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ABSTRACT

A two-dimensional bisexual branching process has recently been presented for the analysis
of the generation-to-generation evolution of the number of carriers of a Y-linked gene. In
this model, preference of females for males with a specific genetic characteristic is assumed
to be determined by an allele of the gene. It has been shown that the behavior of this kind of
Y-linked gene is strongly related to the reproduction law of each genotype. In practice, the
corresponding offspring distributions are usually unknown, and it is necessary to develop
their estimation theory in order to determine the natural selection of the gene. Here we deal
with the estimation problem for the offspring distribution of each genotype of a Y-linked
gene when the only observable data are each generation’s total numbers of males of each
genotype and of females. We set out the problem in a non parametric framework and obtain
the maximum likelihood estimators of the offspring distributions using an expectation-
maximization algorithm. From these estimators, we also derive the estimators for the re-
production mean of each genotype and forecast the distribution of the future population
sizes. Finally, we check the accuracy of the algorithm by means of a simulation study.

Key words: expectation-maximization algorithm, maximum-likelihood estimation, sex-linked

inheritance, two-dimensional bisexual stochastic model.

1. INTRODUCTION

Recent research has shown the importance of certain genes linked to the Y chromosome in popu-

lations of humans (Hughes et al., 2005) and other animals (Charlesworth et al., 2005). This chromosome

has the particularity of being male-specific (the SRY gene is responsible for maleness) and haploid, and of

having a region that escapes recombination (the nonrecombining region, NRY, which is 95% of the chro-

mosome in humans—see, for example, Graves, 2006). The unique properties of the Y chromosome have major

consequences for its population genetics: The NRY region passes down from father to son largely unchanged,

preserving the paternal genetic legacy, and is therefore very useful for studying how populations have evolved.

A history of paternal lineages can be reproduced by examining the differences (such as DNA polymorphisms)

among modern Y chromosomes. There have been many studies in this sense in the context of populations of
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humans (e.g., The Y Chromosome Consortium studies or Rosa et al., 2007) and other species (Hellborg et al.,

2005). In human populations, the surname can also be regarded as a Y-linked characteristic, and there have been

studies aimed at determining its relationship with Y-chromosome lineages (King et al., 2006).

Another singular question associated with the Y chromosome is that of the microdeletions of this

chromosome’s long arm (Yq). The Yq deletion is associated with males who have fertility problems

(Krausz et al., 2003), but many cases have been reported in which the natural transmission of this genetic

defect from fathers to sons has occurred (Kuhnert et al., 2004). Obviously, determining the evolution of the

number of males with this genetic defect in a human population is an important medical problem (Fitch

et al., 2005), but it has also been investigated in other species (Toure et al., 2004). Moreover, there is

evidence that the Y chromosome plays a role in skeletal growth, germ-cell tumorigenesis, and graft

rejection, and that its genes might also influence gender-specific differences in disease susceptibility.

Appropriate mathematical models are needed to understand the evolution of Y chromosome lineages (for

instance, to help solve the problem of Y-chromosomal Adam—the theoretical male who is the most recent

common patrilineal ancestor of all living humans; estimations of the date of this common ancestor is an

important problem), Yq deletions, or other Y-linked genes.

Many models used in population genetics are based on the Wright-Fisher model, although branching

processes naturally come to mind in this context and represent a clear alternative approach. These processes

are stochastic models, which arise in the description of population dynamics, being of particular use in

describing the extinction/growth of populations (Haccou et al., 2005). Branching models have been applied

to many biological problems in such fields as epidemiology, genetics, and cell kinetics. Examples include

the evolution of infectious diseases (Garske and Rhodes, 2008), population genetics (Iwasa et al., 2005),

and stem cells (Yakovlev and Yanev 2006). Further examples are reviewed in the recent monographs of

Kimmel and Axelrod (2002), Pakes (2003), and González et al. (2010). A comparison between Wright-

Fisher and branching models can be found in the recent article of Cyran and Kimmel (2010).

