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ABSTRACT

Dirichlet mixture priors provide a Bayesian formalism for scoring alignments of protein
profiles to individual sequences, which can be generalized to constructing scores for mul-
tiple-alignment columns. A Dirichlet mixture is a probability distribution over multinomial
space, each of whose components can be thought of as modeling a type of protein position.
Applied to the simplest case of pairwise sequence alignment, a Dirichlet mixture is equiv-
alent to an implied symmetric substitution matrix. For alphabets of even size L, Dirichlet
mixtures with L/2 components and symmetric substitution matrices have an identical
number of free parameters. Although this suggests the possibility of a one-to-one mapping
between the two formalisms, we show that there are some symmetric matrices no Dirichlet
mixture can imply, and others implied by many distinct Dirichlet mixtures. Dirichlet mix-
tures are derived empirically from curated sets of multiple alignments. They imply
‘‘background’’ amino acid frequencies characteristic of these sets, and should thus be non-
optimal for comparing proteins with non-standard composition. Given a mixture Y, we seek
an adjusted Y0 that implies the desired composition, but that minimizes an appropriate
relative–entropy–based distance function. To render the problem tractable, we fix the
mixture parameter as well as the sum of the Dirichlet parameters for each component,
allowing only its center of mass to vary. This linearizes the constraints on the remaining
parameters. An approach to finding Y0 may be based on small consecutive parameter
adjustments. The relative entropy of two Dirichlet distributions separated by a small change
in their parameter values implies a quadratic cost function for such changes. For a small
change in implied background frequencies, this function can be minimized using the La-
grange-Newton method. We have implemented this method, and can compositionally adjust
to good precision a 20-component Dirichlet mixture prior for proteins in under half a second
on a standard workstation.
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1. INTRODUCTION

Pairwise protein sequence alignments are almost always constructed with the aid of amino acid

substitution matrices, used to assign scores to aligned pairs of amino acids. The scores si,j in matrices
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used for local alignment are implicitly of the log-odds form si,j¼ log(qi,j /pipj), where the qi,j are ‘‘target

frequencies’’ with which amino acids correspond in accurately aligned related sequences, and the pi are

‘‘background frequencies’’ with which amino acids occur in proteins (Karlin and Altschul, 1990; Altschul,

1991). The most sensitive substitution matrices explicitly derive their target and background frequencies

from large collections of aligned, related sequences, and the circularity in this procedure is mitigated by

considering only alignments that are highly likely to be accurate (Dayhoff et al., 1978; Schwartz and Dayhoff,

1978; Henikoff and Henikoff, 1992).

Although standard substitution matrices such as the PAM and BLOSUM series are derived from protein

collections with a particular background frequency vector ~pp, they are sometimes used to compare proteins

whose amino acid compositions differ greatly from ~pp, but this is in general non-optimal (Yu et al., 2003;

Altschul et al., 2005). Accordingly, special purpose matrices have been derived for the comparison of

certain classes of proteins (Ng et al., 2000; Müller et al., 2001), and a general procedure has been described

for adjusting any standard substitution matrix for the comparison of sequences with non-standard com-

positions (Yu et al., 2003; Yu and Altschul, 2005).

Pairwise substitution matrices are frequently used for multiple protein sequence alignment (Murata et al.,

1985; Bacon and Anderson, 1986; Thompson et al., 1994). However, an appealing alternative approach (Altschul

et al., 2010) relies instead upon Dirichlet mixture models, which were originally proposed for the comparison of

individual sequences to protein profiles (Brown et al., 1993; Sjölander et al., 1996). Like the BLOSUM

substitution matrices (Henikoff and Henikoff, 1992), Dirichlet mixtures are derived from collections of protein

multiple alignments. They imply symmetric target frequencies for pairwise sequence comparison, which gen-

eralize naturally to multiple alignment, as well as a set of standard background amino acid frequencies ~pp. Like

pairwise substitution matrices, a Dirichlet mixture should be non-optimal for the comparison of proteins whose

amino acid composition differs greatly from~pp. Because it requires a large collection of multiple alignments, and

a great deal of effort, to derive a particular Dirichlet mixture model (Brown et al., 1993; Sjölander et al., 1996), it

is impractical to derive such a model anew for each set of proteins with nonstandard composition one wishes to

analyze. Accordingly, it would be useful to be able to adjust a standard Dirichlet mixture for use in a non-

standard compositional context. This article’s central concern is to describe a reasonable way in which this may

be accomplished. A preliminary step, however, is to describe and analyze various connections between Dirichlet

mixtures and pairwise substitution matrices that may elucidate both formalisms.

2. REVIEW OF DIRICHLET MIXTURE PRIORS

A Bayesian approach to protein sequence alignment and analysis begins with the postulate that, within

protein families, the probability of amino acids occurring at a particular position may be described by a

multinomial distribution. This distribution is never known precisely, but it may be inferred from a prior

belief concerning the probabilities of different multinomial distributions, and observations of amino acids

actually found at the position in question. For ease of calculation, it is convenient to assume the prior

distribution over multinomials takes the form of a Dirichlet distribution (MacKay, 2003), or a mixture of

Dirichlet distributions (Brown et al., 1993; Sjölander et al., 1996). In brief, for an alphabet with L letters,

the space of multinomials consists of all L-dimensional vectors ~xx with positive components that sum to 1.

Because of this constraint, the space of multinomials is L� 1 dimensional. A Dirichlet distribution D over

this space is specified by an L-dimensional vector ~aa of positive parameters; it is convenient to define a� asPL
j¼ 1 aj. The probability density of the Dirichlet distribution at ~xx is defined as

D(~xx)¼ Z
YL

j¼ 1

x
aj � 1
j , (1)

where the normalizing scalar Z¼C(a�)=
QL

j¼ 1 C(aj) ensures that integrating D over its domain yields 1.

