicates. This time, two rSPR moves were applied to the first tree to
get the second.

When sequences are short, the main source of error is insufficiently accurate
distance estimations; concatenation increases the amount of useful sequence
information for distance estimation, and so outperforms independent construc-
tion in that case. However, constNJ does almost as well. On the other hand,
when sequences are long, independent estimation does well, as there is enough
sequence information to reconstruct the tree for each block independently. In
that case, constNJ also does well.

The reader may object that these graphs represent an unfair comparison,
as they assume that the number of reticulation events is correctly bounded in
advance. The next two simulations address this objection. The first set, with
results shown in Figure 8, seems to indicate that by looking at the .lengths

file one can do a reasonable job of deciding how many rSPR moves to allow as
was done in the example case of the introduction. The second set, with results
shown in Figure 9, concerns what happens if one makes an incorrect decision.

Figure 8 explores one of the main themes of this paper, which is the trade-off
between phylogenetic optimality (in this case total tree length) and congruence
among individual trees. To make this figure, we generated pairs of trees as
before, generating a Yule tree and then applying some number of rSPR moves
to get the second tree, except that this time we threw out pairs of trees which
did not have the correct rSPR distance between them (i.e. when a subtree was
moved back to its original location). We drew branch lengths as above then
simulated 1000 sites with an expectation of 0.5 mutations per site per tree. The
x-axis is the index of the .lengths file, i.e. the number of rSPR moves between
the two reconstructed trees. The left y-axis, “average total length”, shows the
average length of trees with that number of rSPR moves between them. For
instance, consider the point on the line labeled “three rSPR moves” which is at
x-value 2. This says that if we simulate a pair of trees which are three rSPR
moves apart as described above, then we expect the pair of trees output by

23

 0

 10

 20

 30

 40

 50

 60

 70

 100 1000 10000

R
ob

in
so

n-
F

ou
ld

s
di

st
an

ce

sequence length

0.1 substitutions / site / tree

constNJ
concatenated NJ
independent NJ

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 1000 10000

sequence length

0.5 substitutions / site / tree

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 100 1000 10000

sequence length

2 substitutions / site / tree

Figure 7: constNJ simulation results for three trees, each on 30 taxa, averaged
over 400 replicates. Here one random rSPR move was done to change the first
tree to the second tree, and the second tree to the third.

constNJ with agreement profile two to have total length about 1.038. Note
that constNJ does not always return a tree for every agreement profile which
is allowed under the constraints. In those cases, we simply took the total tree
length from the largest non-empty agreement profile.

Figure 8 shows exactly what one might expect. Namely, if we generate pairs
of identical trees, then not much improvement in terms of total tree length is
gained by allowing the trees to differ. However, if the trees are one rSPR move
apart, then there is a substantial drop when allowing one rSPR move, but not
much more after that; this indicates that only one rSPR move is called for by
the data. The situation is similar for the other numbers of rSPR moves. Thus,
at least in simulation with good quality data, it appears that one should be able
to make a reasonable judgment as to the correct number of rSPR moves for the
data set at hand, as was done in the introduction.

We also performed some simulations allowing an incorrect number of rSPR
moves (Figure 9). As shown there, giving a too-small constraint interpolates
between results from concatenated data and the correct specification, while too-
large constraints give performance similar to the correct constraint. One might
expect constNJ with too-large constraints to give results similar to independent
NJ; we do not have a clear explanation why this is not the case.

7 Conclusion

In this paper we present constNJ, a consistent distance-based algorithm for
a collection of trees with pairwise rSPR constraints, such as those constraints
satisfied by collections of trees which fit into a reticulation network. constNJ is
deterministic and a strict generalization of the neighbor-joining algorithm. In
order to ensure that the resulting set of trees satisfy the specified constraints
on rSPR distance, we develop the theory of maximum agreement partitions,

24

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 1 2 3 4 5

T
ot

al
 tr

ee
 le

ng
th

m value

topologically identical
one rSPR move

two rSPR moves
three rSPR moves

Figure 8: Comparison of the total tree lengths for simulated trees differing by
the described number of moves and then reconstructed using constNJ; average
of 100 simulations. As can be seen, the most significant decreases in the total
tree length happen when getting to the correct number of rSPR moves, after
which the plot levels off. For example, on the line “two rSPR moves,” there
are significant decreases in length when going to one and two rSPR moves, but
not much decrease after that. Thus, at least in simulation, it appears possible
to make a reasonable choice concerning the number of rSPR moves to allow
between the two trees.

25

 0

 5

 10

 15

 20

 25

 100 1000 10000

R
ob

in
so

n-
F

ou
ld

s
di

st
an

ce

sequence length

concatenated NJ
independent NJ

constNJ 0
constNJ 1
constNJ 2
constNJ 3
constNJ 4

Figure 9: Comparison of various specified constraints for constNJ; average of
100 simulations. Data was simulated on two trees, each on 30 taxa, such that
two random rSPR moves were done to change the first tree to the second tree.
Then reconstruction was done with rSPR distance constraints of 0, 1, 2, 3, and
4. As would be expected, having a constraint of 0 (identical trees) has quali-
tative performance similar to that of concatenated NJ, the best performance is
obtained by the correct constraint of 2 moves, and a constraint of 1 gives results
between those for 0 and 2. The performance of 3 is similar to that for 2, while
4’s performance degrades with accurate distances.

culminating in Theorem 2.
We hope that this algorithm is the beginning of a new direction for phyloge-

netic inference of reticulation networks. We simplify the problem considerably
by assuming that the alignment blocks are known in advance; in doing so we
preserve the correlation between sites in the alignment with the same history.
Rather than first finding trees and then attempting to put them into a recombi-
nation network, we investigate the balance between discordance between trees
and optimality of the ensemble of trees. By using trees whose rooting is derived
from outgroups, we find explicit evolutionary histories.

To our knowledge, constNJ is the first algorithm of its kind, and there is
considerable room for improvement over this first attempt. First, we enforce
pairwise bounds on the rSPR distance between trees, which is a relatively weak
way to show that these trees fit into a network. A more explicit approach would
be desirable. Second, distance-based methods waste a considerable amount
of information which is used by likelihood-based methods; a logical next step
would be to create a likelihood-based method. Doing so would require a col-
lection of “moves” analogous to rooted nearest-neighbor-interchange or rSPR
moves for a heuristic search, but for collections of trees, with the constraint
that the moves don’t change the rSPR distance between trees too much. One
option would be to explicitly store a reticulate network in memory and have

26

the trees moving about inside the reticulate network while the network changes.
Such an algorithm would do a better job of actually reconstructing a reticulate
network. Third, an alternative direction for heuristic optimization might be to
do a more complete search for the minimum length tree in a manner analogous
to algorithms searching for the BME tree. Fourth, a more immediate issue
is that constNJ does not reconstruct branch lengths. It would be possible to
do a distance-based branch length estimation in a manner similar to that for
usual neighbor-joining, but the fact that we are choosing trees which may be
sub-optimal according to the NJ criterion implies that negative branch lengths
might be encountered. Alternatively, one might use a program such as PHYML
(Guindon and Gascuel, 2003) to estimate branch lengths on each fixed topology
independently. This appears to be a reasonable way to proceed, despite the
fact that the correlation between branch lengths of the different trees is lost. A
more correct approach will require some sort of correlation of the branch lengths
in a model-based manner, and we believe that such reconstruction is probably
best done in the context of a complete likelihood-based approach as described
above. Finally, it might be interesting to incorporate some constNJ ideas into
bootscanning-type methods for recombination breakpoint inference.

Eight years ago, Kuhner et al. (2000) wrote “[w]hen recombination occurs
adjacent sites may have different, although correlated, genealogical histories.
Reconstructing these genealogies with certainty is impossible.” Although we do
not claim certainty for this (or any forthcoming) algorithm attempting to recon-
struct reticulate phylogenetic history, we think that there is cause for optimism
and look forward to seeing future developments in this area.

Acknowledgments

The author would like to thank Lior Pachter for a number of helpful early dis-
cussions. He is also very grateful to the Mullins HIV lab at the University of
Washington for the ongoing collaboration which led indirectly to the present
work, and to the Armbrust Oceanography lab at the University of Washington
for use of their computing cluster. The author made use following useful soft-
ware: Figtree (Rambaut, 2008), PHYML (Guindon and Gascuel, 2003), and
PHYLIP (Felsenstein, 2004b).

References

Allen, B. and Steel, M., 2001. Subtree transfer operations and their induced
metrics on evolutionary trees. Ann. Combinat. 5, 1–15.

Ané, C., Larget, B., Baum, D., Smith, S., and Rokas, A., 2007. Bayesian
estimation of concordance among gene trees. Mol. Biol. Evol. 24, 412.

Bandelt, H. and Dress, A., 1992a. A canonical decomposition theory for metrics
on a finite set. Adv. Math. 92, 47–105.

27

Bandelt, H. and Dress, A., 1992b. Split decomposition: a new and useful ap-
proach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1,
242–52.

Baroni, M., Semple, C., and Steel, M., 2005. A framework for representing
reticulate evolution. Ann. Combinat. 8, 391–408.

Baroni, M., Semple, C., and Steel, M., 2006. Hybrids in real time. Syst. Biol.
55, 46–56.

Bordewich, M. and Semple, C., 2005. On the computational complexity of the
rooted subtree prune and regraft distance. Ann. Combinatorics 8, 409–423.