The simplest branching models are the Galton-Watson and the Markov branching processes. They have

been used to model Y-chromosome lineages and their female analogues—mitochondrial DNA lineages

(Neves and Moreira, 2006; Cyran and Kimmel, 2010). But more accurate models are needed in which all

the phases of sexual reproduction can be considered, including the interaction between females and males

in producing offspring. Recently, two models (González et al., 2006; González et al., 2009b) have been

presented to describe the evolution of the number of carriers of the two alleles of a Y-linked gene (so that

there are two types of male, each carrying one of these alleles) in a two-sex monogamic population. In the

first, it was considered that the characters controlled by such a gene can influence the mating process of the

species, with females having a preference for males carrying one of the alleles of the gene (Pidancier et al.,

2006). It was shown (González et al., 2008) that this preference can sometimes be definitive in determining

the survival of the different genotypes in the population. This model was denominated a Y-linked bisexual

branching process (Y-linked BBP) with preference. And in the second, González et al. (2009b), it was

considered that females choose their mates without caring about their genotype that is, each female makes a

blind choice of the genotype of her mate. This model was called Y-linked BBP with blind choice.

The focus of the present article is the first model, a Y-linked BBP with preference, to pattern the

evolution of the number of carriers of each allele of a Y-linked gene or of Y chromosome lineages in a two-

sex monogamic population, assuming that this gene influences the mating process. In González et al. (2006)

and González et al. (2008), it was shown that the behavior of genes that fit the pattern of a Y-linked BBP

with preference is strongly related to the reproduction laws of each genotype, that is, those that model

natural selection. In practice, these offspring distributions are usually unknown and need to be estimated to

guarantee the applicability of these models. In this article, we deal with the problem of estimating the

offspring distribution of each genotype of a Y-linked gene (as well as some related parameters, such as their

mean values and future population sizes). We consider a frequentist and nonparametric framework.

First, we obtain the maximum likelihood estimators (MLEs) of the parameters when the complete family

tree is observed up to some fixed generation. The limiting behavior (consistency and asymptotic normality)

of these estimators is also studied. Since it is usually impossible in practice to observe the entire family tree,

we then consider the problem of estimating the main parameters of the model, using only the sample given

by the numbers of females and of the two different types of male in each generation, which are more easily

observed. We approach this problem as an incomplete data estimation problem. This leads us to apply an

expectation-maximization (EM) algorithm (McLachlan and Krishnan, 2008) in order to obtain the MLEs.

(For a review on the use of this kind of algorithm in genetics see Laird, 2010).
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Besides the Introduction, this article consists of four additional sections. In Section 2, we provide the

definition of the Y-linked BBP with preference. In Section 3, we obtain the MLEs, assuming the complete

and incomplete sampling schemes indicated above, and present the development of the EM algorithm. The

accuracy of this algorithm is illustrated in Section 4 by means of a simulated example (figures are included

as Supplementary Material, available online at www.liebertpub.com/cmb). Some concluding remarks are

provided in Section 5. Finally, the proofs of some theoretical results related to the asymptotic properties of

the MLEs based on the complete family tree sample are shown in the Supplementary Material.

2. THE PROBABILITY MODEL

The probability model we deal with is the Y-linked BBP with preference that was introduced in González

et al. (2006). This model describes the evolution of the number of carriers of a Y-linked gene generation-by-

generation. It is assumed that the gene has a pair of alleles, denoted by R and r, which are expressed in the

male phenotype (r can model the absence of R). We are thus assuming a population formed by females and

males, where two types of male can be observed depending on the allele they carry. Males with R allele are

denoted R males, while males with r allele are denoted r males. Hence, two types of (male–female) couple are

formed—those consisting of one female and one R male (resp. r male) are denoted R (resp. r) couples.

