
An Up-Down Bit Pattern Approach to Coregulated

and Negative-Coregulated Gene Clustering

of Microarray Data

JIUN-RUNG CHEN and YE-IN CHANG

ABSTRACT

Biclustering, which performs simultaneous clustering of rows (e.g., genes) and columns (e.g.,
conditions), has been shown to be important for analyzing microarray data. To find
biclusters, there have been many methods proposed. Most of these methods can find only
clusters with coregulated patterns, which means that the expression levels of genes in a
found cluster rise and fall simultaneously. However, for real microarray data, there exist
negative-correlated patterns, which means that the tendencies of expression levels of some
genes may be completely inverse to those of the other genes under some conditions. Although
one method called Co-gclustering was proposed to simultaneously find clusters with cor-
related and negative-correlated patterns, its time complexity is exponential to the number of
conditions, which may not be efficient. Therefore, in this article, we propose a new method,
Up-Down Bit pattern (UDB), to efficiently find clusters with correlated and negative-
correlated patterns. First, we utilize up-down bit patterns to record those condition pairs
where one gene is upregulated or downregulated. One gene is upregulated (or down-
regulated) under condition pair a and b if its expression level shows an upward (or down-
ward) tendency from condition a to condition b. Then, we apply a heuristic idea on these
up-down bit patterns to efficiently find clusters, which will reduce the time complexity from
exponential time to polynomial time. From the experimental results, we show that the UDB
method is more efficient than the Co-gclustering method.

Key words: cluster, coregulation, microarray, negative-correlated pattern.

1. INTRODUCTION

M icroarrays provide a powerful tool in experimental molecular biology by which the ex-

pression patterns of thousands of genes can be monitored simultaneously (Yang et al., 2005). The

microarray data are usually organized as a matrix, composed of m rows representing m genes and n columns

representing n samples (or experimental conditions). The value of each cell in this matrix represents the

expression level of one particular gene under one particular condition (Yang et al., 2005). The value of m,

usually from 103 to 104, is much larger than the value of n, usually less than 102. Clustering the microarray

Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 18, Number 12, 2011

Mary Ann Liebert, Inc.

Pp. 1777–1791

DOI: 10.1089/cmb.2009.0212

1777

data into homogeneous groups was shown to be instrumental in functional annotation, tissue classification,

and motif identification (Tanay et al., 2002).

Traditional clustering methods work in the full dimensional space, and can only be applied to either the

rows or the columns of a data matrix, separately (Aguilar-Ruiz, 2005; Zhao and Zaki, 2005). However,

investigations show that more often than not, several genes contribute to the same pathway, which moti-

vates researchers to identify a subset of genes whose expression levels rise and fall coherently under a

subset of conditions (Yang et al., 2005). Moreover, for traditional clustering methods, one object (i.e., one

gene) is commonly assigned to one cluster. In fact, genes may participate in several biological functions

and thus should be included in multiple clusters (Ihmels et al., 2004). Therefore, biclustering (Cheng and

Church, 2000) was proposed, which does not have those limitations. Biclustering performs simultaneous

clustering of rows and columns. If some objects (genes) are similar under some conditions (i.e., a sub-

space), they will be clustered together in that subspace. Biclustering has proved of great value for finding

interesting patterns from microarray data (Zhao and Zaki, 2005).

There have been several types of biclusters proposed (Madeira and Oliveira, 2004). Among these types,

biclusters with coherent values define a bicluster as a subset of genes and a subset of conditions of the

microarray data which have coherent values of expression levels on both rows and columns (Madeira and

Oliveira, 2004). Figure 1 shows an example, where Figure 1a shows the expression patterns of 6 genes of

one microarray data matrix on the full space, i.e., all conditions, and Figure 1b shows a bicluster of 2 genes

with coherent values on only the subspace, i.e., conditions a, b, c, and e. Methods for biclusters with

coherent values (Chang et al., 2009; Cheng and Church, 2000; Wang et al., 2002; Yoon et al., 2005; Zhao

and Zaki, 2005) aim to cluster those genes whose expression values have simple linear transformation

relationships. Genes in such a bicluster have been shown to have significant biological relationships among

these genes (Zhao and Zaki, 2005). However, the definition of biclusters with coherent values is sometimes

too strict, since it only allows a simple linear transformation among the expression values of genes. For

some microarray data matrices, it may be very difficult to find such a bicluster. Another type of biclusters,

biclusters with coherent evolutions, does not have such a limitation. This type of biclusters aims to find a

subset of genes up-regulated or down-regulated across a subset of conditions without taking into account

their actual expression values (Madeira and Oliveira, 2004). Figure 2 shows an example of one bicluster of

3 genes with coherent evolutions for the expression data shown in Figure 1a.

In Zhao et al. (2008), they further considered the negative-correlated pattern. That is, the tendencies of

expression values of some genes are completely inverse to those of the other genes. Figure 3 shows an

example of the negative-correlated pattern for the expression data shown in Figure 1a, where the top gene

shows an inverse tendency of expression values against the other three genes. There have been many genes

proved to have such behavior. For example, for genes of the yeast, genes YLR367W and YKR057W share

the same tendency, while they have a negative-correlated pattern against gene YML009C under 8 con-

ditions (Zhao et al., 2008). It has been suggested that all these genes are involved in protein translation and

translocation and should be grouped into the same cluster (Breitkreutz et al., 2006; Zhao et al., 2008). In

this article, we will focus on the design of an efficient method for finding biclusters containing both

correlated and negative-correlated patterns.