Bordewich, M. and Semple, C., 2007a. Computing the hybridization number of
two phylogenetic trees is fixed-parameter tractable. IEEE TCBB 4, 458–466.

Bordewich, M. and Semple, C., 2007b. Computing the minimum number of
hybridization events for a consistent evolutionary history. Discr. Appl. Math.
155, 914–928.

Bryant, D., 2005. On the uniqueness of the selection criterion in neighbor-
joining. J. Classif. 22, 3–15.

Bryant, D. and Moulton, V., 2004. Neighbor-net: An agglomerative method for
the construction of phylogenetic networks. Mol. Biol. Evol. 21, 255–265.

Desper, R. and Gascuel, O., 2004. Theoretical foundation of the balanced
minimum evolution method of phylogenetic inference and its relationship to
weighted least-squares tree fitting. Mol. Biol. Evol. 21, 587–598.

Desper, R. and Gascuel, O., 2005. The minimum evolution distance-based ap-
proach to phylogenetic inference. In Gascuel, O., ed., Mathematics of evolu-
tion & phylogeny, 1–32. Oxford University Press, Oxford, UK.

Edwards, S., Liu, L., and Pearl, D., 2007. High-resolution species trees without
concatenation. PNAS 104, 5936.

Felsenstein, J., 2004a. Inferring Phylogenies. Sinauer Press, Sunderland, MA.

Felsenstein, J., 2004b. PHYLIP (Phylogeny Inference Package) version 3.6.
Distributed by the author. Department of Genome Sciences, University of
Washington, Seattle .

Gascuel, O., 1997. Concerning the NJ algorithm and its un-weighted version,
UNJ. In Mirkin, B. and McMorris, F. R., eds., Mathematical hierarchies and
biology, DIMACS series in discrete mathematics and theoretical computer
science, 149–70. American Mathematical Society, Providence.

Gascuel, O. and Steel, M., 2006. Neighbor-joining revealed. Mol. Biol. Evol.
23, 1997.

28

Griffiths, R., Jenkins, P., and Song, Y., 2008. Importance sampling and the
two-locus model with subdivided population structure. Adv. Appl. Prob. 40,
473–500.

Guindon, S. and Gascuel, O., 2003. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.

Gusfield, D., Eddhu, S., and Langley, C., 2004. Optimal, efficient reconstruction
of phylogenetic networks with constrained recombination. J. Bioinf. Comp.
Biol. 2, 173–214.

Hein, J., Jiang, T., Wang, L., and Zhang, K., 1996. On the complexity of
comparing evolutionary trees. Discrete Appl. Math. 71, 153–169.

Hudson, R. and Kaplan, N., 1985. Statistical properties of the number of re-
combination events in the history of a sample of DNA sequences. Genetics
111, 147–164.

Hudson, R. R., 1983. Properties of a neutral allele model with intragenic re-
combination. Theo. Pop. Biol. 23, 183–201.

Huggins, P. and Yoshida, R., 2008. First steps toward the geometry of cophy-
logeny. arXiv: q-bio/0809.1908 .

Huson, D. and Kloepper, T., 2005. Computing recombination networks from
binary sequences. Bioinformatics 21, 159–165.

Huson, D., Kloepper, T., Lockhart, P., and Steel, M., 2005. Reconstruction of
reticulate networks from gene trees. In RECOMB 2005, 233–249. Springer.

Kuhner, M. K., Yamato, J., and Felsenstein, J., 2000. Maximum likelihood
estimation of recombination rates from population data. Genetics 156, 1393–
1401.

Leroy, X., Doligez, D., Garrigue, J., Rémy, D., and Vouillon, J., 2007. The
objective caml system, release 3.10. http://caml.inria.fr/.

Levy, D. and Pachter, L., 2008. The neighbor-net algorithm. Adv. Appl. Math.
In press, http://arxiv.org/abs/math/0702515.

Linz, S., Semple, C., and Stadler, T., 2008. Temporal labeling for reticulation
networks. Preprint.

Lole, K., Bollinger, R., Paranjape, R., Gadkari, D., Kulkarni, S., Novak, N.,
Ingersoll, R., Sheppard, H., and Ray, S., 1999. Full-Length Human Immun-
odeficiency Virus Type 1 Genomes from Subtype C-Infected Seroconverters
in India, with Evidence of Intersubtype Recombination. J. Virol. 73, 152–160.

Lyngsø R., Song, Y., and Hein, J., 2008. Accurate computation of likelihoods
in the coalescent with recombination via parsimony. In RECOMB 2008.
Springer-Verlag New York Inc.

29

Maddison, W. P., 1997. Gene trees in species trees. Sys. Biol. 46, 523–536.

Minin, V., Dorman, K., Fang, F., and Suchard, M., 2005. Dual multiple change-
point model leads to more accurate recombination detection. Bioinformatics
21, 3034–3042.

Nakhleh, L., Warnow, T., Linder, C., and John, K., 2005. Reconstructing
reticulate evolution in species-theory and practice. Journal of Computational
Biology 12, 796–811.

Rambaut, A., 2008. Figtree v.1.1.1. http://tree.bio.ed.ac.uk/software/figtree/.

Robinson, D. and Foulds, L., 1981. Comparison of phylogenetic trees. Math.
Biosci 53, 131–147.

Saitou, N. and Nei, M., 1987. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

Semple, C. and Steel, M., 2003. Phylogenetics. Oxford University Press, Oxford.

Semple, C. and Steel, M., 2004. Cyclic permutations and evolutionary trees.
Adv. Appl. Math. 32, 669–680.

Sneath, P., 1975. Cladistic representation of reticulate evolution. Syst. Zool 24,
360–368.

Song, Y. and Hein, J., 2005. Constructing minimal ancestral recombination
graphs. J. Comp. Biol. 12, 147–169.

Suchard, M. A., Weiss, R. E., Dorman, K. S., and Sinsheimer, J. S., 2003.
Inferring spatial phylogenetic variation along nucleotide sequences: A multiple
changepoint model. J. Am. Stat. Assoc. 98, 427–437.

The Oxford English Dictionary., 1989. “reticulated”. dictionary.oed.com entry
#50204774.

Thomson, M., Delgado, E., Manjón, N., Ocampo, A., Villahermosa, M., Mariño,
A., Herrero, I., Cuevas, M., Vázquez-de Parga, E., Pérez-Álvarez, L., et al.,
2001. HIV-1 genetic diversity in Galicia, Spain: BG intersubtype recombinant
viruses circulating among injecting drug users. AIDS 15, 509.

Wang, L., Zhang, K., and Zhang, L., 2001. Perfect phylogenetic networks with
recombination. J. Comp. Biol. 8, 69–78.

Woolley, S., Posada, D., and Crandall, K., 2008. A comparison of phylogenetic
network methods using computer simulation. PLoS ONE 3.

Wu, Y., 2008. A practical method for exact computation of subtree prune and
regraft distance. Bioinformatics 25, 190 – 196.

30

ar
X

iv
:0

90
1.

15
98

v2
 [

q-
bi

o.
PE

]
 2

0
Ja

n
20

09

constNJ: an algorithm to reconstruct sets of

phylogenetic trees satisfying pairwise topological

constraints

Frederick A. Matsen

UC Berkeley Dept. Statistics

367 Evans Hall #429

Berkeley, CA 94720-3860

USA

phone: +1 510 642 2450

fax: +1 510 642 7892

matsen@berkeley.edu

http://www.stat.berkeley.edu/̃ matsen/

October 31, 2018

1

http://arxiv.org/abs/0901.1598v2

Abstract

This paper introduces constNJ, the first algorithm for phylogenetic

reconstruction of sets of trees with constrained pairwise rooted subtree-

prune regraft (rSPR) distance. We are motivated by the problem of con-

structing sets of trees which must fit into a recombination, hybridization,

or similar network. Rather than first finding a set of trees which are op-

timal according to a phylogenetic criterion (e.g. likelihood or parsimony)

and then attempting to fit them into a network, constNJ estimates the

trees while enforcing specified rSPR distance constraints. The primary

input for constNJ is a collection of distance matrices derived from se-

quence blocks which are assumed to have evolved in a tree-like manner,

such as blocks of an alignment which do not contain any recombination

breakpoints. The other input is a set of rSPR constraints for any set of

pairs of trees. constNJ is consistent and a strict generalization of the

neighbor-joining algorithm; it uses the new notion of “maximum agree-

ment partitions” to assure that the resulting trees satisfy the given rSPR

distance constraints.

2

1 Introduction

Since the pioneering paper of ?, tens of thousands of papers have been published

on the subject of “reticulate evolution.” “Reticulate evolution” has generally

come to mean evolution where genetic material for a new lineage may come from

two or more sources, as in the case of recombination and hybridization. The

Oxford English Dictionary (1989) defines “reticulated” to mean “constructed

or arranged like a net; made or marked so as to resemble a net or network.”

Correspondingly, rather than evolutionary history being representable as a tree,

a network is more appropriate. A considerable amount of effort has gone into

the phylogenetic reconstruction of these networks.