Assuming nonoverlapping generations, and having fixed the number of couples of each type at the initial

(n = 0) generation, the population size is determined in each generation according to two phases: repro-

duction and mating. In the reproduction phase, each couple is assumed to randomly produce offspring

independently of the other couples. The probability distributions of these variables are the same for all the

couples with a given genotype. Moreover, following the inheritance rules, R couples can generate females

and R males, while r couples can generate females and r males (no mutation is assumed). More formally,

we consider two independent sequences

f(FRni‚ MRni) : i = 1‚ 2‚ . . . ; n = 0‚ 1‚ . . .g and f(Frnj‚ Mrnj) : j = 1‚ 2‚ . . . ; n = 0‚ 1‚ . . .g

of independent, identically distributed, non-negative and integer-valued bivariate random vectors, where

(FRni, MRni) (resp. (Frnj, Mrnj)) represents the number of females and males generated by the i-th R couple

(resp. j-th r couple) in generation n.

In general, (FRni, MRni) and (Frnj, Mrnj) may have different distributions, modeling the natural selection

between genotypes (i.e., their possibly different reproductive abilities). In particular, the total number of

offspring generated by an R couple (resp. r couple) is specified by a probability distribution pR = fpR
k gk2SR

(resp. pr = fpr
lgl2Sr ), where pR

k = P(FRni + MRni = k)‚ k 2 SR (resp: pr
l = P(Frnj + Mrnj = l)‚ l 2 Sr), with SR

(resp. Sr) being the support of the distribution that is considered finite. This probability distribution is called

the reproduction law of the R genotype (resp. r genotype). Moreover, we denote by mR (resp. mr) the

average number of offspring per R couple (resp. r couple).

In order to model the sex designation, we consider that each offspring will be female with probability a,

0 < a < 1, or male with probability 1 - a (i.e., a binomial reproduction scheme). These sex designations

are made independently among the offspring of any couple, and it is assumed that the genotype has no

influence on sex determination, so that a is the same for both genotypes. Then, given an R couple (resp. r

couple) that has produced k (resp. l) offspring, the number of females among these—i.e., FRni (resp. Frnj)—

follows a binomial distribution of size k (resp. l) and probability a. Hence, the average number of females

and males per R couple (resp. r couple) is, respectively, amR and (1 - a)mR (resp. amr and (1 - a)mr).

Therefore, for a generation n with total numbers of R and r couples ZRn and Zrn, respectively, one obtains

the total number of females in generation n + 1, as well as the number of males stemming from R couples

(resp. r couples) in generation n + 1,

Fn + 1 =
XZRn

i = 1

FRni +
XZrn

j = 1

Frnj‚ MRn + 1 =
XZRn

i = 1

MRni

�
resp: Mrn + 1 =

XZrn

j = 1

Mrnj

�
: (1)

Once the total numbers of females and males of each type in generation (n + 1) are known (i.e., Fn + 1,

MRn + 1, and Mrn + 1), one deals with the mating phase. To determine the total number of couples of each

type, we assume perfect fidelity mating (i.e., each individual mates with only one individual of the other sex

provided that some of them are still available), and also that females choose their partner with a preference
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for R males. Hence, R males are chosen first, so the total number of R couples is determined by the

minimum of the number of females and the number of R males:

ZRn + 1 = minfFn + 1‚ MRn + 1g: (2)

Therefore, the number of females that do not mate with R males is max{0,Fn + 1 -MRn + 1}. These females (if

any) mate with r males, and the assumption of perfect fidelity implies that the number of r couples is

Zrn + 1 = minfmaxf0‚ Fn + 1 - MRn + 1g‚ Mrn + 1g: (3)

Notice that the number of couples of each type in the (n + 1)-th generation is given deterministically

once the total numbers of females and of males of each type in this generation are known.