According to the definition of a up/down regulation, methods of finding biclusters with coherent evo-

lutions could be classified into two types: one focusing on the expression value of one gene under each

single condition, and the other one focusing on the variation of expression values of one gene from one

condition to another condition. For methods of the first type, e.g., SAMBA (Tanay et al., 2002) and

BiModule (Okada et al., 2007), they usually define that one gene is up/down-regulated under one single

FIG. 1. An example of biclus-

tering. (a) The expression patterns

of six genes on the full space. (b)

A bicluster of two genes with co-

herent values.

a b

1778 CHEN AND CHANG

condition if its expression level after standardizing with the mean (e.g., 0) and the variance (e.g., 1) is

above/below a certain value (e.g., 1/�1) (Tanay et al., 2002). These methods aim to cluster those genes

whose expression levels are commonly up/down-regulated under some conditions. However, they do not

consider the relationship between expression levels of two conditions for one gene, which may not be

precise enough occasionally. For example, these methods may find that both genes 1 and 2 are upregulated

under both condition a and condition b. However, the expression levels of gene 1 from condition a to

condition b may be increasing, while the expression levels of gene 2 from condition a to condition b may be

decreasing. For methods of the second type, e.g., OPSM (Ben-Dor et al., 2003), OP-Cluster (Liu and Wang,

2003), and Co-gclustering (Zhao et al., 2008), they take into consideration the variation of expression

values of one gene from one condition to another condition. In Ben-Dor et al. (2003), a submatrix of the

expression data is an OPSM cluster if there is a permutation of its columns under which the sequence of

values in every row is strictly increasing. The OP-Cluster method (Liu and Wang, 2003) also tries to find

the OPSM clusters by transforming this problem into a sequential pattern mining-like problem. These

methods consider the numeral order of expression levels between every two conditions, and aim to cluster

those genes whose expression levels are increasing under one permutation of conditions. Although all the

above methods may efficiently find clusters with correlated patterns, they can not find clusters with

negative-correlated patterns. Therefore, the Co-gclustering method (Zhao et al., 2008) was proposed. This

method utilizes a tree structure to gradually generate all the answers, and can simultaneously find clusters

with correlated and negative-correlated patterns.

Although the Co-gclustering method can find clusters with correlated and negative-correlated patterns,

the tree constructing process of this method may not be efficient. Assuming that the number of conditions is

n, in the worst case, this method needs to generate (n� 1) trees, where each tree represents one combination

of k conditions for 2� k� n. The time complexity of this method is O(2n). Even though the Co-gclustering

method utilizes a technique which reduces the number of trees being generated, for real microarray data,

the effect of this technique is still limited and could not significantly reduce its time complexity.

Therefore, in this article, we propose a new method, Up-Down Bit pattern (UDB), to efficiently find

clusters with correlated and negative-correlated patterns. In the UDB method, first, we utilize up-down bit

FIG. 3. A bicluster of four genes containing both

correlated and negative-correlated patterns.

FIG. 2. A bicluster of three genes with coherent

evolutions.

COREGULATED GENE CLUSTERING USING UP-DOWN BIT PATTERNS 1779

patterns to record those condition pairs where one gene is upregulated or downregulated. One gene is

upregulated (or downregulated) under condition pair a and b if its expression level shows an upward (or

downward) tendency from condition a to condition b. For each gene, its up bit pattern and down bit pattern

are two bit strings with length Cn
2, respectively, where each bit corresponds to one condition pair. One bit of

the up (or down) bit pattern of one gene is set to 1, if this gene is significantly upregulated (or down-

regulated) under the condition pair corresponding to that bit. Then, we apply a heuristic idea on these up-

down bit patterns to efficiently find clusters. The idea is that for every two genes, we directly utilize two

rules to determine whether they should be in the same cluster. These two rules apply bit operations on the

up-down bit patterns of two genes, to check whether these two genes are coregulated or negative-

coregulated under an enough number of condition pairs. The time complexity of this step is O(m2), where m

is the number of genes. As compared to the Co-gclustering method, we reduce the time complexity from

exponential time (i.e., O(2n), where n is the number of conditions) to polynomial time (i.e., O(m2)). Our

cost for this reduction is that some genes in one found cluster may not be completely similar to each other

according to our definition of similarity. Therefore, we further propose post-processes for processing those

found clusters to redeem this problem. From the experimental results on several synthetic and real mi-

croarray data sets, we show that the UDB method is more efficient than the Co-gclustering method.

Moreover, we will show the correlation of genes in clusters found by the UDB method for real microarray

data.

The rest of this article is organized as follows. In Section 2, we give a survey of the Co-gclustering

method. Section 3 presents the proposed UDB method. In Section 4, we study the performance of the

UDB method and make a comparison with the Co-gclustering method. Finally, we make a conclusion in

Section 5.

2. RELATED WORK

In this section, we introduce the Co-gclustering method (Zhao et al., 2008). In 2008, Zhao et al. proposed

the Co-gclustering method to find biclusters containing both correlated and negative-correlated patterns.

Given a microarray data matrix with m genes and n conditions, for each gene gi, this method first finds all

significant p-pairs (prototypal sequence pairs), (cj, ck). Assume that the expression levels of gene gi under

condition cj and ck are di,j and di,k, respectively. A significant p-pair can be either upregulated when

di, k � di, j 4 � · jdi, jj, or downregulated when di, k� di, j 5 � � · jdi, jj, where � is the regulation threshold.

The information of all the significant p-pairs for each gene are stored in a regulation significance table.

Next, this method constructs a Co-tree with height 1, T1, from the regulation significance table. Co-tree T1

is a tree with three levels, where nodes of the first and the second levels are for storing the conditions of

p-pairs, and nodes of the third level (i.e., leaf nodes) are for storing the genes of p-pairs. Genes stored in the

leaf nodes are further classified into two clusters: the ƒ-cluster for genes from upregulated p-pairs, and the

a-cluster for genes from downregulated p-pairs.

Then, this method constructs Co-tree T2 from T1. Two p-pairs (ci, cj) and (cj, ck) in T1 are concatenated to

form a new 2-segment ((ci, cj), (cj, ck)) in T2, where this 2-segment represents a path from the root node to

the leaf node, i.e., (ci, cj, ck), of T2. For genes stored in the leaf nodes, they are also divided into two

clusters, the S-cluster and the D-cluster. The S-cluster for segment ((ci, cj), (cj, ck)) is the union of all genes

in (the ƒ-cluster of (ci, cj) \ the ƒ-cluster of (cj, ck)) and (the a-cluster of (ci, cj) \ the a-cluster of (cj,

ck)). The D-cluster for segment ((ci, cj), (cj, ck)) is the union of all genes in (the ƒ-cluster of (ci, cj) \ the

a-cluster of (cj, ck)) and (the a-cluster of (ci, cj) \ the ƒ-cluster of (cj, ck)). For genes in the same cluster,

this method further utilizes a dissimilarity threshold, d, to verify the similarity of every two genes. If two

genes can not satisfy this threshold, they are divided into two different clusters. After checking the

dissimilarity threshold, this method also checks whether the number of genes of each cluster is not less than

a, where a is the parameter of the minimal number of genes of a found cluster. Genes in the same cluster

form a Co-gcluster if the number of conditions along the path from the root node to the leaf node is not less

than b, where b is the parameter of the minimal number of conditions of a found cluster.