Algorithms for phylogenetics in the presence of reticulation have followed

a curiously different path then the mainstream of phylogenetics. As surveyed

below, current algorithms fall into three types: first, there are algorithms which

attempt to find the phylogenetic network displaying some fixed characteristics

(such as splits in an alignment or some set of trees) which contain the mini-

mum number of reticulation events. Secondly, there are algorithms to construct

“splits networks,” which do an excellent job of representing conflicting signals in

the data, but do not give an explicit evolutionary history. The third approach

is to sample from the posterior distribution of a population-genetics model,

such as the coalescent with recombination. None of these approaches furnish a

practical solution for certain cases, such as HIV researchers who would like to

reconstruct the evolutionary history of an alignment which includes recombi-

nant sequences. Indeed, first fixing a set of characteristics and then minimizing

the number of reticulation events ignores the balance between number of retic-

ulation events and phylogenetic optimality, the splits network approach does

not tell a complete evolutionary story, and population-genetic algorithms are

are not yet sufficiently fast for DNA sequence datasets which have thousands

3

of nucleotides. As there are no algorithms which are practical for doing phylo-

genetic reconstruction in this setting, HIV researchers who wish to reconstruct

evolutionary history typically proceed in one of two ways: they either treat the

whole alignment as having a single tree-like history, which cannot possibly be

correct, or they build trees on sub-alignments independently, which does not

take into account the underlying network structure. These two extremes, of as-

suming all trees have the same topology or allowing their topologies to differ in

arbitrary ways, leave a substantial gap in the middle, where the correct balance

of optimality and discord should be found.

The goal of constNJ is to begin filling this gap in a manner analogous to

classical phylogenetic inference algorithms. To do so, we make a different set of

assumptions than has previously been done considering the input and desired

output. Regarding the data, we assume that that the given alignment has been

segmented into “alignment blocks”, each of which can be described by a sin-

gle tree. For example, in the case of recombination, the alignment blocks are

the segments of an alignment which do not contain recombination breakpoints.

(Note that for the purposes of this paper we will be using the word “recom-

bination” in the general sense, including processes such as gene conversion.)

Although the assumption that the data comes pre-segmented is a substantial

one, we don’t think that it is unreasonable. From a practical standpoint, some

assumption needs to be made, as algorithms which attempt to find a correct

segmentation of the data and a sequence of trees simultaneously have a difficult

time searching the complete space. Furthermore, sometimes a segmentation is

clear, such as the distinct RNA strands of the influenza genome. Other times,

such as for recombination, it is not so clear, but even in this more difficult case

the inference of recombination breakpoints has seen significant progress in the

last 10 years (reviewed below). We will also assume that an outgroup has been

selected. Such a choice is crucial, as it establishes directionality for reticulation

4

Figure 1: An example “reticulate” network and the two trees that it contains.

Those two trees are related by a single rooted subtree prune regraft (rSPR)

move, whereby the middle subtree is cut off of the tree and reattached at another

location. The node v will be called a reticulation node.

events.

Regarding desired output, rather than actually building a single reticulate

network, this paper will focus on building “correlated sets of trees,” which dis-

play the sorts of constraints found on trees which fit in a reticulate network.

We are focused on building trees because each alignment block is correctly de-

scribed by a single tree. However, this set of trees must fit into a network,

which forces constraints on their topology. Specifically, the trees which sit in

these networks must be related by rooted subtree-prune-regraft (rSPR) moves,

whereby a rooted subtree is cut from the original tree and then re-attached in

another location (Figure 1). We describe below how it is necessary for trees

sitting in a reticulate network to be related by rSPR moves, though this is not

a sufficient condition.

For constNJ, we assume that the user can supply a series of constraints

describing the number of rSPR moves allowable between pairs of alignment

blocks. For example, if the alignment contains “pure” types and a single class

of recombinants which are derived from a pair of types, then there should be

two alignment blocks and the trees for those blocks should be related by one

rSPR move as in Figure 1. The challenge, then, is to reconstruct a set of trees

which satisfy the constraints and which together optimize some phylogenetically

relevant criterion, such as likelihood, parsimony, or balanced minimum evolu-

tion. Note that constNJ actually constructs a number of such sets of trees, in

order to display the balance between optimality of the individual trees and the

5

number of reticulation events needed to fit the trees together into a network.

We now present a motivating example. The CRF14 BG circulating recom-

binant form (CRF) of HIV is known to be a mosaic of subtype B and subtype

G viruses, and the breakpoints of the recombination events are known (?). We

will call the region of the alignment where BG derives from the G subtype the

“G region,” and the region where BG derives from the B subtype the “B re-

gion.” As in ? and all similar papers we could find in the area, researchers build

trees independently on the no-recombination blocks. We have repeated such an

analysis in Figure 2, building PHYML maximum likelihood phylogenetic trees

using the F84 model and rooted using CPZ.CD.90.ANT.U42720 (removed from

tree for clarity). As one would hope, the trees do indeed show that the BG

CRF derives one portion of its RNA from the G subtype, and the other part

from the B subtype. However, there are many more differences between the

two trees than should occur for an alignment with a single recombinant strain.

For example, the rooting changes between the two trees, as does the location of

the C and the F-K clades. Building a recombination network out of these trees

would lead a number of spurious hypothesized recombinations.

In contrast, for this dataset constNJ returns a collection of pairs of trees

displaying the balance between the number of allowed rSPR moves between

pairs of trees and phylogenetic optimality. This balance is described in the text

output of constNJ, which is shown in Table 1 for the BG dataset. The first

column shows the rSPR distance between the two reconstructed trees (in this

case the G region tree and the B region tree). As described below, the notion

of optimality for constNJ is total tree length, which is a trivial generalization

of the balanced minimum evolution (BME) criterion (?). It is displayed in the

second column for the pairs of trees. Thus the second line states that constNJ

found a pair of trees which differ by a single rSPR move, and which have total

tree length about 7.119. The third column just shows the difference between

6

Figure 2: Phylogenetic trees of the pure subtypes of HIV and the BG recombi-

nant clade constructed independently using the no-recombination blocks of the

HIV genome. The single letters (e.g. A,B,C. . .) label clades of subtypes, and

BG denotes a clade of circulating recombinant forms (CRFs) made from B and

G subtypes. Tree (a) is built from the “G region,” i.e. the region where the

BG CRF derives from the G subtype, and tree (b) is built from the “B region,”

where BG derives from the B subtype. As noted in the text, although these

trees do place the recombinant strains in the correct locations, they differ in a

number of important ways which are not explained by recombination events. It

is the perspective of this paper that these extra differences represent phyloge-

netic error, and that accuracy can be improved by constraining the trees to fit

into a recombination network.

the second column values between rows. Thus 0.0942 signifies that there is a

decrease of magnitude 0.0942 in total tree length by allowing a single rSPR

difference between the two trees.

In this way we can achieve an understanding of the balance between phylo-

genetic optimality and number of recombination events. For example, we can

see that the decrease in allowing a single recombination event is significantly

greater in magnitude than that for allowing two rather than one. And sur-

prisingly, allowing nine rSPR moves does not significantly decrease the total

tree length compared to allowing three. Because the improvement in total tree

length when allowing one rSPR move is significantly greater than that for any

subsequent rSPR moves, we believe that Table 1 suggests that the data prob-

ably arose from one recombination event, which agrees with the established

knowledge concerning these taxa.

Furthermore, the trees which constNJ finds assuming a single recombination

7

Figure 3: One pair of phylogenetic trees constructed for the same dataset using

constNJ. In contrast to Figure 2, the only difference between the two trees is

the location of the BG recombinant clade. These two trees fit into a recombi-

nation network with a single recombination event, as should be the case for a

tree for the pure subtypes with a single recombinant strain like we have here.

constNJ correctly identifies that the BG subtype is a recombinant of the B and

G subtypes.

event agree with the accepted recombination history of the BG recombinant

circulating form (Figure 3). In particular, the only difference between them

is the location of the BG clade, which switches from the G to the B subclade

depending on the region analyzed. Importantly, these two trees can fit into a

recombination network with a single reticulation node, in contrast to those in

Figure 2.

We believe that constNJ is the first algorithm of its kind, but will now review

literature on related topics, starting with common terminology. The currently

accepted term for the class of networks including both hybridization and recom-

bination networks is “reticulate network”.1 If we consider a rooted tree to be

a directed graph such that edges are directed away from the root, a reticulate

network is a rooted phylogenetic tree with additional directed edges making

a directed acyclic graph with “tree nodes” of in-degree one and “reticulation

nodes” of in-degree two (?).

A considerable amount of work has gone into the problem of constructing a

reticulate network given a set of phylogenetic trees which it must contain. This

problem was initiated by ? and considerable progress has been made by ?, ?, ?,

and ??. As described above, we differ from these approaches as we would like

1This terminology is redundant, as the word “reticulate” already means network-like.

8

to estimate the trees while ensuring that they fit into a reticulate network.

A related problem (which was the original motivation for fitting trees into

a network) is to reconcile distinct gene trees into a single species tree. This

problem has received an appropriately large amount of attention, and has found

a more realistic model-based formulation in ? and ?. These differ from the

present paper because they assume that there is a single species tree, and that

“correctness” of a gene tree should in part be judged by the degree to which

it fits within a species tree due to a coalescent model. In our setting, however,

there is no single species tree, and the coalescent model may not be appropriate.

Sometimes a related assumption is made, which is not that complete species

trees are known, but that the resulting recombination network must display

a specified collection of bipartitions, which are typically called splits. This

is equivalent to assuming a supplied alignment evolves according to the infinite

sites model of mutation. The problem again is to find a network which minimizes

the number recombination events. This problem was first formulated by ?, and

was shown to be NP-hard in ?. Progress was made in a sub-case by ? and

a simpler related (and in some ways more realistic) problem was solved by ?.