One may show that the expected value of~xx is ~aa=a�. Larger values of a� correspond to distributions that are

more concentrated near this expected value, whereas values of a� near 0 correspond to distributions with

their density concentrated near the space’s boundaries. The uniform density is a special case of the Dirichlet

distribution that arises when all the aj are 1. For Bayesian analysis it is convenient to use a Dirichlet

distribution as a prior because, after the observation of a single letter a, the posterior distribution is another

Dirichlet distribution, whose parameter vector ~aa0 is identical to ~aa, except that a0a¼ aaþ 1.
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Available knowledge concerning proteins is much too rich to be captured well by a single Dirichlet prior,

because several different regions of multinomial space, corresponding to different natural residue classes

(e.g., hydrophobic, charged, aromatic, etc.), should have high prior probabilities. This idea can be captured

by a Dirichlet mixture (Brown et al., 1993; Sjölander et al., 1996), which is simply the sum of a finite

number M of Dirichlet distributions, each multiplied by a positive mixture parameter mi, with
PM

i¼ 1 mi¼ 1.

We call the parameters of the ith Dirichlet distribution ~aai � [ai, 1, . . . , ai, L]T , and define a�i to bePL
j¼ 1 ai, j. Fortunately, Dirichlet mixtures are not much more difficult to work with than single Dirichlet

distributions. The expected value of ~xx is just ~pp¼
PM

i¼ 1 mi
~aai

a�
i
, and the posterior distribution after the

observation of a single letter remains a Dirichlet mixture, with easily calculated parameters (Brown et al.,

1993; Sjölander et al., 1996; Altschul et al., 2010).

3. DIRICHLET MIXTURES AND PAIRWISE SUBSTITUTION MATRICES

Local pairwise substitution matrices are characterized by their estimates of the probabilities qi,j that, in an

accurate alignment of two related sequences, amino acids i and j are aligned at an arbitrary position

(Altschul, 1991). Similarly, given a Bayesian prior Y over multinomial space, one may calculate the

probability qi,j of observing the two amino acids i and j at any particular position. An advantage of the

Bayesian formalism is that it generalizes naturally to calculating probabilities~qq for the observation of more

than two aligned amino acids (Altschul et al., 2010).

It is possible to specify asymmetric target frequencies qi,j, implying asymmetric substitution scores si,j,

for aligning two sequences, and this makes sense when the sequences being compared have differing

background amino acid distributions (Yu et al., 2003). The Bayesian formalism implies symmetric target

frequencies, and so does not lend itself naturally to the comparison of sequences with differing background

distributions.

For an alphabet of size L, a Dirichlet mixture prior with M components has M(Lþ 1)� 1 free parameters.

Each Dirichlet component Di has the usual L Dirichlet parameters ~aai plus a mixture parameter mi, but

because the mixture parameters must sum to 1, only M� 1 of them are independent. Note that, so long as

the implied probability density is nowhere negative, one need not require the mixture parameters to be

positive, although it is intuitively appealing to do so.

Fixing its scale, and specifying a symmetric pairwise substitution matrix for an alphabet of size L by its

target frequencies, we observe that the matrix has L(Lþ 1) /2� 1 free parameters; the �1 arises from the

requirement that the target frequencies sum to 1. For an alphabet of L letters, with L even, a Dirichlet

mixture with L/2 components thus has exactly as many free parameters as a symmetric substitution matrix.

It is tempting to postulate that, in this case, there is a one-to-one correspondence between L/2-component

Dirichlet mixtures and fixed-scale symmetric substitution matrices, up to a relabelling of the Dirichlet

components. Were this the case, every symmetric protein substitution matrix, for example, would corre-

spond to an effectively unique 10-component Dirichlet mixture prior.

Unfortunately, no such one-to-one correspondence in general exists. Each Dirichlet mixture, of whatever

number of components, implies a unique symmetric substitution matrix. However, the target frequency matrix

implied by a Dirichlet mixture must be positive definite (Appendix A), whereas it is perfectly possible to

specify symmetric target frequencies that are not positive definite. Furthermore, it is possible to construct

distinct L/2-component Dirichlet mixtures that imply identical pairwise target frequencies (Appendix A).

Pairwise substitution matrices (Dayhoff et al., 1978; Schwartz and Dayhoff, 1978; Henikoff and He-

nikoff, 1992) and Dirichlet mixture priors (Brown et al., 1993; Sjölander et al., 1996) may be derived from

the same type of data - curated multiple sequence alignments, assumed to be accurate - but are based upon

two distinct formalisms. There is no reason to believe that, for pairwise sequence comparison, Dirichlet

mixtures should afford any advantage. In this context, the performance of a Dirichlet mixture is completely

determined by its implied pairwise target frequencies, but these frequencies are estimated only indirectly,

mediated by the Dirichlet mixture formalism. If fewer than L/2 components are allowed, many unnecessary

dependencies among the target frequencies are imposed, whereas even with L/2 or more components, some

sets of possible target frequencies are unobtainable. Furthermore, it is in general not computationally

feasible to truly optimize Dirichlet mixture parameters given a set of data (Sjölander et al., 1996), and

heuristic methods must be employed. In contrast, it is fairly simple to estimate target frequencies directly,

and then to construct corresponding substitution matrices (Henikoff and Henikoff, 1992).
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Where Dirichlet mixtures gain their advantage is for the alignment of multiple (i.e. more than two)

sequences. First, Dirichlet mixtures generalize the theoretically well-founded log-odds scores naturally to the

multiple alignment case (Altschul et al., 2010), whereas multiple alignment scores based upon pairwise

substitution matrices (Murata et al., 1985; Bacon and Anderson, 1986) have no satisfying theoretical justi-

fication. Second, the Dirichlet mixture formalism, especially when more than L/2 components are employed,

is able to capture structure in the curated multiple alignment data that must escape pairwise substitution

matrices. Of course it is possible to try to fit too many parameters to a given set of data, and it would be

interesting to apply the Minimum Description Length (MDL) principle (Grünwald, 2007) to the question of

how many Dirichlet components a given set of curated multiple alignment data can optimally support.