From the definition of the model, the number of couples of each genotype in the next generation depends

only on the present number of mating units and not on the number of ancestors that belonged to past

generations. Furthermore, since each reproduction law remains the same over the generations, the transi-

tions from one generation to another are homogeneous. The process {(ZRn, Zrn)}n ‡ 0 is therefore a ho-

mogeneous two-type Markov chain.

Some basic properties of this model are established in González et al. (2006). Among them, particularly

worthy of note is that each genotype presents the dual behavior typical of branching processes: either it

becomes extinct or the number of couples of this genotype eventually reaches arbitrarily large values. The

latter event is known as the explosion or indefinite growth of this particular genotype. Consequently, the

whole population also presents this duality. Although this property might seem unrealistic, it merely

expresses what would be the ideal long-term evolution of a population when its development is not

constrained by any external bound.

In González et al. (2009a), conditions for the survival/fixation of one genotype and the extinction/

survival of the whole population are reviewed. These conditions depend on a and on the reproduction laws

pR and pr through their mean values mR and mr, respectively. These values also determine the asymptotic

behavior of the genotypes (as was proved in González et al., 2008). Since in practice these parameters are

usually unknown, in order for these models to be applicable it is necessary to develop the estimation theory

for the above parameters, including the reproduction laws. Then, knowing these estimators, predictions

about the number of individuals and couples in future generations can also be established.

3. MAXIMUM LIKELIHOOD ESTIMATORS WITH COMPLETE
AND INCOMPLETE DATA

In this section, we shall study the MLEs of the parameters a, pR, and pr. We shall also derive from them

the MLEs for the reproduction means mR and mr. First we consider that the entire family tree up to some

generation N is observed. This is the set of random vectors

f(FRni‚ MRni)‚ (Frnj‚ Mrnj)‚ i = 1‚ . . . ‚ ZRn; j = 1‚ . . . ‚ Zrn; n = 0‚ . . . ‚ N - 1g:

From these random vectors, assuming that (ZR0, Zr0) is known and using Equations (1)–(3), one can obtain

the sets FMN = fZR0‚ Zr0‚ Fn‚ MRn‚ Mrn‚ n = 1‚ . . . ‚ Ng, containing the initial number of couples of each

type and the total number of females and the total number of males of each type until generation N; and

ZN = fZRn(k)‚ k 2 SR‚ Zrn(l)‚ l 2 Sr‚ n = 0‚ . . . ‚ N - 1g‚ where, with IA denoting the indicator function of

the set A‚ ZRn(k) =
PZRn

i = 1 IfFRni + MRni = kg and Zrn(l) =
PZrn

j = 1 IfFrnj + Mrnj = lg represent the total number of cou-

ples of each type that have generated, respectively, k and l individuals in the generation n.

Therefore, taking into account the binomial scheme and that mating units reproduce independently, it is

not hard to obtain that the complete likelihood function based on the sample (ZN‚FMN) is given by

L(pR‚ pr‚ ajZN‚FMN) /
YN - 1

n = 0

aFn + 1 (1 - a)(MRn + 1 + Mrn + 1)
Y
k2SR

(pR
k )ZRn(k)

Y
l2Sr

(pr
l )

Zrn(l): (4)

From this expression, and adapting some classical procedures of estimation theory in branching pro-

cesses (see Supplementary Material, Theorem 1), one can obtain that the MLEs for a, pR, and pr based on

the sample (ZN‚FMN ) are given by
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â =
PN - 1

n = 0 Fn + 1PN - 1
n = 0 (Fn + 1 + MRn + 1 + Mrn + 1)

‚ (5)

p̂R
k =
PN - 1

n = 0 ZRn(k)PN - 1
n = 0 ZRn

‚ k 2 SR‚ and p̂r
l =
PN - 1

n = 0 Zrn(l)PN - 1
n = 0 Zrn

‚ l 2 Sr:

The estimator for a is intuitively very reasonable, since it is obtained by means of the proportion of

females among all observed individuals. The estimator for pR
k with k 2 SR (resp. pr

l with l 2 SR) is obtained

as the total number of R couples (resp. r couples) that have generated k (resp. l) offspring as a fraction of the

total number of R couples (resp. r couples).