For the rest of Co-trees, Tl where l� 3, they are constructed from those previous Co-trees. Two segments

of a Co-tree can be concatenated together to form a new path in the new Co-tree, if the last p-pair of the

former segment is the same as the first p-pair of the later segment. This technique is called b-jumping in the

Co-gclustering method. For example, for two 3-segments of T3, ((c1, c2), (c2, c3), (c3, c4)) and ((c3, c4), (c4,

1780 CHEN AND CHANG

c5), (c5, c6)), they can be concatenated together to form a new 5-segment ((c1, c2), (c2, c3), (c3, c4), (c4, c5),

(c5, c6)) in T5. The S-cluster for this new 5-segment is the union of all genes in (the S-cluster of ((c1, c2),

(c2, c3), (c3, c4)) \ the S-cluster of ((c3, c4), (c4, c5), (c5, c6)) and (the D-cluster of ((c1, c2), (c2, c3), (c3, c4))

\ the D-cluster of ((c3, c4), (c4, c5), (c5, c6)). The D-cluster for this new 5-segment is the union of all genes

in (the S-cluster of ((c1, c2), (c2, c3), (c3, c4)) \ the D-cluster of ((c3, c4), (c4, c5), (c5, c6)) and (the D-cluster

of ((c1, c2), (c2, c3), (c3, c4)) \ the S-cluster of ((c3, c4), (c4, c5), (c5, c6)). This technique can be applied until

Tb�1. For those Co-trees Tl where l� b, they need to be constructed gradually from Tl�1.

The Co-gclustering method utilizes the b-jumping technique to avoid generating all Co-trees Tl for l� n.

However, for real microarray data, we have no knowledge about the possible number of conditions of a

found cluster. For the Co-gclustering method, if parameter b is set to a large value close to the maximal

possible number of conditions of found clusters, there may exist some interesting clusters being dropped

due to this large value of b. If parameter b is set to a value much less than the maximal possible number of

conditions of found clusters, this method needs to construct all Co-trees Tl for l� b. The time complexity in

the worst case is O(2n), i.e., enumerating the power set of n conditions. Therefore, this tree constructing

process may not be efficient.

3. PROPOSED METHOD

In this section, we present our method, Up-Down Bit pattern (UDB), for finding clusters which contain

both coregulated and negative-coregulated patterns in microarray data. Table 1 shows the variables used in

the UDB method, and Figure 4 shows the UDB method. The UDB method has three main steps: (1)

determining up-down bit patterns of each gene, (2) clustering those genes which share the same tendency

based on up-down bit patterns, and (3) post-processing the found clusters. We will describe these steps in

the following subsections.

3.1. Step 1

In Step 1, we determine the up-down bit patterns for each gene. For each gene, we compute the

difference of expression values of this gene under every two conditions (denoted as Cond1 and Cond2). If

this difference is positive, it means that the gene is upregulated (i.e., an upward tendency) from condition

Cond1 to condition Cond2. If this difference is negative, it means that the gene is downregulated (i.e., a

downward tendency) from condition Cond1 to condition Cond2.

Formally, the same as the definition in Zhao et al. (2008), we also have a threshold, �, for defining

significant up/down-regulation, where � � 0. Assume that for gene i, its expression values under conditions

Table 1. Variables Used in the Proposed Method

Variable Description

MA A two-dimensional gene expression matrix

G The set of genes of MA

C The set of conditions of MA

� The threshold for defining up/down-regulation

NR The minimal number of genes (rows) of a cluster

Sim The threshold for defining the similarity of a cluster

UDBPi The up-down bit patterns of gene i, containing two fields:

(1) Up, a bit string which indicates those condition

pairs where gene i is upregulated, and

(2) Down, a bit string which indicates those

condition pairs where gene i is downregulated

Clust A coregulated cluster, containing two fields:

(1) GeneSet, a set of coregulated genes, and

(2) CondBit, a bit string which indicates

the related conditions

Ans The set of coregulated clusters in MA

MT The merging threshold

COREGULATED GENE CLUSTERING USING UP-DOWN BIT PATTERNS 1781

Cond1 and Cond2 are v1 and v2, respectively. Then, gene i is significantly upregulated from condition

Cond1 to condition Cond2, if (v2� v1)4 j� · v1j. This means that the growth rate of expression values of

gene i from condition Cond1 to condition Cond2 is above (� · 100) percent. Similarly, gene i is significantly

downregulated from condition Cond1 to Cond2, if (v2� v1)5 � j� · v1j. This means that the reduction

rate of expression values of gene i from condition Cond1 to condition Cond2 is above (� · 100) percent.

Take the gene expression matrix shown in Figure 5 as an example. Assume �¼ 0:01. Gene 1 is significantly

upregulated from condition a to condition b, since (v2� v1)¼ (3� 1)4 j� · v1j ¼ j0:01 · 1j. Gene 1 is

significantly downregulated from condition b to condition c, since (v2� v1)¼ (2� 3)5 � j� · v1j
¼ � j0:01 · 3j.

We utilize up-down bit patterns to record the condition pairs where gene i is upregulated or down-

regulated. The up and down bit patterns of gene i are denoted as UDBPi.Up and UDBPi.Down, respectively.

UDBPi.Up and UDBPi.Down are initially two bit strings with all bits equal to 0. One bit of UDBPi.Up (or

FIG. 4. The UDB method.

FIG. 5. An example gene expression matrix.