4. ADJUSTING DIRICHLET MIXTURES FOR NON-STANDARD COMPOSITIONS

4.1. An ideal formulation

To adjust a ‘‘standard’’ pairwise substitution matrix, derived from a set of data with ‘‘standard’’ amino

acid frequencies ~pp, for the comparison of sequences with non-standard compositions ~pp0, Yu et al. (2003)

took the following approach. They first showed that each substitution matrix implies a specific set of

background amino acid frequencies, and therefore proposed to select an ‘‘adjusted’’ matrix from among

those that imply ~pp0. They defined the best such matrix as that which is closest, by an appropriate metric, to

the original matrix. We propose to adapt this basic strategy to the compositional adjustment of Dirichlet

mixtures.

Assume we are given a Dirichlet mixture Y with M components, and that its ith component Di has

Dirichlet parameters ~aai and mixture parameter mi. To analyze proteins with nonstandard amino acid

frequencies, we seek an M-component Dirichlet mixture Y0 whose implied background frequencies are ~pp0,
and that minimizes an objective function G(Y0; Y). (The notation D0i, ~aa

0
i, a0�i and m0i will apply to Y0.)

Formally, the constraints on the parameters of Y0 are given by

XM

i¼ 1

m0i
a0i, j

a0�i
¼ p0j (2)

for j from 1 to L. By analogy to Yu et al. (2003), a reasonable choice for G is the relative entropy of Y0

and Y:

G(H0; H)¼
Z

H(~xx) ln
H(~xx)

H0(~xx)
d~xx, (3)

where the integration is performed over multinomial space. Intuitively, the Y0 that minimizes G can be

thought of as the least surprising Dirichlet mixture, given Y, that satisfies the constraints (2). G is non-

negative, and is 0 only when Y0 ¼Y, but it is not symmetric in Y0 and Y.

Unfortunately, it is difficult to work with equation (3) analytically, and furthermore the constraints on the

parameters of Y0 imposed by eq. (2) are nonlinear, and may even imply discontiguous regions of parameter

space. We have not been able to find an efficient algorithm for solving this idealized version of the problem,

and so reformulate the problem below into a tractable form.

4.2. A practical formulation

The nonlinearity of the constraints on the parameters of Y0 is our greatest initial problem. The individual

components Di of a Dirichlet mixture can be understood as describing certain types of positions found

within proteins, and the mixture parameters ~mm can be understood as describing the frequency with which

these types of positions tend to arise. Although proteins may have non-standard amino acid compositions

for a variety of reasons, it is useful to consider two broad reasons, which have different implications for

which parameters of a Dirichlet mixture should change. First, the genomes of certain organisms have strong

AT or CG nucleotide biases, which influence the amino acid usage within the organisms’ proteomes

(Sueoka, 1988; Wan and Wootton, 2000). The frequency with which protein position types are found within

these organisms is presumably largely unaffected, but the amino acid frequencies found at all positions are

biased in a general direction. For non-standard amino acid frequencies due to this cause, one might

therefore consider fixing the mixture parameters ~mm0 equal to ~mm, but letting the parameters of all the Di vary.
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In contrast, some protein families have structural features that strongly favor the occurrence of certain

types of protein positions (e.g. hydrophobic, charged, etc.), thereby producing non-standard amino acid

usage. To adjust a Dirichlet mixture for use with such a family, one might consider fixing the Di, and letting

only the mixture parameters vary. We will consider each of these two approaches separately.

4.3. Fixed mixure parameters

Even once one has fixed the mixture parameters ~mm0 ¼ ~mm, the constraints imposed by eq. (2) on the

remaining parameters remain non-linear. We therefore propose to further restrict the problem by fixing a0�i

equal to a�i for each Dirichlet component. In other words, the ‘‘peakedness’’ of each Dirichlet component is

fixed, and only its center of mass is allowed to change; this seems to be a reasonable concession in the

interest of tractability. Note that there always remain at least as many free parameters as constraints, and

furthermore that the constraints are consistent because there is always a feasible solution with a0i, j¼ a�i p0j.
A remaining difficulty is that G(Y0; Y) of equation (3) is not analytically tractable, so we seek to

approximate it with a different function. As a practical matter, Dirichlet mixtures for proteins are derived

primarily from analyses of multiple alignment data (Brown et al., 1993; Sjölander et al., 1996), and the

MDL principle (Grünwald, 2007) suggests that two or more components with very similar parameters

would be better collapsed into one. Accordingly, we will assume that the densities of individual compo-

nents of a Dirichlet mixture do not greatly overlap. This allows us to approximate G by

F(H0; H)¼
XM

i¼ 1

mi G(D0i; Di)¼
XM

i¼ 1

mi

Z
Di(~xx) ln

Di(~xx)

D0i(~xx)
d~xx: (4)

F is analytically tractable. First, as described in Appendix B, F can be written in closed form and, given

the constraints on the parameters of Y0, it can be shown to have a unique minimum. However, given the

H0global yielding this minimum, if one were to seek the Dirichlet mixture implying ~pp and minimizing

F(�; H0global), one would not reconstruct Y, due to the asymmetry of eq. (4). Accordingly, we have found that

an appealing alternative approach is to recast the minimization problem into a local form, as described below.