In ?, the authors note that the algorithm in ? can be extended to this case.

Although a different formulation, this splits/infinite sites approach represents a

different version of the same strategy: find the network displaying a certain set

of characteristics which minimizes the number of reticulation events.

Splits network methods are a biologically useful and mathematically inter-

esting way of understanding conflicting signals in phylogenetic data. The first

method to construct splits networks from distance data was the split decompo-

sition approach of ??. Another successful approach has been the “neighbor-net”

algorithm created by ? and further analyzed by ?. These methods form a useful

complement to phylogenetic analysis in the traditional tree-based sense, but do

not reconstruct an explicit evolutionary history. We also note that recombina-

9

tion networks need not be circular split systems, which are the sorts of splits

networks returned by neighbor-net.

On the other end of the spectrum lie likelihood-based methods using the

coalescent with recombination (?). Major recent advances have been made

in this area. The full likelihood is quite daunting to compute, but ? have

a parsimony-based approach which saves on computation by several orders of

magnitude. Importance sampling (?) is also promising, but is not yet efficient

enough for the long alignments typically encountered in phylogenetics. Also,

it is the intent of this paper to construct a method which is independent of

population genetics models such as the coalescent.

A related though distinct line of research is the inference of recombination

breakpoints. One of most basic and most commonly used methods for the infer-

ence of recombination breakpoints is called “bootscanning”, whereby a window

is scanned along the alignment and a phylogenetic tree is built for each position

of the window; a change in topology between sections of the window can be inter-

preted as evidence for a recombination breakpoint (?). There are many different

variations on this theme. One promising line of research by Marc Suchard and

collaborators apply multiple change-point models and reversible-jump MCMC

to estimate trees and model parameters along the alignment (??). We also note

that sometimes recombination breakpoints can be seen “with the naked eye” as

in ?. In contrast to our paper, it is not the intent of these methods to accu-

rately infer phylogeny; furthermore they do not posit any relationship between

trees in neighboring no-recombination blocks. Furthermore, some of the more

computationally intensive methods actually require a fixed reference tree.

In summary, we are not aware of any available method for building reticulate

networks which gives an explicit rooted phylogenetic history for each column

of the alignment, which elucidates the balance of discord between the trees

and optimality for those trees, and which is efficient enough to be useful for

10

modern data sets. The lack of practical phylogenetic algorithms in the presence

of recombination was recently demonstrated in a simulation study by ?. ? have

noted the lack of useful reconstruction algorithms for host-parasite relationships

and have noted the need for an algorithm which balances tree concordance and

optimality as constNJ does. Although far from a complete solution for these

cases, we believe that constNJ is a first step in the right direction.

11

2 General description of constNJ

The primary input for constNJ is a collection of alignment blocks, which as

described are disjoint subsets of columns of the alignment which are assumed

to evolve in a tree-like manner. In the case of alignments with recombinant

sequences, the alignment blocks are simply the no-recombination blocks. Note

that the alignment blocks need not be contiguous; for example a single recom-

bination event with two recombination breakpoints will result in two, not three,

alignment blocks. The other input for constNJ is a sequence of constraints

on the rSPR distance between the trees constructed for the no-recombination

blocks as described below. Given this input, the goal of constNJ is to exhibit

the balance between discordance among the alignment-block trees on one hand,

and optimality of the trees in some phylogenetic sense on the other.

constNJ is a deterministic distance-based approach to reconstruction; we

chose this direction for several reasons. First, the underlying space for a likeli-

hood optimization scheme is even larger than usual, making a heuristic search

even less appealing: there are [(2n − 3)!!]k k-tuples of rooted bifurcating phy-

logenetic trees on n taxa. The sorts of constraints we will be imposing reduces

this number substantially, but little is known about the resulting graph under

the sorts of moves typically used in heuristic phylogenetic searches. Further-

more, likelihood-based approaches are substantially improved by starting with a

reasonable tree, which in modern applications is typically a distance-based tree.

Thus, even if a likelihood-based approach was the eventual goal, a distance-

based approach would be useful as a “seed” for the heuristic likelihood search.

Finally, we feel that distance- and likelihood-based algorithms occupy distinct

and complementary roles in the world of computational phylogenetics.

Our goal is to design an approach which generalizes the remarkably accu-

rate and hugely popular neighbor-joining algorithm (?). Remarkably, it took

12

almost 20 years for the phylogenetics community to learn the objective function

of neighbor-joining; during that time it was even claimed that no such objec-

tive function existed. However, it is now known that neighbor-joining greedily

optimizes the “tree length” ℓ(T,D) (defined below in Equation 1) for the given

distance matrix D. constNJ generalizes this objective function, as it attempts

to minimize the total length of all of all k trees (2) by a combination of greedy

steps.

The trees resulting from constNJ are constrained by the user to be some

specified number of rooted subtree-prune-regraft (rSPR) moves from one to

another. As displayed in Figure 1, reticulation events such as recombination and

hybridization correspond to rSPR tree rearrangements. The converse is not true:

arbitrary rSPR tree rearrangement events need not correspond to reticulation

events. For recombination or hybridization to take place, the participants in

the event need to exist at the same time; it is not hard to set up examples

of rSPR move combinations which violate this fact (see, e.g., Song and Hein,

2005) . Methods have been developed which take timing restrictions into account

(??), but we do not incorporate these ideas into a phylogenetic reconstruction

framework. This may be an interesting avenue to for future research, but on

the other hand seeing such timing violations can actually be informative. First,

there may be something wrong with the data. Second, it has been noted (?)

that reticulation networks can appear to violate timing constraints if certain

taxa are not sampled. The problem of determining the minimal number of

“missing” taxa required to explain timing constraints has been analyzed by

?. Therefore we have left interpretation of timing issues up to the user of the

program.

We now make a more formal statement of the problem constNJ attempts

to solve; note that a similar formulation was made independently by ? in the

context of host-parasite relationships.

13

Problem 1 (rSPR-constrained balanced minimum evolution). Given k n × n

distance matrices D1, . . . , Dk and a symmetric k×k constraint matrix C, find the

set of trees T1, . . . , Tk minimizing
∑k

i=1 ℓ(Ti, Di) such that drSPR(Ti, Tj) ≤ Ci,j

for each i and j.

Theorem 2. constNJ is a consistent algorithm to solve Problem 1.

For constNJ we proceed in a manner analogous to that for neighbor-joining.

The neighbor-joining algorithm starts with all taxa connected to a central node,

then at every stage, chooses the “coalescence” (in other papers, “amalgamation)

of trees which most decreases the value of the total tree length. We mimic this

philosophy by evaluating coalescences based on how they affect the total tree

length. However, in the end we must come up with a collection of trees T1, . . . , Tk

that satisfy the prescribed rSPR constraints. This raises the question of how one

might bound the rSPR distance of the eventual trees “ahead of time,” i.e. before

the termination of the coalescence steps. For instance, if in the developing trees

one has the subtrees (a, b) for the first distance matrix, and (a, c) for the second

distance matrix, it is clear that the resulting trees must have rSPR distance at

least one between trees T1 and T2.

The question of how to bound eventual rSPR distance is solved by Theo-

rem 19. Specifically, we generalize m, the size of the maximum agreement forest

(?) to these partially coalesced trees, which forms a sharp bound. In short, the

m value for a pair of partially coalesced trees T and S is the minimum rSPR

distance possible among trees resulting from coalescences of T and S; thus once

a pair of partially coalesced trees achieves an m value above the corresponding

constraint, we can throw that pair out, as the eventual resolved trees will never

satisfy the constraints.

Using this m we construct our greedy algorithm, as shown in Figure 4. Say

that we only have two trees, and that we want to find the minimal-total-length

14

Figure 4: Schematic diagram of the constNJ algorithm. As described in the

text, at every stage we attempt to find the optimal pair of partially coalesced

trees which could eventually be at most some fixed number of rSPR moves

apart. As shown in Theorem 19, the m value for a pair of partially coalesced

trees forms a sharp lower bound for the eventual rSPR distance between those

trees. Therefore pairs of partially coalesced trees which have m value exceeding

the constraint on rSPR distance can be thrown out, as shown by the X.

pair of trees which are only one rSPR move apart. At every stage, we attempt

to find the best pair of partially coalesced trees with m values zero and one.

We start with two star trees; m applied to this pair is zero. The first-step

coalescence must also lead to a pair of trees which have m value zero, as one

of the trees is still completely unresolved. Say the optimal, in terms of total

tree length, second step NJ-type coalescence leads to a pair of trees which have

m value one (indicated by the first diagonal arrow in Figure 4). Then we go

down the list of second-step coalescences for the trees, and find the best one

which does not increase the m value at all (indicated by a horizontal arrow in

Figure 4). Next we repeat the process for each of the trees from the previous

stage, saving the best pair of trees which have m values zero and one. In the

end, we will have the best pair of trees which have rSPR distances zero and one

which were achievable via a series of greedy steps. Although not guaranteed to

be the optimal pair of trees, the algorithm is consistent.

15

3 Technical preliminaries

In this section we review some definitions and clarify our notion of optimality.