From the estimators of pR and pr, one deduces that the MLEs for mR and mr based on the sample

(ZN‚FMN ) are

m̂R =
PN

n = 1 (FRn + MRn)PN - 1
n = 0 ZRn

and m̂r =
PN

n = 1 (Frn + Mrn)PN - 1
n = 0 Zrn

‚

where FRn =
PZRn - 1

i = 1 FRn - 1i and Frn =
PZrn - 1

j = 1 Frn - 1j, for all n = 1‚ . . . ‚ N, are the total numbers of females

generated by each type of couple. Notice that for n = 1‚ . . . ‚ N, FRn and Frn are derived from (ZN‚FMN ),
since MRn + FRn =

P
k2SR kZRn - 1(k) and Mrn + Frn =

P
k2Sr lZrn - 1(l).

All of these estimators verify some properties related to their asymptotic behavior. Specifically, on the

nonextinction set, each estimator is strongly consistent, and, suitably normalized, converges in distribution

to a standard normal distribution (see Supplementary Material).

Notice that the above estimators depend on the sample ZN which, in most real situations, is impossible to

observe. Usually, only the total number of individuals of each type can be observed (recall that the Y-linked

genes present different phenotypes). Thus, there arises an interesting estimation problem from assuming that

only the sampleFMN is observed. Since, from the definition of the model [Eq. (2) and (3)], one obtains ZRn and

Zrn deterministically, knowing the total number of females and the total numbers of males of each type, one can

insert the variables ZRn and Zrn into the sample FMN . Hence, writing ZFMn = fZRn‚ Zrn‚ Fn + 1‚ MRn + 1‚

Mrn + 1g‚ n = 0‚ . . . ‚ N - 1, one is considering that the sample observed is FMN = fZFM0‚ . . . ‚ ZFMN - 1g.
Assuming that ZN is unknown and only the total number of individuals and of couples are observed, one is

faced with an incomplete data estimation problem. In such a case, it seems appropriate to use an expectation-

maximization (EM) algorithm (McLachlan and Krishnan, 2008), extensively used to deal with maximum

likelihood calculations when there are missing or incomplete data. This algorithm is an iterative method that

consists of two steps. In the first step (E step), the expectation of the complete log-likelihood is calculated using

the distribution of the unobserved data. The second step (M step) consists of finding the values of the parameters

that maximize the expectation that had been calculated in the E step. The E and M steps are repeated until

convergence is attained. In our case, starting with initial values ( pR(0), pr(0), a(0)), we shall obtain a sequence

{( pR(i), pr(i), a(i))}i ‡ 0 that is updated in each iteration of the method, as will be described in the following section.

3.1. The E step

Let ( pR(i), pr(i), a(i)) be the vector obtained in iteration i (where pR(i) = fpR(i)
k gk2SR and pr(i) = fpr(i)

l gl2Sr ). We

shall develop the E step of the EM algorithm in the (i + 1)-th iteration. The expected value of the complete

log-likelihood with respect to the available data (pR(i)‚ pr(i)‚ a(i)‚FMN) is given by the expression

EZN j(pR(i)‚ pr(i)‚ a(i)‚FMN )[ log L(pR‚ pr‚ ajZN‚FMN )]‚ (6)

where ZN j(pR(i)‚ pr(i)‚ a(i)‚FMN ) denotes the distribution of the latent vector ZN , given the sample FMN

and the parameters of the model ( pR(i),pr(i),a(i)). For simplicity, we shall henceforth write

E�i [�] = EZN j(pR(i)‚ pr(i)‚ a(i)‚FMN )[ � ]. Taking into account Equation (4), one has