Imagine changing the background frequencies from ~pp to ~pp0 in a series of N steps, in each of which the

background frequencies change by (~pp0 �~pp)=N. One such step will entail changing Y to Y0, whose pa-

rameters ~aa0i can be written as ~aaiþ~DDi. For N large, j~DDij will be small, and as described in Appendix B, we

can write

F(H0; H) �
XM
i¼ 1

mi

XL

j¼ 1

Ri, j

2
D2

i, j, (5)

where Ri,j is the trigamma function of ai,j, which can be written most simply as

Ri, j¼
X1
k¼ 0

1

ai, jþ k

� �2

: (6)

For computational purposes, formulas that converge much more rapidly than eq. (6) are available

(Schneider, 1978). Because (5) is quadratic, and the constraints on the Di,j are linear, we may find the ~DDi

that minimize F using the Lagrange-Newton method, as described in Appendix C.

Note that Ri,j approaches 1/ai,j for ai,j large, and 1=a2
i, jþ p2=6 for ai,j small. In other words, as should be

intuitively expected, it is less costly to change a large parameter than a small one by an absolute quantity,

but more costly to change it by a relative quantity. Furthermore, it is infinitely costly, in aggregate, to

change a parameter’s value all the way to 0.

As N grows, the aggregate parameter-value changes produced by this repeated local adjustment pro-

cedure converge, yielding a H0local that is distinct from the H0global that minimizes eq. (4). Notably, as we

show in Appendix C, independent of which ‘‘path’’ one takes from ~pp to ~pp0, the identical H0local results. In

other words, each Dirichlet mixture with fixed ~mm and a�i belongs to a class of related Dirichlet mixtures that

differ only in their implied background frequencies. These classes have no ‘‘distinguished’’ members.

While H0global gives a special status to the original mixture Y, H0local yields Y no such status, and can be

understood to recognize the role of gradual evolutionary change. Code for calculating the parameters of

H0local, given Y and ~pp0, is available from the authors upon request.
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4.4. Fixed Dirichlet components

To adjust a Dirichlet mixture for a non-standard background composition, it is also possible to keep the

Di fixed and change only the mixture parameters, but several potential problems arise. First, unless there are

at least as many Dirichlet components M as letters L, it is unlikely any choice of mixture parameters ~mm0 will

yield the background probabilities ~pp0. If M¼ L, a unique solution to the constraint eq. (2) may be found by

matrix inversion, except in degenerate cases. However, it is possible that some of the implied m0i are

negative. Even if such a solution were a valid Dirichlet mixture, with probability density nowhere negative,

it would not conform to an intuitive understanding of the proper role of the mixture parameters ~mm. If M> L,

one may derive a cost function for changes in ~mm, and optimize this function subject to the linear constraints.

Again, it is possible that no solution with all m0i positive exists. In general, while one may always adjust a

Dirichlet mixture for a non-standard composition by fixing ~mm, as described above, there is no guarantee this

can be achieved by fixing the Di. We have therefore confined our attention to fixed ~mm.

5. DISCUSSION

Although this article is motivated by the application of Dirichlet mixture priors to protein sequence

comparison (Brown et al., 1993; Sjölander et al., 1996; Altschul et al., 2010), for illustrative purposes only

it is convenient to consider a three-letter alphabet, whose multinomial space is the interior of an equilateral

triangle. In Table 1, we list the parameters of a toy, three-component Dirichlet mixture Y over such an

alphabet. We represent the probability density of Y in Figure 1 by small blue dots, its center of mass

~pp¼ (0:28, 0:33, 0:39) by a large blue dot, and the center of mass of each of its Dirichlet components by a

black dot. Specifying a set of desired background frequencies ~pp0 ¼ (0:30, 0:20, 0:50), represented by a large

red dot in Figure 1, we used the local adjustment method described above to construct Y0, whose pa-

rameters we give in Table 1. We represent the probability density of Y0 in Figure 1 by small red dots, and

show with arrows the change in the center of mass from Y to Y0, as well as that for each of their three

components. Several qualitative facts are apparent. First, it is difficult to move a Dirichlet component that is

near a boundary of multinomial space closer to that boundary. Second, it is easier to move a diffuse

Dirichlet component (i.e. one with relatively low a�) than a concentrated component (i.e. one with rela-

tively high a�). Third, the centers of mass of different Dirichlet components may move in different

directions.

To study the behavior of our compositional adjustment method on a realistic problem, we consider the

20-component Dirichlet mixture for protein sequence comparison called ‘‘recode4’’ that was developed at

Table 1. Parameters for a Baseline Dirichlet Mixture and Its Corresponding Locally

Adjusted Mixture

Baseline Mixture Y

Component i mi Dirichlet parameters ai,j ��i

1 0.30 350 50 100 500

2 0.30 50 300 150 500

3 0.40 10 30 60 100

pj: 0.28 0.33 0.39

Adjusted Mixture Y0

Component i m0i Dirichlet parameters a0i, j �0�i

1 0.30 360 36 104 500

2 0.30 61 248 191 500

3 0.40 12 7 81 100

p0j 0.30 0.20 0.50

The Dirichlet parameters for Y0 are shown rounded to the nearest integer. For realistic applications, the values of a* are typically

much smaller. We use large values here only for illustrative purposes, so that the densities of distinct Dirichlet components are visually

well separated in Figure 1.
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UCSC (available through UCSC at http://compbio.soe.ucsc.edu/dirichlets/index.html). We refer below to

this distribution simply as Y, and its implied background frequencies as ~pp. We construct a set of biased

background frequencies ~pp0 (Table 2) from a set of 53 Api-AP2 proteins from Toxoplasma gondii (Altschul

et al., 2010), which has a CG-rich genome. To approximate to great accuracy the parameters of the adjusted

Y0 corresponding the ~pp 0, we initially use an inordinately high number, 10,000, of local adjustment steps.