1782 CHEN AND CHANG

UDBPi.Down) is set to 1, if gene i is significantly upregulated (or downregulated) under the condition pair

corresponding to that bit. As shown in Step 1 of Figure 4, we use an increasing number, BitNum, to record

the corresponding bit number for condition pair Cond1 and Cond2. The value of BitNum is one-to-one

mapping to one combination of Cond1 and Cond2. Assume that the number of total conditions is n. The

lengths of UDBPi.Up and UDBPi.Down are both Cn
2, and 1 � BitNum � Cn

2.

Figure 6 shows the up-down bit patterns for the example shown in Figure 5, where Figure 6a shows the

differences of expression values between each condition pair, and Figure 6b shows the up-down bit patterns

of each gene. The value of � is 0.01. For gene 1, we first consider the difference of expression values from

condition a to condition b, i.e., (b� a). The corresponding bit for (b� a) in our up-down bit patterns is bit

(BitNum¼ 1) (denoted as ‘‘a? b’’ in Figure 6b). Since this difference value is 2> j0.01 · 1j, we set bit 1

(¼BitNum) of the up bit pattern of gene 1, i.e., UDBP1.Up, to 1. The value of BitNum is then increased by

1. Next, we consider the difference value of (c� a). The corresponding bit for (c� a) is therefore bit

(BitNum¼ 2). Since this difference value is 1> j0.01 · 1j, we set bit 2 of UDBP1.Up to 1. The value of

BitNum is increased by 1 again. Bit 3 of UDBP1.Up, corresponding to (d� a), is also set to 1 in the same

way. The value of BitNum becomes 4 now. For the difference value of (c� b), i.e., �1, it is not larger than

j� · 3j ¼ 0:03. Therefore, we do not change any bit of UDBP1.Up. However, since � 15 � j� · 3j ¼
� 0:03, we set bit 4 (¼BitNum) of UDBP1.Down to 1. By using the similar idea, we can evaluate the up

and down bit patterns of each gene, as shown in Figure 6b.

3.2. Step 2

In this step, we cluster the similar genes according to their up-down bit patterns determined in Step 1. As

shown in Step 2 of Figure 4, for each gene i, we first group it as a new cluster. Then, for each of the rest of

genes except gene i, denoted as gene j, it is similar to gene i, if it satisfies the following Rule 1 or Rule 2,

where ‘‘jone bit stringj’’ means the number of on-bits (‘‘1’’) in this bit string:

Rule 1. (jUDBPi:Up AND UDBPj:Upj þ jUDBPi:Down AND UDBPj:Downj) � Sim · Cn
2

Rule 2. (jUDBPi:Up AND UDBPj:Downj þ jUDBPi:Down AND UDBPj:Upj) � Sim · Cn
2

In this case, we add gene j to the cluster of gene i.

For Rule 1, the term ‘‘UDBPi.Up AND UDBPj.Up’’ means those bits of condition pairs where gene i and

gene j are both upregulated. The term ‘‘UDBPi.Down AND UDBPj.Down’’ means those bits of condition

pairs where gene i and gene j are both downregulated. Therefore, the sum of numbers of on-bits in the

above two terms means the number of condition pairs where gene i and gene j are simultaneously upre-

gulated or downregulated. The total number of condition pairs (i.e., the length of each bit string) is Cn
2.

Therefore, the closer the sum is to Cn
2, the similar these two genes are to each other. (Note that when these

two genes are simultaneously upregulated or downregulated under all condition pairs, this sum will be Cn
2.)

Based on this idea, the user can specify parameter Sim to define the similarity of genes in a cluster, where

a

b
FIG. 6. Evaluation of up-down

bit patterns: (a) the differences of

expression values between each

condition pair; (b) the up-down bit

patterns of each gene.

COREGULATED GENE CLUSTERING USING UP-DOWN BIT PATTERNS 1783

0< Sim� 1. For example, for genes 1 and 2 in the previous example shown in Figure 5, their up-down bit

patterns are shown in Figure 6b. Assume Sim¼ 0.9. Then, we have jUDBP1: Up AND UDBP2:Upj
þ jUDBP1:Down AND UDBP2:Downj ¼ j111011j þ j000100j ¼ 6 � Sim · Cn

2¼ 0:9 · 6. This means that

gene 1 and gene 2 are simultaneously coregulated under more than (Sim · 100¼ 90) percent of condition

pairs. Therefore, gene 2 is similar to gene 1 and is added to the same cluster of gene 1.

Similarly, for Rule 2, it considers the negative-coregulation. That is, when gene i is upregulated (or

downregulated), gene j will be downregulated (or upregulated). Therefore, we consider ‘‘UDBPi.Up AND

UDBPj.Down’’ and ‘‘UDBPi.Down AND UDBPj.Up’’. The sum of numbers of on-bits in the result indi-

cates the number of condition pairs where gene i and gene j show the negative-coregulation. Take the up-

down bit patterns of genes 1 and 4 shown in Figure 6b as an example. Assume Sim¼ 0.9. For these two

genes, we have jUDBP1:Up AND UDBP4:Downj þ jUDBP1:Down AND UDBP4:Upj ¼ j111011j þ
j000100j ¼ 6 � Sim · Cn

2¼ 0:9 · 6. Therefore, gene 4 is also added to the cluster of gene 1.

In Step 2 of Figure 4, based on gene i, all the other genes except gene i will be checked whether they can be

added into the cluster of gene i. Then, we check the number of genes within this cluster. Only if this number is

above a user specified parameter, NR, this cluster is added into the result set of clustering, Ans. With the similar

process, we continue to try to generate a new cluster for the next gene i in G until all genes in G are processed.