E�i [ log L(pR‚ pr‚ ajZN‚FMN)] = C +
XN - 1

n = 0

(Fn + 1 log a + (MRn + 1 + Mrn + 1) log (1 - a))

+
XN - 1

n = 0

�X
k2SR

E�i [ZRn(k)] log pR
k +
X
l2Sr

E�i [Zrn(l)] log pr
l

�
‚

for a certain constant C.
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Therefore, in order to obtain the expected value of the complete log-likelihood, the distribution of the

unobserved data ZN with respect to (pR(i)‚ pr(i)‚ a(i)‚FMN ) needs to be calculated. To determine the

distribution of ZN j(pR(i)‚ pr(i)‚ a(i)‚FMN ), we must first show the relationship between the vectors ZN and

FMN . Indeed, since the sum, for all k 2 SR (resp. l 2 Sr); of the total number of R couples that have

generated k (resp. l) offspring is the total number of R couples (resp. r couples), then

X
k2SR

ZRn(k) = ZRn

�
resp:

X
l2Sr

Zrn(l) = Zrn

�
‚ n = 0‚ . . . ‚ N - 1: (7)

The total number of individuals generated by the R couples (resp. r couples) is greater than or equal to

the total number of R males (resp. r males) generated by these couples, that is,

X
k2SR

kZRn(k)qMRn + 1

�
resp:

X
l2Sr

lZrn(l)qMrn + 1

�
‚ n = 0‚ . . . ‚ N - 1: (8)

Also, the total number of individuals generated by all couples in a generation is the sum total of the

number of individuals of the next generation:X
k2SR

kZRn(k) +
X
l2Sr

lZrn(l) = MRn + 1 + Mrn + 1 + Fn + 1‚ n = 0‚ . . . ‚ N - 1: (9)

Considering these relationships, we can now determine the distribution of the unobserved vector ZN ,

given FMN and the vector of i-th iteration values ( pR(i), pr(i), a(i)). To this end, let us denote by fmN a

vector of non-negative integers, fmN = (zfmn‚ n = 0‚ . . . ‚ N - 1), where, for all n = 0‚ . . . ‚ N - 1‚ zfmn =
(zRn‚ zrn‚ fn + 1‚ mRn + 1‚ mrn + 1). In order for fmN to be a possible value of FMN , and according to the defi-

nition of the model, we assume that zRn+1 = min{fn+1,mRn+1} and zrn + 1 = minfmaxf0‚ fn + 1 - mRn + 1g‚ mrn + 1g,
for n = 0‚ . . . ‚ N - 2, [see Eqs. (2) and (3)]. One then has that, almost surely,

PZN jFMN = fmN =
YN - 1

n = 0

P(ZRn(k)‚ k2SR‚ Zrn(l)‚ l2Sr )jZFMn = zfmn ‚ (10)

where P�j� denotes the conditional distribution with parameters ( pR(i), pr(i), a(i)). Indeed, denote by zN a

vector of non-negative integers with zN = (zRn(k)‚ k 2 SR‚ zrn(l)‚ l 2 Sr‚ n = 0‚ . . . ‚ N - 1), and, for each

n = 0‚ . . . ‚ N - 1, write the sets

AzRn(SR) = fZRn(k) = zRn(k)‚ k 2 SRg =
�XZRn

i = 1

IfFRni + MRni = kg = zRn(k)‚ k 2 SR

�
‚

Azrn(Sr ) = fZrn(l) = zrn(l)‚ l 2 Srg =
�XZrn

j = 1

IfFrnj + Mrnj = lg = zrn(l)‚ l 2 Sr

�
‚

Afn + 1
= fFn + 1 = fn + 1g =

�XZRn

i = 1

FRni +
XZrn

j = 1

Frnj = fn + 1

�
‚

AmRn + 1
= fMRn + 1 = mRn + 1g =

�XZRn

i = 1

MRni = mRn + 1

�
‚

Amrn + 1
= fMrn + 1 = mrn + 1g =

�XZrn

j = 1

Mrnj = mrn + 1

�
‚

with zRn(SR) = (zRn(k)‚ k 2 SR) and zrn(Sr) = (zrn(l)‚ l 2 Sr). Then, since mating units reproduce indepen-