For a particular amino acid j, the ratio Rj¼ p0j=pj describes the factor by which its background frequency

is required to change, while the ratio ri, j¼ a0i, j=ai, j describes the factor by which its expected frequency is

adjusted within Dirichlet component i. In Table 2 we show, for each amino acid, the ratio Rj, as well as the

minimum and maximum of the ratios ri,j over all 20 Dirichlet components Di. Note that when Rj> 1, which

FIG. 1. The local compositional adjustment of

a 3-component Dirichlet mixture over a 3-letter

alphabet. The small blue dots represent the

probability density of the baseline Dirichlet

mixture Y whose parameters are given in Table

1. The large blue dot represents the background

frequencies ~pp implied by Y, i.e. its center of

mass. The large red dot represents the desired

background frequencies~pp0, and the small red dots

the probability density of the corresponding

Dirichlet mixture Y0 that results from our local

adjustment procedure, and whose parameters are

given in Table 1. Arrows represent the changes in

the centers of mass of the Dirichlet mixture and

its constitutent components.

Table 2. Parameter Changes Implied by the Adjustment of a Dirichlet Mixture

Amino acid pj p0j Rj log2 Rj mini ri,j maxi ri,j

A 8.91 11.78 1.32 0.40 0.59 3.85

C 1.47 1.87 1.27 0.34 1.00 1.74

D 5.57 4.85 0.87 �0.20 0.56 1.33

E 5.64 7.34 1.30 0.38 0.96 2.07

F 4.25 2.65 0.62 �0.69 0.41 1.87

G 7.45 10.07 1.35 0.44 1.00 2.59

H 2.28 2.05 0.90 �0.15 0.67 2.39

I 6.22 1.33 0.21 �2.23 0.08 0.71

K 5.41 3.17 0.59 �0.77 0.44 1.41

L 9.21 7.67 0.83 �0.26 0.53 3.89

M 2.33 1.12 0.48 �1.05 0.33 0.95

N 4.27 2.20 0.51 �0.96 0.36 1.12

P 3.87 7.45 1.92 0.94 1.01 3.01

Q 3.77 3.98 1.06 0.08 0.93 1.90

R 4.54 7.88 1.73 0.79 1.00 4.02

S 5.96 12.37 2.07 1.05 1.02 4.88

T 5.62 5.16 0.92 �0.12 0.64 2.39

V 7.84 5.18 0.66 �0.60 0.37 2.15

W 1.56 0.84 0.54 �0.89 0.39 0.98

Y 3.84 1.04 0.27 �1.88 0.09 0.84

The 20-component Dirichlet mixture ‘‘recode4’’ implies the background frequencies ~pp. When adjusted for background frequencies

~pp0, the frequency of amino acid j changes by a factor Rj, and its corresponding Dirichlet parameter within the ith Dirichlet component

changes by a factor ri,j. Even when Rj> 1, some of the ri,j may be less than 1.
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specifies an increase in the background frequency for amino acid j, although the expected frequency of j

tends to increase in most Dirichlet components, it may actually decrease in some, as seen by the fact that

mini(ri,j) may be less than 1. This is due to competing ‘‘pulls’’ by various amino acids on the centers of

mass of the various Dirichlet components.

To study how many steps~pp0 �~pp should be divided into to achieve reasonable accuracy in calculating Y0,
we define H0N to be the distribution yielded by our local algorithm with N equal-sized steps, and assume that

H010, 000 is a reasonably good approximation to Y0. We plot in Figure 2, for N� 1,000, the maximum

relative error in estimating the parameters of Y0 by those of H0N . In this example, N¼ 146 is sufficient to

estimate all a0i, j to a precision of better than 1%, which should be more than sufficient for most purposes.

Averaged over three runs on an Intel Xeon 2.4 GHz E7440 CPU, this requires 0.041 seconds.

We expect that the more extreme the change in background frequencies required, the larger N must be to

achieve a given degree of precision. To test this hypothesis, we first generated 1,000 sets of background

frequencies ~pp0 centered on ~pp, by randomly sampling multinomial space using a Dirichlet distribution with

parameter vector ~aa¼ 75~pp. For each set, we calculated the parameters of the adjusted Y0 to great precision

by using our local adjustment algorithm with 10,000 steps. Finally, we calculated the minimum number of

steps N required to estimate all the parameters of Y0 to within 1%, and plotted N against A, the mean

absolute value of log2 Rj (Fig. 3). As can be seen, N indeed tends to grow with A, with N¼ 600 steps usually

sufficient for A� 0.7, and N¼ 1,200 steps usually sufficient for A� 1. The execution time required grows

approximately linearly with N, so compositional adjustments to a 20-component Dirchlet mixture, with

these values for N, can be accomplished in approximately 0.17 and 0.34 seconds respectively.

It is possible to construct artificial examples, with A large, for which a very large number of steps is

required to achieve good precision in estimating the parameters of Y0. However, for natural classes of real

proteins, it is unusual for A to exceed 1. The representative example given in Table 2 and Figure 2, with

A¼ 0.712 and N¼ 146, is shown by an ‘‘x’’ in Figure 3. The number of steps it requires to achieve good

precision ranks in the 25th percentile of the random examples with A near 0.7.

We have assumed throughout that all the specified frequencies ~pp0 are non-zero. However, if~pp0 is derived

from the observed frequencies in a small collection of proteins, where certain amino acids may be com-

pletely absent, it is important to add pseudocounts. This insures that the frequencies ~pp0 are all positive, and

that A is never very large.