As stated in the introduction, we will always assume that an outgroup taxon has

been chosen, and will label it ρ. Thus we always assume that ρ is contained

in any taxon set X . We will use the following definitions. For the purpose of

this paper, a tree on a finite taxon set X will be a rooted binary phylogenetic

X-tree. A forest on taxon set X will be a collection of trees on disjoint taxon

sets such that the union of the taxon sets is X . We will sometimes consider a

tree on X to be a forest with a single tree. An unrooted tree on a finite taxon

set X will be an unrooted phylogenetic X-tree (note that unrooted trees will be

allowed to have multifurcating nodes.) L(R), E(R), and V(R) will denote the

leaves, edges, and vertices of a tree, unrooted tree, or forest R.

Although ρ represents the true rooting of the phylogenetic tree, we will not

always assume that our trees or forests are rooted at ρ. We must do so

because the NJ-type coalescences will not in general root the tree at the edge

leading to ρ. Therefore, we must allow alternative rootings, but at the same

time keep in mind that the rSPR distance between the trees must be calculated

with respect to the edge leading to ρ. Thus we use the following definition of

rSPR on an unrooted tree: given an unrooted tree U on a taxon set X ∋ ρ, a

single SPR move first cuts some edge of the tree except for that leading to ρ,

resulting two rooted trees R and S. Say ρ ∈ L(R). Suppress the degree two

root node of R, and attach S to some edge of the resulting unrooted tree by

inserting a degree two node onto the chosen edge, then connecting the root of

S to that new node. This definition is the same as that of ? when considering

trees rooted at the edge leading to ρ.

As with any distance function defined implicitly in terms of a graph, the

minimum number of rSPR moves required to transform one tree T into another

16

S is a metric; we define drSPR(T, S) to be this number.

3.1 Tree length and the balanced minimum evolution cri-

terion

As reviewed by ?, phylogenetics researchers now understand the optimality func-

tion of the neighbor-joining algorithm (?). Let p(i, j) denote the path from i to

j in the unrooted tree T , and define the weight of a path from leaf i to leaf j as

w(i, j) =
∏

v∈p(i,j)

1

deg(v) − 1
.

Then the “length” of an n taxon tree T with respect to an n×n distance matrix

D is (?):

ℓ(T,D) =
∑

i,j

w(i, j)Di,j . (1)

The name “tree length” comes from the fact that if D is a distance matrix

derived from some assignment of branch lengths to the edges of T , then ℓ will

be the total length of all of the edges. However, the name may be somewhat

confusing initially, because ℓ need not be defined as sum of the branch lengths

of any specific tree.

The tree T which minimizes ℓ(T,D) for some distance matrix D is known

as the balanced minimum evolution (BME) tree for the distance matrix D.

The BME criterion is consistent (?), and neighbor-joining is a consistent tree-

building heuristic which greedily minimizes total tree length (?) As described

in Problem 1, constNJ attempts to minimize

k
∑

i=1

ℓ(Ti, Di) (2)

while enforcing pairwise constraints on the rSPR distance between pairs of trees.

When k = 1 constNJ is simply neighbor joining, while for k > 1 constNJ is a

strict generalization of NJ.

17

4 Rooted SPR and maximum agreement parti-

tions

This section describes the primary technical content of this paper. As described

in the introduction, we would like to proceed via coalescences in a manner simi-

lar to neighbor-joining, while ensuring that the eventual rSPR distance between

the trees is not too large. In order to assure adherence to the rSPR criterion,

we develop the notion of maximum-agreement partition, which generalizes the

notion of maximum agreement forest from ?. As shown in Theorem 19, max-

imum agreement partitions and the associated m value allow us to bound the

rSPR distance between the two partially resolved trees “in advance.”

4.1 Compatibility and coalescence

We will use the following definitions. A split on a taxon set X is a bipartition of

X . Because the set X will be clear, we will often abuse notation by identifying

A ⊆ X with the partition A|(X \ A). Furthermore, because we have a special

element ρ, we can distinguish between the two sides of a split; the side not

containing ρ will be called the rsplit (short for rooted split) of the split. It is

clearly equivalent to describe a given partition in terms of a split or an rsplit,

and we will use the two descriptions interchangeably.

Note that the neighbor-joining algorithm is typically thought of as proceed-

ing by coalescing internal nodes of an unresolved phylogenetic tree (see Figure 4);

however for our purposes it will sometimes be easier to consider the forest ob-

tained by deleting the central node and the associated edges. The opposite

construction will be called “starification.”

Definition 3. Given a forest F , define the starification ⋆(F) of F as the

following unrooted tree. If F has one tree, then suppress the degree two root

18

node of F . If F has two trees, then join their root nodes by an edge. If F has

three or more trees, join all of the root nodes of trees of F to a single node. The

new introduced node will be called the star node.

We will identify any one, two, or three tree forest F with its starification, in

which case there is no designated star node.

Definition 4. Given a tree T which is part of a forest F on a taxon set X,

define the edge splits ΣE(T) to be L(T)|[L(T)]c along with the set of splits on

X induced by the edges of T . We define ΣE(F) to be the union of the edge splits

of T across all trees T in F .

For example, the rsplits {3} and {2, 3, 4} are both edge rsplits of the forest

((1, ρ), 2); (3, 4).

Definition 5. Given a forest F on a taxon set X, A is a separating split of F

if A is the union of taxon sets for a collection of at least two trees of F . The

set of separating splits of F will be denoted ΣS(F).

Given a forest F we will write Σ(F) for ΣE(F)∪ΣS(F). This will be the set of

splits used to make agreement partitions as described below.

Definition 6. Two rsplits A and B will be called compatible if either A∩B = ∅,

A ⊆ B, or B ⊆ A.

Because A and B are the sides of the splits which do not contain ρ, this is

the same as the usual criterion for split compatibility (?). Therefore we have

the following well known theorem.

Theorem 7 (Buneman, 1971). A collection of splits M on a taxon set X is

pairwise compatible iff there exists an unrooted tree T on taxa X such that M

is a subset of ΣE(T). There is a one-to-one correspondence between compatible

sets of splits on X and minimally-resolved unrooted trees on X.

19

Definition 8. Two forests F and G on taxon set X are compatible if ΣE(F)

and ΣE(G) are pairwise compatible.

Definition 9. The join T ∧ S of two trees T and S on disjoint taxon sets is

the tree obtained by joining the root nodes of T and S to a new root node. The

coalescence of T and S in the forest F is the forest {T ∧ S} ∪ (F \ {T, S})}.

Note that the operation of coalescence gives a partial order on the set of

forests on a given taxon set. Namely, we write F � G if F is a coalescence of

G. Clearly, trees are the maximal elements in this partial order.

Definition 10. A tree S is a subtree of an unrooted tree U if S is one compo-

nent of the disconnected graph obtained by cutting an edge of U . A tree S is a

subtree of a rooted tree T if S is a component of the disconnected graph obtained

by cutting an edge of T , and S does not include the root of T .

We emphasize that the subtree definition is different than than that of an

induced subtree, which is as follows. The existence of induced subtrees is guar-

anteed by Theorem 7 or its rooted equivalent.

Definition 11. Given a tree T and Y ⊆ L(T), T |Y is the (rooted or unrooted)

tree on taxa Y with rsplits {A ∩ Y : A ∈ ΣE(T)}.

There is also an analogous definition for forests.

Definition 12. Given a forest F and Y ⊆ L(F), F |Y is

{T |Y : T ∈ F and L(T) ∩ Y 6= ∅}.

Proposition 13. If two forests F and G on a taxon set X are compatible, and

F has more than one tree, then there exists H ≻ F such that H is compatible

with G.

Proof. If F has two or three trees, the proposition is trivial. Otherwise, let U

be the tree with split set equal to the union of ΣE(F) and ΣE(G). If U is not

20

resolved (i.e. if there exists an internal node of degree greater than three) then

take an arbitrary resolution. As all of the trees T of F are resolved, each T sits

as a subtree of U ; let J be the union of the nodes of the T ∈ F (considered as

nodes of U). Let p denote the longest path in U which does not contact any of

the nodes in J . Because F has at least four trees, p will be nontrivial. Pick one

end of this path, which must be connected to a pair of trees S′, S′′ of F . Let

K = L(S′) ∪ L(S′′). As the split K|Kc is already a split of U , we know that it

is compatible with ΣE(F) and ΣE(G), and thus that Σ(S′ ∧ S′′) is compatible

with ΣE(G). Let H be the coalescence of S′ and S′′ in F .

4.2 Maximum agreement partitions

In this section we introduce the notion of maximum agreement partition (MAP),

which generalizes the idea of maximum agreement forests. Maximum agreement

forests were first introduced by ?, and further refined by ?. In broad terms,

given two forests F and G on a taxon set X , we will be interested in considering

partitions P which are obtainable from F and G independently by “combining”

edge splits and separating splits of those forests, in the same way that edge

cuts are combined when making maximum agreement forests. The appropriate

notion of “combining” splits is the infimum, which we now describe.

The set of partitions on a given finite set Y form a partial order, such that

a partition P1 ≤ P2 if P1 is a refinement of P2. In fact, the set of partitions

is a complete lattice, meaning that any set of partitions on Y has a supremum

and an infimum. For a collection of partitions M , we will use inf(M) to denote

their infimum.

Thus, as described below, a necessary condition for P to be an agreement

partition for two forests F and G is that P can be expressed as inf(M) and

inf(N) for M ⊆ Σ(F) and N ⊆ Σ(G). It will now be useful to connect that

21

definition to one in terms of convexity of characters (?).