Biclustering is originally a NP-Complete problem (Aguilar-Ruiz, 2005; Yang et al., 2005; Yoon et al.,

2005; Zhao and Zaki, 2005). Therefore, in the worst case, the time complexity of biclustering methods

(Zhao et al., 2008) is O(2n), where n is the number of conditions. In Step 2 of the proposed UDB method,

instead of enumerating the power set of n conditions (which is often used in those previous methods), we

utilize a heuristic idea, i.e., two loops with time complexity O(m2), to speed up the process of finding

clusters, where m is the number of genes. The benefit is that we reduce the time complexity from expo-

nential time to polynomial time. Our pay is that not every two genes in a found cluster will satisfy the

similarity threshold, Sim. For example, assume that we have three genes, e.g., genes 1, 2, and 3. The up bit

patterns for genes 1, 2, and 3 are ‘‘11111,’’ ‘‘11110,’’ and ‘‘01111,’’ respectively. The down bit patterns for

these genes are all ‘‘00000.’’ If the similarity threshold, Sim, is 0.8, the correct clusters should be {gene 1,

gene 2} and {gene 1, gene 3}. In our Step 2, gene 2 and gene 3 will be added into the cluster of gene 1,

since ‘‘j11111 AND 11110j ¼ 4� 0.8 · 5’’ and ‘‘j11111 AND 01111j ¼ 4� 0.8 · 5.’’ Next, gene 1 is added

into the cluster of gene 2. Then, gene 1 is added into the cluster of gene 3. Finally, we find three clusters,

{gene 1, gene 2, gene 3}, {gene 1, gene 2}, and {gene 1, gene 3}. The second and the third clusters are the

same as the correct ones. Genes in the first cluster do not all satisfy the similarity threshold, since gene 2

(where UDBP2.Up¼ ‘‘11110’’) and gene 3 (where UDBP3.Up¼ ‘‘01111’’) are not similar to each other

based on Sim¼ 0.8. To redeem this problem, we will post-process the found clusters in Step 3 later.

3.3. An improved version of Step 2

For Step 2 described in the previous subsection, we do not record the condition pairs of one cluster where

genes in this cluster are coregulated or negative-coregulated under these condition pairs. In this subsection,

we present an improved version, Step 2*, which records the condition pairs.

Figure 7 shows the new process of Step 2*. The basic idea of Step 2* is the same as that of Step 2, which

also utilizes two loops with time complexity O(m2). One difference is that for each cluster, Clust, it contains

the following two fields: (1) GeneSet, a set for storing the genes, and (2) CondBit, a bit string for indicating

those condition pairs where genes in GeneSet are coregulated or negative-coregulated. Another difference

is that we use two bit strings, UpBit and DownBit, to help us derive CondBit of one cluster. UpBit and

DownBit are used to record those condition pairs where genes in this cluster are upregulated and down-

regulated, respectively. Note that one bit can keep to be ‘‘1’’ after AND operations only if this bit is ‘‘1’’ in

all bit strings being applied with AND operations. By using this idea, we can utilize AND operations to find

those on-bits occurring in the up-down bit patterns of all genes in one cluster.

In Figure 7, initially, we create a new cluster, Clust. Then, for each gene i, we first add it to Clust.-

GeneSet. UpBit and DownBit are set to UDBPi.Up and UDBPi.Down, respectively. For each of the other

genes, denoted as gene j, if it satisfies Rule 1 with gene i, we add gene j to Clust.GeneSet. Moreover, we

update UpBit and DownBit by their AND results with UDBPj.Up and UDBPj.Down, respectively. If gene j

satisfies Rule 2 with gene i, we add gene j to Clust.GeneSet. Moreover, we update UpBit and DownBit by

their AND results with UDBPj.Down and UDBPj.Up, respectively. By this way, after all genes except gene

i are checked, all genes similar to gene i are added to Clust.GeneSet. Moreover, the on-bits in UpBit and

1784 CHEN AND CHANG

DownBit indicate those condition pairs where genes in Clust.GeneSet are coregulated (or negative-

coregulated). Therefore, we let Clust.CondBit be the OR result of UpBit and DownBit. We can reversely

derive the corresponding condition pair from each on-bit in Clust.CondBit to get those condition pairs

where all genes in Clust.GeneSet are coregulated (or negative-coregulated).

Take the up-down bit patterns shown in Figure 6b as an example. Assume Sim¼ 0.9. First, we create a

new cluster, Clust, and add gene 1 to Clust.GeneSet. UpBit and DownBit are now set to UDBP1.Up

(¼ ‘‘111011’’) and UDBP1.Down (¼ ‘‘000100’’), respectively. Next, we check whether genes 2, 3, 4, and 5

can be added into this cluster. In this example, gene 2 satisfies Rule 1 with gene 1. Therefore, gene 2 is

added into Clust.GeneSet. UpBit and DownBit are now set to their AND results with UDBP2.Up and

UDBP2.Down, i.e., ‘‘111011’’ and ‘‘000100,’’ respectively. This means that genes 1 and 2 are coregulated

under those condition pairs corresponding to on-bits in UpBit and DownBit. Gene 4 satisfies Rule 2 with

gene 1. Therefore, gene 4 is added into Clust.GeneSet. UpBit and DownBit are now set to their AND results

with UDBP4.Down and UDBP4.Up, i.e., ‘‘111011’’ and ‘‘000100,’’ respectively. This means that gene 4 is

negative-coregulated to gene 1 under those condition pairs corresponding to on-bits in UpBit and DownBit.

Genes 3 and 5 do not satisfy Rule 1 or Rule 2 with gene 1. After checking genes 2, 3, 4, and 5, UpBit is

‘‘111011’’ and DownBit is ‘‘000100.’’ Finally, we set Clust.CondBit to the OR result of UpBit and

DownBit, i.e., Clust.CondBit¼ ‘‘111011’’ OR ‘‘000100’’¼ ‘‘111111.’’ This means that genes in Clust.-

GeneSet, i.e., genes 1, 2, and 4, are coregulated or negative-coregulated under those condition pairs

corresponding to the on-bits in ‘‘111111.’’ The corresponding condition pairs from the left to the right are

(a? b), (a? c), (a? d), (b? c), (b? d), and (c? d) in order, as shown in Figure 6b. If NR (the minimal

number of genes) is 3, Clust is a coregulated cluster and is added to Ans.

3.4. Step 3

In the previous step, we have found the clustering result stored in Ans according to parameters Sim

(the similarity threshold) and NR (the minimal number of genes). In Step 3, we further present two

FIG. 7. The new Step 2*.

COREGULATED GENE CLUSTERING USING UP-DOWN BIT PATTERNS 1785

post-processes for the found clusters which are to merge those similar clusters and to compute the similarity

score of each cluster, respectively.