6. CONCLUSION

Dirichlet mixture priors are an important formalism for multiple protein sequence alignment. A given

mixture Y implies a specific set of amino acid background frequencies~pp, and should be non-optimal for the

analysis of proteins with non-standard background frequencies ~pp0. It is impractical to construct a new

Dirichlet mixture from scratch for each new composition, so we have sought a method for adjusting Y to be

FIG. 2. The maximum relative error in estimating

the the parameters of an adjusted Dirichlet mixture,

as a function of the number of adjustment steps. The

baseline Dirichlet mixture Y is the 20-component

‘‘recode4’’ over the amino acid alphabet, developed

at UCSC, whose implied background frequencies ~pp
are shown in Table 2. Given the desired background

frequencies~pp0 specified in Table 2, we calculated the

parameters of the corresponding adjusted Y0 to great

precision using our local adjusment procedure with

10,000 steps. The graph shows the maximum relative

error in estimating the parameters of Y0 using N

local adjustment steps. As shown by the dotted lines,

N¼ 146 is sufficient to obtain a maximum relative

error of 1%.
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consistent with any specified~pp0. First, by allowing only the centers of mass of the Dirchlet components that

constitute Y to vary, we linearize the problem’s constraints. Second, assuming a relative-entropy-based

distance function, we derive a local, quadratic cost function for changes to a Dirichlet distribution’s center

of mass. This permits us to calculate optimal changes to the parameters of Y for small changes to~pp, and we

may integrate these changes to derive a unique H0local corresponding to ~pp0. For practical problems, several

hundred adjustment steps are sufficient for calculating the parameters of H0local to good precision, allowing

the compositional adjustment of a Dirichlet mixture to be accomplished in well under a second.

7. APPENDIX

A. Correspondences between Dirichlet mixture priors and pairwise substitution matrices

First, we show that the pairwise target frequencies implied by a Dirichlet mixure must be positive

definite. Given a Dirichlet mixture prior, the probability of observing the letter j twice at a given position is

qj, j¼
XM
i¼ 1

mi

ai, j(ai, jþ 1)

a�i (a�i þ 1)
, (7)

while the probability of observing the letter j followed by a different letter k is

qj, k ¼
XM

i¼ 1

mi

ai, jai, k

a�i (a�i þ 1)
: (8)

Obviously, the matrix Q¼ [qj,k] is symmetric. To show that Q is also positive definite, one can use the

matrix-vector form of Q. Simply define Ki � diag(ai, 1, . . . , ai, L) and zi � a�i (a�i þ 1). Then Q can be

expressed as

Q¼
XM
i¼ 1

mi

(Kiþ~aai~aaT
i )

zi

: (9)

This implies Q is positive definite, because Kiþ~aai~aaT
i is positive definite for each i.

Second we show that the L/2-component Dirichlet mixture corresponding to a particular set of of target

frequencies need not be unique, as can be established by a simple example. Let D(a1, . . . , aL) denote a

Dirichlet distribution with the parameters ~aa. The 4 · 4 target frequency matrix Q implied by a special 2-

component Dirichlet mixture mD(1, x, 1, x)þ (1�m)D(1, y, 1, y) is also generated by distinct 2-component

FIG. 3. The number of adjustment steps as a function

of changes in background frequencies. We take the

baseline Y to be ‘‘recode4’’, as described in Figure 2.

We generated 1,000 sets of ‘‘desired’’ background fre-

quencies~pp0 centered on ~pp by sampling from a single

Dirichlet distribution with parameters aj¼ 75pj. For

each ~pp0, we estimated the parameters of its corre-

spondingY0 using 10,000 local adjustment steps, and

then calculated the minimum number of steps N re-

quired to estimate all the parameters of Y0 to within

1%. We sorted the ~pp0 into bins according to the

quantity A¼ 1
20

P20
j¼ 1 j log2 Rjj, the mean absolute

value of the log factor by which the pj must change.

For each bin, dots represent the observed mean value

of N, with error bars showing one standard deviation

for this estimate. Triangles represent the 90th percentile for values of N within each bin. The particular case studied in

Table 2 and Figure 2 is shown by an ‘‘x.’’
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Dirichlet mixtures. Let Lx¼ diag(1, x, 1, x), ~cxcx¼ [1, x, 1, x]T , zx¼ (2xþ 2)(2xþ 3), Ly¼ diag(1, y, 1, y),

~ccy¼ [1, y, 1, y]T , and zy¼ (2yþ 2)(2yþ 3). Then Q can be expressed as

Q¼m
(Kxþ~ccx~cc

T
x )

zx

þ (1�m)
(Kyþ~ccy~cc

T
y )

zy

:

We found, through some tedious algebra, that Q is also implied by a family of 2-component Dirichlet

mixtures. The family is

fm0D(1, s, 1, s)þ (1�m0)D(1, t, 1, t) : m0 ¼ (r1r3� r2
2)zs

r1s2� 2r2sþ r3

, t¼ r2s� r3

r1s� r2

,

s 2 0,
r2

r1

� �
[ r3

r2

, þ1
� �

g,

where

zs¼ (2sþ 2)(2sþ 3),

r1¼
2(my(2yþ 5)þ (1�m)x(2xþ 5)þ 3)

zxzy

,

r2¼
2(mx(2y2þ 3)þ (1�m)y(2x2þ 3)þ 5xy)

zxzy

,

r3¼
2(m(5yþ 3)x2þ (1�m)(5xþ 3)y2þ 2x2y2)

zxzy

For example, letting m¼ 0.25, x¼ 2 and y¼ 4 gives us a Dirichlet mixture H1¼ 0:25 D(1, 2, 1, 2)þ
0:75 D(1, 4, 1, 4). We can calculate r1¼ 0.012771, r2¼ 0.039177, and r3¼ 0.132900. Hence the legal range

for free variable s is (0, r2

r1
) [ ( r3

r2
, þ1)¼ (0, 3:0678) [ (3:3923, þ1). If we let s¼ 2.5, then we have a

Dirichlet mixture H2¼ 0:54019 D(1, 2:5, 1, 2:5)þ 0:45981 D(1, 4:8209, 1, 4:8209); if we let s¼ 10, then

we have another Dirichlet mixture H3¼ 0:13113 D(1, 10, 1, 10)þ 0:86887 D(1, 2:9242, 1, 2:9242). Both

Y2 and Y3 imply the same matrix of target frequencies as implied by Y1.