Definition 14. Given a partition P on some set K, define P |J for some J ⊆ K

to be the partition {Y ∩ J : Y ∈ P}.

The following is a slight generalization of the definition of convexity given

by ?.

Definition 15. A partition P on a taxon set X is convex on a forest F on X

if there exists an H � F such that P induces a convex character on ⋆(H), i.e.

if there exists a partition P̃ on vertices V(⋆(H)) such that

(i) P = P̃ |X .

(ii) Any Ỹ ∈ P̃ separates ⋆(H) into connected components.

The following proposition relates the notions of “obtainable by a series of

cuts along edge or separating splits” with the notion of character convexity.

Proposition 16. A partition P of a taxon set X is convex on a forest F iff

there exists M ⊆ Σ(F) such that P = inf(M).

Proof. Assume M ⊆ Σ(F) such that P = inf(M). Note that K = inf(M ∩

ΣS(F) is a set of disjoint separating or root-edge splits for F ; thus we can

perform coalescences, making H , such that the splits from sets in K are edge

splits of H . Such an H will satisfy the criteria of the definition.

For the converse implication, cutting any edge (u, v) of⋆(H) for any H � F

gives a split in Σ(F). We then define M as the set of such splits su,v such that

such that (u, v) is an edge and u and v are in distinct sets of the partition P̃ .

By construction, P = inf(M).

The following definition generalizes the notion of agreement forest.

22

Definition 17. We say that a partition P of taxon set X is an agreement

partition for a pair of forests F,G on X if

(i) for every pair of rsplits A ∈ ΣE(F), B ∈ ΣE(G), and Y ∈ P , A ∩ Y is

compatible with B ∩ Y .

(ii) P is convex on F and G.

We say that P is a maximum agreement partition (MAP) if the number of sets

of P is less than or equal to that of any other agreement partition. Let m(F,G)

be the number of sets in the MAP minus one.

Note that by Theorem 7, for two resolved unrooted trees U, V on a taxon

set X ∋ ρ, the size of the maximum agreement partition is the same as the size

of the maximum agreement forest of the trees (rooted at ρ) in the sense of ?.

Recall that the definitions of maximum agreement forest in ? differs from that

of ? and ?.

Proposition 18. Assume F , G, and H are forests on a taxon set X such that

H � F , and P is an agreement partition for H and G. Then P is also an

agreement partition for F and G.

Proof. Part (i) of the definition is clear as ΣE(F) ⊆ ΣE(H). Next we check

(ii), i.e. that P is convex on F . Note that H � F implies Σ(H) ⊆ Σ(F), as

the “extra” edge splits of H will be separating splits of F . By Proposition 16,

there exists an M ⊆ Σ(H) such that P = inf(M); by the previous sentence

M ⊆ Σ(F) and so by Proposition 16 again P is convex on F .

The following theorem is the main motivation for studying the maximum

agreement partition. Thus the proposition says that the size of the maximum

agreement partition of the two forests F and G is the same as the rSPR distance

in the best case.

23

Theorem 19. The minimum of drSPR(U, V) across all unrooted trees U � F

and V � G is equal to m(F,G).

The proof of this proposition will come after two lemmas.

Lemma 20. Given a partition P convex on F and Y ∈ P such that F |Y

includes two distinct trees T and S, then there exist distinct trees T̃ , S̃ ∈ F such

that
(

T̃ ∧ S̃
)
∣

∣

∣

Y
= T ∧ S. Furthermore, for any Z ∈ P not equal to Y and any

R ∈ {T̃ , S̃}, we have either Z ⊂ L(R) or Z ∩ L(R) = ∅.

Proof. Let H and P̃ be as in Definition 15. Let Ỹ ∈ P̃ be such that Ỹ ∩L(F) =

Y . Let T̃ (resp. S̃ ∈ F) be the tree such that T̃ |Y = T (resp. S̃|Y = S). Let

Q = L(T) ∪ L(S).

We now show that T̃ 6= S̃. The contrary would imply ⋆(H)|Q = T̃ |Q.

Because Q ⊂ Y and ⋆(H)|Y is connected by definition, T̃ |Q is connected so T

and S would not be distinct. This is a contradiction. Thus L(T̃) ∩L(S̃) = ∅ so
(

T̃ ∧ S̃
)∣

∣

∣

Y
= T̃ |Y ∧ S̃|Y = T ∧ S.

We now show the second statement of the lemma. Let r(W) denote the

root node of any tree W ∈ F . Note that r(T̃) and r(S̃) must be in Ỹ because

⋆(H)|Q is connected and the path between any a ∈ L(T) and b ∈ L(S) passes

through r(T̃) and r(S̃).

Now assume that for some R ∈ {T̃ , S̃} we have that some Z 6= Y of P

intersects L(R) but is not contained in it. Take c ∈ Z∩L(R) and d ∈ Z∩[L(R)]
c
.

Let Z̃ ∈ P be such that Z̃∩L(F) = Z. By the same argument as in the previous

paragraph, r(R) is in Z̃. This is a contradiction as Ỹ and Z̃ are disjoint.

Lemma 21. Assume that F and G are forests on a taxon set X, and P is an

agreement partition for F and G. Then there exist resolved trees U � F and

V � G such that P is an agreement partition for U and V .

Proof. It is enough to show that if one of the forests, say F , has at least four

24

trees then there exists an H0 ≻ F such that P is an agreement partition for H0

and G.

If for every Y ∈ P we have that F |Y is a single tree, then we can make H0 by

taking an arbitrary coalescence of F ; any such coalescence will be “broken” by

P and thus will not introduce any splits violating (i) of Definition 17. Thus we

assume that F |Y has at least two trees. By Proposition 13, there exist nontrivial

T, S ∈ F |Y such that the coalescence of T and S in F |Y is compatible with G|Y .

By Lemma 20, there exist T̃ and S̃ in F such that
[

T̃ ∧ S̃
]
∣

∣

∣

Y
= T∧S. LetH0

be the coalescence of T̃ and S̃ in F ; the second statement of Lemma 20 implies

that the coalescence of T̃ and S̃ does not introduce any new edge splits when

restricted any Z 6= Y in P , and so H0 satisfies the criterion (i) of a maximum

agreement partition.

Also, P is convex on H0, establishing criterion (ii). Indeed, by Proposi-

tion 16, let M ⊆ Σ(F) be such that P = inf(M); we need to show that

M ⊆ Σ(H0). The only difference between Σ(F) and Σ(H0) is that Σ(H0)

does not have separating partitions which separate T̃ and S̃, but M cannot

contain such a partition because T and S both have taxa in the same partition

of P .

Proof of Proposition 19. Lemma 21 shows that the minimum of m(U, V) is less

than or equal to m(F,G). The other inequality follows from Proposition 18.

Now note that for a resolved tree on X rooted at ρ, the notions of maximum

agreement forest and maximum agreement partition coincide. Thus by Theo-

rem 2.1 of ?, m(U, V) is equal to the rSPR distance between U and V for any

resolved U � F and V � G.

25

4.3 Calculating the maximum agreement partition

As introduced above, and described more clearly below, constNJ needs to find a

great number of agreement partitions. Indeed, a sample constNJ run with three

distance matrices, 27 taxa, with pairwise constraints of size two required 5867

calls to the subroutine finding the size of a MAP. Therefore a speedy calculation

of the MAP is essential.

In the present implementation of constNJ, the MAP is calculated is via a

simple extension of the algorithm by ?. As with the usual Bordewich-Semple al-

gorithm, we contract isomorphic subtrees and replace chains of pendant subtrees

with chains of three pendant edges. However, we consider separating rsplits as

well as edge rsplits to find the agreement partition.

An alternative would be to consider an integer linear programming (ILP) ap-

proach to the MAP problem based the work of Yufeng Wu, who has recently de-

veloped an ILP approach to finding a maximum agreement forest (?). Although

Wu’s ILP approach is many orders of magnitude faster than the Bordewich-

Semple algorithm for finding the size of the maximum agreement forest in the

“hard” case when two trees are quite different, our tests have shown that it is

slower in the “easy” case. This difference is probably because there is overhead

to creating the linear programming matrix, which does not scale strongly with

respect to the difficulty of the problem, while the Bordewich-Semple algorithm

is very fast for easy problems. It is possible that some of the ILP overhead could

be amortized by clever re-use of portions of the matrix across coalescences, or

a combination of Bordewich-Semple and Wu ideas, but we have not followed

these directions.

26

5 The constNJ algorithm

Assume constNJ is given k distance matrices on a taxon set X . On the way

to constructing our trees T1, . . . , Tk on X we will be constructing collections

of forests F = F1, . . . , Fk; we will call such a collection F an “instance.” For

example, each boxed pair of trees in Figure 4 is an instance (after deleting the

central “star” nodes). The agreement profile for an instance F is the k × k

matrix α(F) where α(F)ij is m(Fi, Fj). It describes the degree to which the

forests agree. The identical agreement profile is the k × k zero matrix. Define

the instance tensor to be a partially filled tensor of instances indexed by N
k2

,

where F is stored in the “slot” indexed by its agreement profile α(F).

Algorithm 22 (constNJ). Given n × n distance matrices D1, . . . , Dk and a

k × k constraint matrix C,

1. Let F(0) be the trivial instance, i.e. F
(0)
i is the trivial forest on n taxa for

each 1 ≤ i ≤ k. Let H(0) be the instance tensor containing only F(0).