The process of Step 3 is shown in Figure 8. First, for every two clusters c1 and c2, if their gene sets

overlap with each other by more than (MT · 100) percent, we merge them into a new cluster, where MT is

the user-specified merging threshold and 0�MT� 1. The purpose of this process is to reduce the number

of clusters which may be redundant. Since the input data may be noisy, finding too many clusters with large

overlaps only makes it difficult for the users to select those important clusters (Zhao and Zaki, 2005). In this

case, the gene set of the new cluster is the union result of c1.GeneSet and c2.GeneSet. The bit string of

condition pairs of the new cluster is the AND result of c1.CondBit and c2.CondBit. This process is optional

for users. When MT is set to 1, the merging process will not be performed.

Next, we compute the similarity scores for clusters stored in Ans. For cluster x, its similarity score, SC(x),

is evaluated by the following Equation 1:

SC(x)¼ jx:CondBitj=Cn
2: (1)

In other words, the similarity score is the percentage of on-bits in x.CondBit. This is because each on-bit

represents one condition pair where all genes in x.GeneSet are coregulated. The more similar the genes of

cluster x are to each other, the larger the number of on-bits in x.CondBit is.

After evaluating the similarity scores, we can provide a ranking for these clusters according to their

similarity scores. There may exist clusters whose similarity scores are less than the similarity threshold,

Sim. We call clusters whose similarity scores are not less than Sim as true clusters, and clusters whose

similarity scores are less than Sim as potential clusters. The potential clusters are generated due to any of

the following two processes: (1) Step 2/2* and (2) merging. The reason for the first process (i.e., Step 2/2*)

has been mentioned previously. That is, we apply a heuristic method with time complexity O(m2) to find the

clusters. Therefore, we may find some clusters whose genes do not completely satisfy the similarity

threshold. For such clusters, instead of dropping them, we output them as potential clusters. This is because

such clusters may still contain some biological meanings, although not every two genes within them satisfy

the user-specified similarity threshold, Sim. The larger the number of genes in a found cluster which do not

satisfy the threshold, the lower the similarity score of this cluster. Therefore, in Step 3 of the UDB method,

we redeem the problem of those clusters which are generated in Step 2/2* and do not satisfy the threshold

by outputting them as potential clusters. The reason of generating potential clusters for the second process

(i.e., merging) is that even if two clusters before merging satisfy the similarity threshold, there is no

guarantee that the new cluster after merging will satisfy the similarity threshold. Therefore, although the

merging process could reduce the number of redundant clusters, the number of true clusters may also

decrease, i.e., a tradeoff.

4. PERFORMANCE

In this section, we study the performance of the UDB method. We implemented the UDB method in

Java, and performed all experiments on a Fedora Linux virtual machine (1024 MB of memory, an 2.4 GHz

Intel processor) over Windows XP through VMware middleware.

FIG. 8. Step 3.

1786 CHEN AND CHANG

4.1. Simulation results on synthetic data sets

In this subsection, we study the efficiency of the proposed UDB method by several synthetic data sets.

Table 2 shows the related parameters for generating these synthetic data sets. Each synthetic data set is

simulated by a 2-dimensional matrix with M rows and N columns. Then, X Co-gclusters with size (EM

rows · EN columns) and �¼ 0:5 are randomly generated and embedded into the matrix. The rest of values

of this matrix are random numbers. Table 3 shows three cases of the synthetic data sets. We will use these

cases of data sets to study the efficiency of the proposed UDB method and compare it with the Co-

gclustering method (Zhao et al., 2008).

The default parameters for the Co-gclustering method and the UDB method are described as follows.

The dissimilarity threshold in the Co-gclustering method is set to ? to find the same answers as the UDB

method. The parameters of the minimal number of genes of a found cluster, i.e., a in the Co-gclustering

method and NR in the UDB method, are set to the same value as EM. For the Co-gclustering method, the

parameter of the minimal number of conditions of a found cluster, b, is set to EN. Since there does not exist

such a parameter in the UDB method, we set the value of parameter Sim to (C
b
2=CN

2) to find the answers

which contain the answers found by the Co-gclustering method. The reason is that if there exist genes

coregulated under b conditions, the corresponding C
b
2 bits for these b conditions in up-down bit patterns

(whose lengthes are all CN
2) must be all on-bits. Note that we will find more answers than the Co-gclustering

method when Sim¼C
b
2=CN

2 . This is because there may exist genes coregulated under only some condition

pairs, instead of all conditions in those condition pairs. For example, there may exist genes coregulated

under only condition pairs (a? b), (a? c), and (a? d), instead of all of these conditions (i.e., a, b, c,

and d).

For the data set of Case 1, we study the relationship between the processing time and the number of

genes in a microarray data set, and make a comparison between the Co-gclustering method and the UDB

method. Figure 9 shows the simulation result for the data set of Case 1. From this figure, we could observe

that the processing time of the UDB method increases as the number of genes (i.e., M) increases, since

the time complexity of the UDB method is O (M2). Moreover, the UDB method needs shorter

processing time than the Co-gclustering method for this data set. The reason is that the number of con-

ditions greatly affects the processing time of the Co-gclustering method. In this simulation, such an effect

makes the Co-gclustering method need longer processing time than the UDB method even when the

number of genes is large.