B. Closed form, convexity, and local form of the approximate cost function F

Based on the approximation (4) described in the main text, the divergence G(Y0; Y) between two Dirichlet

mixtures Y and Y0 is approximated by

G(H0; H) � F(H0; H)¼
XM

i¼ 1

miG(D0i; Di)¼
XM

i¼ 1

mi

Z
Di(~xx) ln

Di(~xx)

D0i(~xx)
d~xx:

That is, we need to focus on only one mixture component at a time. Therefore we drop the component

index, and the indices below label only the amino acids.

For a given Dirichlet component, we rewrite eq. (1) to express the probability density distribution (given

the Dirichlet parameters) explicitly as

D(~xxj~aa)¼ C(a�)QL
j¼ 1 C(aj)

YL

j¼ 1

x
aj � 1
j : (10)

If one were to shift the implied background frequencies from ~aa=a� by ~DD (requiring of course thatPL
j¼ 1 Dj¼ 0), the distribution becomes D(~xxj~aaþ~DD). We are interested in computing the Kullback-Leibler

distance from D(~xxj~aaþ~DD) to D(~xxj~aa):

G D( � j~aaþ~DD); D( � j~aa)
� �

¼
Z

D(~xxj~aa) ln
D(~xxj~aa)

D(~xxj~aaþ~DD)

 !
d~xx : (11)

Using eq. (10), we find that [with a� ¼
PL

j¼ 1 aj¼
PL

j¼ 1 (ajþDj)]
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ln
D(~xxj~aa)

D ~xxj~aaþ~DD
� �

0
@

1
A¼ ln

QL
j¼ 1 C(ajþDj)QL

j¼ 1 C(aj)

YL

j¼ 1

x
�Dj

j

 !

¼
XL

j¼ 1

[ ln C(ajþDj)� ln C(aj)�Dj ln xj] :

(12)

Consequently,

G
�
D( � j~aaþ~DD); D( � j~aa)

�
¼ C(a�)QL

j¼ 1 C(aj)

XL

j¼ 1

ln C(ajþDj)� ln C(aj)�Dj

q
qaj

" #Z YL

j¼ 1

x
aj � 1
j d~xx

¼ C(a�)QL
j¼ 1 C(aj)

XL

j¼ 1

ln C(ajþDj)� ln C(aj)�Dj

q
qaj

" # QL
j¼ 1 C(aj)

C
PL

j¼ 1 aj

� �

¼
XL

j¼ 1

[ ln C(ajþDj)� ln C(aj)]�
XL

j¼ 1

Dj[w(ajþDj)�w(a)]

¼
XL

j¼ 1

[ ln C(ajþDj)� ln C(aj)�Djw(aj)] , (13)

where the last equality comes from the fact that
PL

j¼ 1 Dj¼ 0, and c(x)� (d/dx) ln G(x) is the digamma

function. Note that the digamma function can be expressed as

w(xþ 1)¼ � cþ
X1
k¼ 1

1

k
� 1

xþ k

� �
¼ � cþ

X1
k¼ 1

x

k(xþ k)
, (14)

where g is Euler’s constant. Restoring the component index, one may now write the approximate cost

function F in closed form as

F(H0; H)¼
X

i

mi

XL

j¼ 1

[ ln C(ai, jþDi, j)� ln C(ai, j)�Di, jw(ai, j)]

( )
: (15)

We now establish that F is convex when viewed as a function of the multiple variables {Di,j}, and that

given the constraints of eq. (2), F must have a unique minimum. We first observe from eq. (15) that F’s

dependences on {Di,j} are decoupled from each other. Therefore, it is sufficient to prove that

f (D) � ln C(aþD)� ln C(a)�Dw(a)

is a convex function of D. Using eq. (14), the second derivative of f is

d2f

dD2
¼ d

dD
w(aþD) � w0(aþD)¼

X1
k¼ 0

1

(aþDþ k)2
4 0 : (16)

This proves the convexity of F. Since the constraints are linear in Di,j, upon the introduction of Lagrange

multipliers into the minimization procedure, the introduced linear terms in Di,j do not change the convexity

of F. That is, the minimum of F, if it exists, must be unique. Since G(aþD)?? for D? (�a)þ and for

D??, while f¼ 0 for D¼ 0, F must have a minimum.

To derive a local form of cost function F, we consider expanding the cost function to quadratic order in

Di,j. It is obvious that the second and third terms inside the square brackets in (15) are exactly the zeroth and

first order terms of the preceding function, when expanded around ai,j. For small jDi,jj, the expression in

(15) is thus led by

F(H0; H) � 1

2

XM
i¼ 1

mi

XL

j¼ 1

w0(ai, j) D2
i, jþO(D3) : (17)
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Using eq. (16), it is apparent that Ri,j, defined in the main text, is given by

Ri, j¼w0(ai, j)¼
X1
k¼ 0

1

(ai, jþ k)2
:

C. The Lagrange-Newton method and the path independence of the local form of F

To obtain the Dirichlet parameter changes associated with an infinitesimal change in the background

amino acid frequencies, one only needs to minimize the local form of F, eq. (17), subjected to the necessary

constraints. Let us consider changing the background frequencies ~pp by adding ~pp (1). We will consider the

p(1)
j to be infinitesimal quantities. Assume that the Dirichlet parameters change correspondingly from ai,j to

ai,jþDi,j. It is apparent that Di,j must satisfy the following constraints:

XL

j¼ 1

Di, j¼ 0 8 i; (18)

XM
i¼ 1

mi

Di, j

a�i
¼ p(1)

j 8 j: (19)

To seek the set fD(1)
i, j g that satisfies these constraints and minimizes F, we minimize the local form of F, eq.