2. Repeat the following until termination:

a. Let H be the instance tensor from the previous step.

b. Rank all possible coalescences of all of the instances of H by how

much they will decrease total tree length.

c. Make a “step” by walking down this ranked list in order as follows:

i. Perform the chosen coalescence, say of an instance F, and as-

sume that the resulting instance F′ has agreement profile X.

ii. If some entry of X is greater than the corresponding element of

C, discard F′ and test the next coalescence.

iii. If not, and F′ is the first in this step to have agreement profile X,

then save it. If, on the other hand, another instance has already

27

been found in this step with agreement profile X, then discard F′

as it must have a larger total tree length.

iv. Stop walking down the list if X is the identical agreement profile.

d. Terminate if each of the Fi have three trees or fewer.

We now show that this algorithm is consistent.

Proof of Theorem 2. In broad terms, Algorithm 22 is consistent because of the

consistency of neighbor-joining (??) and because the coalescence which most

decreases the total tree length must be a neighbor-joining step (?). We are given

a sequence of distance matrices D1, . . . , Dk and a symmetric k × k constraint

matrix C. By hypothesis, these distance matrices come from a sequence of

trees T1, . . . , Tk such that the rSPR distance between Ti and Tj is bounded

above by Ci,j . First, by the consistency of neighbor-joining, NJ applied to each

distance matrix independently will recover the correct collection of trees. Say

the sequence of neighbor-joining coalescences making Ti gives a series of forests

F1,i, . . . , Fn−1,i, where Fn−1,i = Ti. Thus by Theorem 19 (more specifically,

Proposition 18) and our assumptions about the Ti,

m(Fa,i, Fb,j) ≤ Ci,j (3)

for any 1 ≤ a, b ≤ k and 1 ≤ i, j ≤ n. Thus the constraints will always be

satisfied as long as we follow the sequence of NJ steps for each tree.

Next we show by induction that given this data, at every step every constNJ

forest will one of the Fr,j for 1 ≤ r < n and 1 ≤ j ≤ n− 1. This is clearly true

at initialization. By induction, assume the assertion is true at some constNJ

step. Consider the coalescence which decreases total tree length as much as

possible irrespective of constraints; say it occurs in Fk,i. As the coalescence

decreases the tree length of Fk,i compared to other coalescences of Fk,i, is also

a neighbor-joining step for Fk,i, making Fk+1,i. By the previous paragraph,

28

we know that this coalescence will preserve the constraints, and thus is also a

constNJ step (recall that each constNJ step decreases the total tree length as

much as possible amongst coalescences which preserve the constraints). Thus

at the end we get Fn−1,i for each i by induction. Because Fn−1,i = Ti, constNJ

is a consistent algorithm.

5.1 Implementation

We have implemented constNJ in the fast functional/imperative language ocaml

(?). The implementation has a simple command line interface, which is doc-

umented in the accompanying manual. It is available for download from the

author’s website, at http://www.stat.berkeley.edu/̃matsen/constNJ/ .

As described above, the primary input for constNJ is a series of distance

matrices, with one for each alignment block. The program is designed to ac-

cept distance matrices from the DNADIST program of the PHYLIP package,

although longer lines and taxon names are allowed. The first taxon is assumed

to be the outgroup. The program assumes that the taxa in the distance matrices

are ordered in a corresponding way. For instance, if one is using constNJ to

investigate recombination, all of the taxa should be listed in the same order, so

that the taxa in the no-recombination blocks correspond to one another. On the

other hand, if one is using constNJ to investigate host-parasite relationships,

the ith taxon in the parasite alignment should parasitize the ith taxon in the

host alignment. If, for example, a given parasite is present in multiple hosts,

this will require duplication of that parasite sequence in the alignment.

The second input for constNJ is a set of constraints for the resulting corre-

lated set of trees. There are two options for specifying these constraints: first,

via a file, or second, by enforcing “linear” constraints. For example, assume we

29

supply three distance matrices: D0, D1, and D2, and would like to construct

trees T0, T1, and T2. To specify constraints for these matrices, one writes one

constraint per line, with first the indices of the distance matrices then the num-

ber of rSPR moves allowed between those distance matrices. For example, a

line saying 0 2 1 would mean that T0 and T2 are constrained to be one rSPR

move apart. On the other hand, one may specify a linear constraint with a

linear constraint parameter. If the linear constraint parameter is L, then trees

Ti and Tj are constrained to be L · |i − j| rSPR moves apart. So if we apply a

linear constraint with parameter 2 in our example, then both T0 and T1 and T1

and T2 are constrained to be at most 2 rSPR moves apart, while T0 and T2 are

constrained to be at most 4 rSPR moves apart.

The output for constNJ is collection of correlated sets of trees, each of which

get their own .tre file, along with a .lengths file, which describes the total tree

length for each of these sets of trees. constNJ returns at most one correlated set

of trees for each agreement profile within the constraints, which is labeled by

the agreement profile. If the constraints are given in a file, then the agreement

profile is written in the order given in the file. If linear constraints are given,

the agreement profile is written as a vector representing an upper triangular

matrix in the usual way. For example, the agreement profile for three trees with

linear constraints is written (drSPR(T0, T1), drSPR(T0, T2), drSPR(T1, T2)), so the

set of trees in the file example.2 1 1.tre has agreement profile (2,1,1). The

.lengths file contains the information on tree lengths, as in Table 1 of the

introduction. Namely, for each correlated set of trees returned by constNJ, it

displays the total tree length for those trees.

30

5.2 Speed

A rigorous worst-case runtime analysis of constNJ would show that it can be

incredibly slow. Indeed, the maximum agreement partition is a generalization of

the maximum agreement forest; thus finding the size of the MAP is NP-hard by

the corresponding theorem by ?. However, constNJ does not just need to solve

one such problem, it needs to solve quite a number of them. At worst, constNJ

would need to find as many MAP’s as there are possible coalescences, just for a

single step and a single instance; if an instance had forests with ℓ1, . . . , ℓk trees,

then there will be
(

ℓ1
2

)

×· · ·×
(

ℓk
2

)

possible coalescences, each of which in theory

could require solving of a MAP problem. At any step there can be as many

instances as there are agreement profiles satisfying the constraint matrices, and

a problem with n taxa and k distance matrices will require nk such steps. Such

an analysis would not give a very clear understanding of the practical time

requirements of running constNJ.

In practice, constNJ can be used effectively for a moderate number of taxa

and a small number of closely-constrained trees. The running time depends

somewhat on the number of taxa, but quite a lot on the constraints and num-

ber of distance matrices. Indeed, the main bottleneck is the MAP calculation,

and the running time of the MAP calculation depends very strongly on the

constraints and the number of distance matrices.

However, what may be surprising is how much the running time depends on

the quality of the data. This is vividly illustrated by the simulations, where in

the case of two trees with two reticulation events and divergence of 0.1 mutation

per site per tree, the sequences with 100 sites took on average 10.3 minutes to

run, while the simulations with 6400 sites took on average 0.68 seconds each.

This represents a difference of almost three orders of magnitude. On the same

processor (Intel ® Xeon ® CPU at 2.33GHz) using real HIV data, an example

31

with three 38-taxon distance matrices and pairwise constraints of three for each

pair of distance matrices took 49 seconds, while an example with only two 40-

taxon distance matrices with a single constraint of size three took almost 21

minutes. The quality of the data impacts “how far” constNJ has to go down

the list of coalescences in order to find one with the desired agreement profile,

and how often it needs to calculate a new agreement partition.

We have made some coding choices to increase the speed. For example,

there is a natural partial order on agreement profiles, which is just the element-

wise numerical order. In considering which coalescences to perform, we only

investigate those coalescences which could lead to an agreement profile which is

smaller than those which have already been performed. In principle, one could

do a more comprehensive search which might lead to more optimal sets of trees;

we have not found a significant improvement following such a direction.

32

6 Simulations

In order to evaluate the performance of constNJ, we performed a number of

simulations. The trees in the study were generated as follows. We choose the

number of trees in the recombination network, say k, the size of the trees, say

n, and a number of rSPR moves, say m. We start with a tree T1 drawn from

the Yule distribution of trees on n taxa. After choosing the desired expected

number of substitutions on the tree (in simulations below, 0.1, 0.5, and 2), we

divided this number by the number of non-root edges in the tree to get the

expected number of substitutions per edge. We then drew the actual number of

substitutions per edge from the exponential distribution with the corresponding

mean to get the branch lengths of T1.

We then generated Ti+1 from Ti by applying k rSPR moves to Ti as follows.

For each rSPR move, first select a non-root edge uniformly; call the subtree

below the chosen edge S. Cut off S then glue it back in on a uniformly selected

edge of T1 not contained in S. The location along the chosen edge to attach S

is chosen uniformly. Then to simulate differential rates of evolution of different

regions, take the average of the previous branch length and a branch length

drawn from an exponential distribution as before.

Given such a series of trees T1, . . . , Tk, we generated a collection of distance

matrices D1, . . . , Dk by simulating sequences on the trees. We did so using the

Jukes-Cantor model of sequence evolution with a single rate. Distances were

then calculated using the Jukes-Cantor distance correction (?). In case the

Jukes-Cantor correction gave an undefined value, we repeated the analysis with

a new sequence. We chose the simple Jukes-Cantor model to focus attention on

our method rather than the distance estimator.