For the data set of Case 2, we study the relationship between the processing time and the number of

conditions in a microarray data set, and compare the processing time of the UDB method with that of the

Co-gclustering method. Figure 10 shows the simulation result for the data set of Case 2. From this figure,

we can observe that the UDB method needs shorter processing time than the Co-gclustering method for this

Table 2. Parameters Used in the Generation of Synthetic Data

Parameter Description

M Number of rows of the matrix

N Number of columns of the matrix

X Number of embedded Co-gclusters

EM Number of rows of an embedded Co-gcluster

EN Number of columns of an embedded Co-gcluster

Table 3. Synthetic Data Sets

Case M N X EM EN

1 3000–7000 22 5 0.02 · M 15

2 3000 18–22 10 50 15

3 3000 20 10 50 13–17

COREGULATED GENE CLUSTERING USING UP-DOWN BIT PATTERNS 1787

data set. In Figure 10, the processing time of the Co-gclustering method seems to increase exponentially as

the number of conditions (i.e., N) increases, since its time complexity is O(2N). Although the processing

time of the Co-gclustering method may be shorter than that of the UDB method when the value of N is

small, it increases quickly as the value of N increases. On the other hand, the processing time of the UDB

method does not have obvious variations as the number of conditions increases. The reason is that the

number of conditions only affects the length (i.e., CN
2) and the generation (i.e., Step 1 of the UDB method)

of a up/down bit pattern. The time complexity of Step 1 of the UDB method is O(M · N2). However, since

the value of N is much smaller than the value of M, the effect of varying the value of N is of little concern to

the processing time of the UDB method.

For the data set of Case 3, we study the relationship between the processing time and the number of

conditions in a found Co-gcluster (i.e., EN), and make a comparison between the Co-gclustering method

and the UDB method. For the Co-gclustering method, the parameter of the minimal number of conditions

of a Co-gcluster, b, is set to 12. Parameter Sim in the UDB method is set to (C
b
2=CN

2)¼ (C12
2 =C20

2)¼ 0:34.

Figure 11 shows the simulation result for the data set of Case 3. From this figure, we could observe that the

UDB method needs shorter processing time than the Co-gclustering method for this data set. The pro-

cessing time of the Co-gclustering method also seems to increase exponentially as the value of EN

increases. The reason is that as the value of EN increases, to find all clusters, both the number of trees and

the size of trees needed to be generated in the Co-gclustering method also increase. The processing time of

the UDB method does not have obvious variations as the value of EN increases. The reason is that no matter

what value the number of conditions in a found cluster is, the UDB method always utilizes the same loop

with time complexity O(M2) to find all clusters.

4.2. Experimental results on real data sets

In this subsection, first, we use real microarray data sets as the experimental data to study the efficiency

of the proposed method. Table 4 shows the real microarray data sets used in the experiments. The yeast

microarray data set (Tavazoie et al., 1999), obtained from the yeast Saccharomyces Cerevisiae cell cycle

expression levels, is widely used in microarray clustering research. The ALL-AML microarray data set

(Brunet et al., 2004), often used in microarray classification research, is composed of samples from 27 ALL

(acute lymphoblastic leukemia) patients and 11 AML (acute myeloid leukemia) patients. The breast

FIG. 9. A comparison of the processing time

for the data set of Case 1.

FIG. 10. A comparison of the processing time

for the data set of Case 2.

1788 CHEN AND CHANG

microarray (West et al., 2001) consists of 49 breast cancer samples, obtained from the Duke Breast Cancer

SPORE frozen tissue bank.

Table 5 shows the experimental results of these three data sets. From this figure, we could observe that

the UDB method needs shorter processing time than the Co-gclustering method for these data sets. The

reason is that the UDB method is a polynomial-time method, while the Co-gclustering method is an

exponential-time method. The ALL-AML data set consists of more genes and more samples than the yeast

data set, and the breast data set consists of more genes and more samples than the ALL-AML data set.

Since the time complexity of the UDB method is O(M2) (where M is the number of genes), the processing

time of the UDB method for these three data sets increases progressively. However, the processing time of

the Co-gclustering method grows exponentially to the number of conditions. Therefore, we could observe

that as the number of conditions among these data sets increases, the difference of the processing time

between the Co-gclustering method and the UDB method also increases.

Next, we discuss the correlation of genes in clusters found by the UDB method. We use the yeast

microarray data set (composed of 2884 rows and 17 columns) as the experimental data set. For the UDB

method, when parameters are set to �¼ 0:05, NR¼ 30, and Sim¼ 0.75, there are 6 clusters found from this

data set. For the found clusters, we utilize a Gene Ontology (GO) annotation searching tool, GO Term

Finder (www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl), to verify their biological meaning. The GO

project provides a controlled vocabulary to describe gene and gene product attributes in any organism, and

is a collaborative effort to address the need for consistent descriptions of gene products in different

databases (cited from www.geneontology.org). With this tool, we can find the significant shared GO terms

for genes within the same cluster. Table 6 shows the searching result of GO terms for these 6 clusters. For

each ontology, we list only the significant shared term with the smallest p-value (which is smaller than

0.01), where a p-value is a score of significance. The closer the p-value is to zero, the more significant is the

particular GO term associated with the group of genes (cited from www.yeastgenome.org). From Table 6,

we could observe that genes within the same cluster significantly share the same GO terms, which means

that these genes jointly participate in some activities.

We then try to find the corresponding Co-gclusters by the Co-gclustering method with equivalent

parameters. These equivalent parameters are described as follow. The values of � and a in the Co-

gclustering method are set to the same values of � and NR in the UDB method, i.e., 0.05 and 30,

respectively. As we mentioned in the previous subsection, since the value of Sim is equal to (C
b
2=CN

2), the

value of b is set to (1þ
ffi

1þ 4 · Sim · N · (N� 1)
p

)=2¼ (1þ
ffi

1þ 4 · 0:75 · 17 · 16
p

)=2¼ 14. However,

with such values of parameters, the Co-gclustering method can not find any cluster. The reason is that as we

mentioned in the previous subsection, there may exist genes coregulated under only some condition pairs,

instead of all conditions in those condition pairs. In this experiment, although there do not exist genes

coregulated under at least b¼ 14 samples, there may exist genes coregulated under at least (Sim · 100¼ 75)

FIG. 11. A comparison of the processing time

for the data set of Case 3.

Table 4. Real Microarray Data Sets

Name Number of genes Number of samples

Yeast 2884 17

ALL-AML 5000 38

Breast 7129 49

COREGULATED GENE CLUSTERING USING UP-DOWN BIT PATTERNS 1789

percent of condition pairs. Therefore, the UDB method may find some interesting clusters which can not be

found by the Co-gclustering method.