(17), by introducing a Lagrange multiplier for each of the constraints. Specifically, minimizing

1

2

XM
i¼ 1

mi

XL

j¼ 1

w0(ai, j) D2
i, j�

XM
i¼ 1

ni

XL

j¼ 1

Di, j� 0

 !
�
XL

j¼ 1

kj

XM
i¼ 1

mi

Di, j

a�i
� p(1)

j

 !
(20)

yields

miw
0(ai, j)Di, j¼ niþmi

kj

a�i
,

or

Di, j¼
ni

miw
0(ai, j)

þ kj

a�i w
0(ai, j)

: (21)

Substituting (21) into eq. (18), we find

Hi �
X

j0

1

w0(ai, j0)
; (22)

Di, j¼
1

a�i w
0(ai, j)

kj�
1

Hi

X
j0

kj0

w0(ai, j0 )

" #
�
X

j0
Mi

j, j0kj0 , (23)

where

Mi
j, j0 ¼

dj, j0

a�i w
0(ai, j)

� 1

a�i Hi

1

w0(ai, j)w
0(ai, j0)

: (24)

Substituting (23) into eq. (19), we obtain

X
j0

X
i

mi

a�i
Mi

j, j0

 !
kj0 �

X
j0

Yj, j0kj0 ¼ p(1)
j : (25)

Therefore, in matrix notation, we can write the final solution as

~DD(1)
i ¼Mi � ~kk¼Mi � Y� 1 �~pp (1), (26)

where

Y(fai0 , j0 g)¼
X

i

mi

a�i
Mi(fai0 , j0 g) :

1618 YE ET AL.



Eq. (26) gives the changes in Dirichlet parameters corresponding to a small change in the target fre-

quencies, demonstrating that ~DD(1) is of the same order as ~pp (1). It is evident that the matrix elements of M

and Y depend on the set {ai0,j0}.

If one performs another infinitesimal background frequency change ~pp(2), the cumulative Dirichlet pa-

rameter changes become

~DDi¼~DD(1)
i þMi fai0 , j0 þD(1)

i0 , j0 g
� �

� Y fai0 , j0 þD(1)
i0, j0 g

� �� 1

�~pp (2): (27)

On the other hand, if one changes the background frequencies first by ~pp(2) and then by ~pp(1), the cumulative

changes become

~DD0i¼~DD
(2)
i þMi fai0 , j0 þD(2)

i0 , j0 g
� �

� Y fai0 , j0 þD(2)
i0, j0 g

� �� 1

�~pp (1): (28)

To compare eqs. (27) and (28), we expand the quantities around ai,j. Since the matrix Y is a linear

combination of Mi, the expansion reduces to the differentiation of Mi with respect to ai,j. Using eq. (24), we

obtain after some calculation

qMi
j, j0

qai0 , j00
¼ di, i0 �

dj, j00w
†(ai, j)

w0(ai, j)
Mi

j, j0 þ
w†(ai, j00)

Hiw
0(ai, j)w

0(ai, j00 )
Mi

j00 , j0

" #
: (29)

We further note that

qY� 1

qai, j

¼ �Y� 1 � qMi

qai, j

� Y� 1 :

Therefore, to obtain the second order in background frequency changes in eq. (27), we may write

Di, j¼D(1)
i, j þD(2)

i, j þ
X

i0 , j0, j00
D(1)

i0 , j00
q

qai0, j00
(Mi � Y� 1)j, j0 � p(2)

j0

¼D(1)
i, j þD(2)

i, j þ
X

i0 , j0, j00 , j000
D(1)

i0 , j00

qMi
j, j000

qai0 , j00
Y � 1

j000 , j0 þMi
j, j000

qY � 1
j000, j0

qai0 , j00

 !
p(2)

j0

¼D(1)
i, j þD(2)

i, j �
w†(ai, j)

w0(ai, j)
D(1)

i, j D
(2)
i, j þ

1

Hiw
0(ai, j)

X
j00

w†(ai, j00)

w0(ai, j00)
D(2)

i, j00D
(1)
i, j00

þ
X
i0, j00

(Mi � Y� 1)j, j00
w†(ai0, j00 )

w0(ai0 , j00)
D(1)

i0, j00D
(2)
i0, j00

þ
X

i0 , j0, j00
(Mi � Y� 1)j, j0

1=Hi0

w0(ai0, j0 )

w†(ai0, j00)

w0(ai0 , j00)
D(1)

i0, j00D
(2)
i0 , j00 : (30)

The symmetry between D(1) and D(2) shown above indicates that reversing the order of operations yields the

same result. That is, it does not matter whether one changes the background frequencies by~pp(1) followed by

~pp(2) or vice versa. A continuation of this result implies that once the new background frequencies ~pp0 are

chosen, the compositionally adjusted Dirichlet parameters do not depend on which path one takes to reach

~pp0, as long as local optimization is applied every step of the way.

It is worth remarking that having c0(ai,j) as the elastic constant associated with the displacement Di,j is

not critical for the proof of path independence. As long as the elastic constant for Di,j is a positive,

continuous, and differentiable function of ai,j, the proof of path independence holds.
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