For the first set of simulations, we wanted to understand how the topolog-

ical accuracy of constNJ compares to that of concatenating alignment blocks

33

Figure 5: constNJ simulation results for two trees, each on 30 taxa, averaged

over 400 replicates. The first tree was drawn from the Yule distribution, and the

second tree was made by applying a random rSPR move to the first. “constNJ”

is our algorithm, “concatenated NJ” is neighbor-joining run with a concatenated

alignment, and “independent NJ” is neighbor-joining run independently on the

alignments for the different trees as described in the text.

Figure 6: constNJ simulation results for two trees, each on 30 taxa, averaged

over 400 replicates. This time, two rSPR moves were applied to the first tree to

get the second.

or running them independently. For concatenation, we estimated a single dis-

tance for each pair of taxa by taking the Jukes-Cantor correction of the average

number of substitutions in each alignment block; such a procedure simulates the

process of concatenating equal-length alignment blocks. We then considered the

resulting tree as the output of running NJ on the concatenated alignment for

each alignment block. For independent construction, we simply ran NJ on each

distance matrix independently. For constNJ, we constrained the rSPR distance

between the trees to be less than or equal to the number of rSPR moves used

to generate the trees. The trees used in the comparison were then the shortest

(i.e. smallest total tree length) trees returned given those constraints.

To measure topological accuracy, we used the Robinson-Foulds distance (?),

which is simply one half the size of the symmetric difference of the edge split

sets. The results are shown in Figures 5, 6, and 7. In these simulations, constNJ

typically outperforms either alternate strategy. When sequences are short, the

main source of error is insufficiently accurate distance estimations; concatena-

34

Figure 7: constNJ simulation results for three trees, each on 30 taxa, averaged

over 400 replicates. Here one random rSPR move was done to change the first

tree to the second tree, and the second tree to the third.

tion increases the amount of useful sequence information for distance estimation,

and so outperforms independent construction in that case. However, constNJ

does almost as well. On the other hand, when sequences are long, independent

estimation does well, as there is enough sequence information to reconstruct the

tree for each block independently. In that case, constNJ also does well.

The reader may object that these graphs represent an unfair comparison,

as they assume that the number of reticulation events is correctly bounded in

advance. The next two simulations address this objection. The first set, with

results shown in Figure 8, seems to indicate that by looking at the .lengths

file one can do a reasonable job of deciding how many rSPR moves to allow as

was done in the example case of the introduction. The second set, with results

shown in Figure 9, concerns what happens if one makes an incorrect decision.

Figure 8 explores one of the main themes of this paper, which is the trade-off

between phylogenetic optimality (in this case total tree length) and congruence

among individual trees. To make this figure, we generated pairs of trees as

before, generating a Yule tree and then applying some number of rSPR moves

to get the second tree, except that this time we threw out pairs of trees which

did not have the correct rSPR distance between them (i.e. when a subtree was

moved back to its original location). We drew branch lengths as above then

simulated 1000 sites with an expectation of 0.5 mutations per site per tree. The

x-axis is the index of the .lengths file, i.e. the number of rSPR moves between

the two reconstructed trees. The left y-axis, “average total length”, shows the

average length of trees with that number of rSPR moves between them. For

35

Figure 8: Comparison of the total tree lengths for simulated trees differing by

the described number of moves and then reconstructed using constNJ; average

of 100 simulations. As can be seen, the most significant decreases in the total

tree length happen when getting to the correct number of rSPR moves, after

which the plot levels off. For example, on the line “two rSPR moves,” there

are significant decreases in length when going to one and two rSPR moves, but

not much decrease after that. Thus, at least in simulation, it appears possible

to make a reasonable choice concerning the number of rSPR moves to allow

between the two trees.

instance, consider the point on the line labeled “three rSPR moves” which is at

x-value 2. This says that if we simulate a pair of trees which are three rSPR

moves apart as described above, then we expect the pair of trees output by

constNJ with agreement profile two to have total length about 1.038. Note

that constNJ does not always return a tree for every agreement profile which

is allowed under the constraints. In those cases, we simply took the total tree

length from the largest non-empty agreement profile.

Figure 8 shows exactly what one might expect. Namely, if we generate pairs

of identical trees, then not much improvement in terms of total tree length is

gained by allowing the trees to differ. However, if the trees are one rSPR move

apart, then there is a substantial drop when allowing one rSPR move, but not

much more after that; this indicates that only one rSPR move is called for by

the data. The situation is similar for the other numbers of rSPR moves. Thus,

at least in simulation with good quality data, it appears that one should be able

to make a reasonable judgment as to the correct number of rSPR moves for the

data set at hand, as was done in the introduction.

We also performed some simulations allowing an incorrect number of rSPR

36

moves (Figure 9). As shown there, giving a too-small constraint interpolates

between results from concatenated data and the correct specification, while too-

large constraints give performance similar to the correct constraint. One might

expect constNJ with too-large constraints to give results similar to independent

NJ; we do not have a clear explanation why this is not the case.

Figure 9: Comparison of various specified constraints for constNJ; average of

100 simulations. Data was simulated on two trees, each on 30 taxa, such that

two random rSPR moves were done to change the first tree to the second tree.

Then reconstruction was done with rSPR distance constraints of 0, 1, 2, 3, and

4. As would be expected, having a constraint of 0 (identical trees) has quali-

tative performance similar to that of concatenated NJ, the best performance is

obtained by the correct constraint of 2 moves, and a constraint of 1 gives results

between those for 0 and 2. The performance of 3 is similar to that for 2, while

4’s performance degrades with accurate distances.

37

7 Conclusion

In this paper we present constNJ, a consistent distance-based algorithm for

a collection of trees with pairwise rSPR constraints, such as those constraints

satisfied by collections of trees which fit into a reticulation network. constNJ is

deterministic and a strict generalization of the neighbor-joining algorithm. In

order to ensure that the resulting set of trees satisfy the specified constraints

on rSPR distance, we develop the theory of maximum agreement partitions,

culminating in Theorem 2.

We hope that this algorithm is the beginning of a new direction for phyloge-

netic inference of reticulation networks. We simplify the problem considerably

by assuming that the alignment blocks are known in advance; in doing so we

preserve the correlation between sites in the alignment with the same history.

Rather than first finding trees and then attempting to put them into a recombi-

nation network, we investigate the balance between discordance between trees

and optimality of the ensemble of trees. By using trees whose rooting is derived

from outgroups, we find explicit evolutionary histories.

To our knowledge, constNJ is the first algorithm of its kind, and there is

considerable room for improvement over this first attempt. First, we enforce

pairwise bounds on the rSPR distance between trees, which is a relatively weak

way to show that these trees fit into a network. A more explicit approach would

be desirable. Second, distance-based methods waste a considerable amount

of information which is used by likelihood-based methods; a logical next step

would be to create a likelihood-based method. Doing so would require a col-

lection of “moves” analogous to rooted nearest-neighbor-interchange or rSPR

moves for a heuristic search, but for collections of trees, with the constraint

that the moves don’t change the rSPR distance between trees too much. One

option would be to explicitly store a reticulate network in memory and have

38

the trees moving about inside the reticulate network while the network changes.

Such an algorithm would do a better job of actually reconstructing a reticulate

network. Third, an alternative direction for heuristic optimization might be to

do a more complete search for the minimum length tree in a manner analogous

to algorithms searching for the BME tree. Fourth, a more immediate issue

is that constNJ does not reconstruct branch lengths. It would be possible to

do a distance-based branch length estimation in a manner similar to that for

usual neighbor-joining, but the fact that we are choosing trees which may be

sub-optimal according to the NJ criterion implies that negative branch lengths

might be encountered. Alternatively, one might use a program such as PHYML

(?) to estimate branch lengths on each fixed topology independently. This ap-

pears to be a reasonable way to proceed, despite the fact that the correlation

between branch lengths of the different trees is lost. A more correct approach

will require some sort of correlation of the branch lengths in a model-based

manner, and we believe that such reconstruction is probably best done in the

context of a complete likelihood-based approach as described above. Finally, it

might be interesting to incorporate some constNJ ideas into bootscanning-type

methods for recombination breakpoint inference.

Eight years ago, ? wrote “[w]hen recombination occurs adjacent sites may

have different, although correlated, genealogical histories. Reconstructing these

genealogies with certainty is impossible.” Although we do not claim certainty

for this (or any forthcoming) algorithm attempting to reconstruct reticulate

phylogenetic history, we think that there is cause for optimism and look forward

to seeing future developments in this area.

39

Acknowledgments

The author would like to thank Lior Pachter for a number of helpful early dis-

cussions. He is also very grateful to the Mullins HIV lab at the University of

Washington for the ongoing collaboration which led indirectly to the present

work, and to the Armbrust Oceanography lab at the University of Washing-

ton for use of their computing cluster. The author made use following useful

software: Figtree (?), PHYML (?), and PHYLIP (?).

rSPR distance total tree length tree length difference

0 7.213 0.0942

1 7.119 0.0076

2 7.111 0.0149

3 7.096 0.0139

9 (independent NJ) 7.082

Table 1: The balance between discord and optimality for the example HIV

dataset. On the left side is the number of SPR moves required to go from the

tree built on the G region to the tree built on the B region. In the center is the

total tree length (see Equation 2), which is our notion of optimality. On the

right is the difference of the total tree length between the rows. As described

in the text, the largest drop in total tree length comes when allowing a single

rSPR move (i.e. recombination event) between the two trees, indicating that

one recombination event is needed to explain the data.

40