5. CONCLUSION

Biclustering of microarray data has been shown to be instrumental in microarray data analysis. In this

article, we have proposed the UDB method, which can efficiently find clusters with correlated and negative-

correlated patterns. The UDB method utilizes up-down bit patterns to record those condition pairs where

one gene is upregulated or downregulated. Then, by applying a heuristic idea on these up-down bit patterns,

we can find all clusters in polynomial time. From the simulation results on synthetic microarray data sets,

we have studied the factors in the data sets which affect the processing time of the UDB method. Moreover,

from the experimental results on synthetic and real microarray data sets, we have shown that the UDB

method is more efficient than the Co-gclustering method. Furthermore, we have shown the correlation of

genes in clusters found by the UDB method for the yeast microarray data set.

Table 5. Experimental Results for Real Microarray Data Sets

Data set � a(NR) �ðSim ¼ C
�
2 CN

2 Þ UDB (sec) Co-gclustering (sec)

Yeast 0.01 80 9 46.3 94.3

50 10 47.7 102.5

30 11 52.1 126

ALL-AML 0.95 250 3 102.8 251.7

100 4 109.7 254.7

50 5 141.42 252.9

Breast 1.45 500 3 289.9 1065.8

300 4 423.9 1058.4

80 5 469.5 1064.2

Table 6. Searching Result of GO Terms for Clusters Found by the UDB Method

No. of genes

in this cluster

No. of genes belong

to the GO term Ontology GO term p-Value

33 15 Process Cellular response

to DNA damage stimulus

1.52 · 10�12

5 Function Double-stranded DNA

binding

2.42 · 10�05

9 Component Replication fork 7.87 · 10�12

31 18 Process DNA metabolic process 2.34 · 10�13

4 Function Double-stranded DNA

binding

0.00046

15 Component Chromosome 3.68 · 10�11

31 14 Process Cellular response to DNA

damage stimulus

1.22 · 10�11

4 Function Chromatin binding 0.00285

7 Component Replication fork 1.93 · 10�8

32 15 Process Cell cycle 5.28 · 10�8

4 Function Chromatin binding 0.00324

3 Component Mitotic cohesin complex 2.22 · 10�5

33 15 Process Cell cycle 9.43 · 10�8

4 Function Chromatin binding 0.00388

11 Component Nuclear chromosome 7.33 · 10�7

30 15 Process DNA metabolic process 1.1 · 10�9

11 Component Chromosomal part 5.25 · 10�7

1790 CHEN AND CHANG

ACKNOWLEDGMENTS

This research was supported in part by the National Science Council of Republic of China (Grant NSC-

95-2221-E-110-079-MY2) and by the ‘‘Aim for Top University Plan’’ project of NSYSU and the Ministry

of Education, Taiwan.

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Aguilar-Ruiz, J.S. 2005. Shifting and scaling patterns from gene expression data. Bioinformatics 21, 3840–3845.

Ben-Dor, A., Chor, B., Karp, R.M., et al. 2003. Discovering local structure in gene expression data: the order-

preserving submatrix problem. J. Comput. Biol. 10, 373–384.

Breitkreutz, B.J., Stark, C., and Tyers, M. 2006. Yeast grid. Available at: http://biodata.mshri.on.ca/yeast_grid/servlet/.

Accessed October 1, 2010.

Brunet, J.P., Tamayo, P., Golub, T.R., et al. 2004. Metagenes and molecular pattern discovery using matrix factor-

ization. Proc. Natl. Acad. Sci. USA 4164–4169.

Chang, Y.I., Chen, J.R., and Tsai, Y.C. 2009. Mining subspace clusters from DNA microarray data using large itemset

techniques. J. Comput. Biol. 16, 745–768.

Cheng, Y., and Church, G.M. 2000. Biclustering of expression data. Proc. 8th Int. Conf. Intell. Syst. Mol. Biol. 93–103.

Ihmels, J., Bergmann, S., and Barkai, N. 2004. Defining transcription modules using large-scale gene expression data.

Bioinformatics 20, 1993–2003.

Liu, J., and Wang, W. 2003. Op-Cluster: clustering by tendency in high-dimensional space. Proc. 3rd IEEE Int. Conf.

Data Mining 187–194.

Madeira, S.C., and Oliveira, A.L. 2004. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM

Trans. Comput. Biol. Bioinform. 1, 24–45.

Okada, Y., Fujibuchi, W., and Horton, P. 2007. A biclustering method for gene expression module discovery using a

closed itemset enumeration algorithm. IPSJ Digital Courier 3, 183–192.

Tanay, A., Sharan, R., and Shamir, R. 2002. Discovering statistically significant biclusters in gene expression data.

Bioinformatics 18, 136–144.

Tavazoie, S., Hughes, J.D., Campbell, M.J., et al. 1999. Systematic determination of genetic network architecture. Nat.

Genet. 22, 281–285.

Wang, H., Wang, W., Yang, J., et al. 2002. Clustering by pattern similarity in large data sets. Proc. ACM SIGMOD Int.

Conf. Manage. Data 394–405.

West, M., Blanchette, C., Dressman, H., et al. 2001. Predicting the clinical status of human breast cancer using gene

expression profiles. Proc. Natl. Acad. Sci. USA 11462–11467.

Yang, J., Wang, H., Wang, W., et al. 2005. An improved biclustering method for analyzing gene expression profiles.

Int. J. Artif. Intell. Tools 14, 771–789.

Yoon, S., Nardini, C., Benini, L., et al. 2005. Discovering coherent biclusters from gene expression data using zero-

suppressed binary decision diagrams. IEEE/ACM Trans. Comput. Biol. Bioinform. 2, 339–354.

Zhao, L., and Zaki, M.J. 2005. MicroCluster: efficient deterministic biclustering of microarray data. IEEE Intell. Syst.

20, 40–49.

Zhao, Y., Yu, J.X., Wang, G., et al. 2008. Maximal subspace coregulated gene clustering. IEEE Trans. Knowl. Data

Eng. 20, 83–98.

Address correspondence to:

Dr. Jiun-Rung Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

No. 70, Lienhai Road

Kaohsiung 80424, Taiwan, R.O.C.

E-mail: jiunrung@gmail.com

COREGULATED GENE CLUSTERING USING UP-DOWN BIT PATTERNS 1791