dently, one has that

P(ZN = zN jFMN = fmN ) =
YN - 1

n = 0

P(ZRn = zRn‚ Zrn = zrn‚ AzRn(SR)‚ Azrn(Sr )‚ Afn + 1
‚ AmRn + 1

‚ Amrn + 1
)

P(ZRn = zRn‚ Zrn = zrn‚ Afn + 1
‚ AmRn + 1

‚ Amrn + 1
)

=
YN - 1

n = 0

P(AzRn(SR)‚ Azrn(Sr)jZRn = zRn‚ Zrn = zrn‚ Afn + 1
‚ AmRn + 1

‚ Amrn + 1
):

1020 GONZÁLEZ ET AL.



Computationally, this means that the vector ZN can be determined generation-by-generation. Specifi-

cally, once the total numbers are known of couples of each type in the n-th generation, ZRn and Zrn, and of

females and of males of each type in the (n + 1)-th generation, Fn + 1, MRn + 1, and Mrn + 1, it is enough to

sample the vector (ZRn(k)‚ k 2 SR‚ Zrn(l)‚ l 2 Sr) in the following way. Applying the multiplication rule,

one straightforwardly obtains that the probability P(AzRn(SR)‚ Azrn(Sr )jZRn = zRn‚ Zrn = zrn‚ Afn + 1
‚

AmRn + 1
‚ Amrn + 1

) is proportional to the product of the probabilities

P(AzRn(SR)‚ Azrn(Sr )jZRn = zRn‚ Zrn = zrn) (11)

and

P(Afn + 1
‚ AmRn + 1

‚ Amrn + 1
jZRn = zRn‚ Zrn = zrn‚ AzRn(SR)‚ Azrn(Sr)): (12)

Taking into account that mating units reproduce independently, the probability given in Equation (11) is

obtained as P(AzRn(SR)jZRn = zRn)P(Azrn(Sr)jZrn = zrn).
Since p

R(i)
k (resp. p

r(i)
l ) is considered to be the probability that an R couple (resp. r couple) generates k

(resp. l) offspring and there are zRn (resp. zrn) progenitor couples, then, taking into account Equation (7),

one deduces that P(AzRn(SR)jZRn = zRn) (resp. P(Azrn(Sr)jZrn = zrn) is obtained from a multinomial distribu-

tion with size zRn (resp. zrn) and probability pR(i) (resp. pr(i)) if
P

k2SR zRn(k) = zRn(resp:
P

l2Sr zrn(l) = zrn)),
or is equal to 0 otherwise.

The probability given in Equation (12), from again applying the multiplication rule, is proportional to the

product of the probabilities

P(AmRn + 1
‚ Amrn + 1

jZRn = zRn‚ Zrn = zrn‚ AzRn(SR)‚ Azrn(Sr )) (13)

and

P(Afn + 1
jZRn = zRn‚ Zrn = zrn‚ AzRn(SR)‚ Azrn(Sr)‚ AmRn + 1

‚ Amrn + 1
): (14)

Considering Equation (9), the probability given in Equation (14) is equal to 1 if fn + 1 =
P

k2SR kzRn(k) +P
l2Sr lzrn(l) - mRn + 1 - mrn + 1, or to 0 otherwise.

Finally, given that the sex designations are made independently among the offspring and that mating

units reproduce independently, the probability given in Equation (13) is equal to the product

P(AmRn + 1
jAzRn(SR)‚ ZRn = zRn)P(Amrn + 1

jAzrn(Sr)‚ Zrn = zrn):
Moreover, taking into account Equation (8) and the binomial scheme, the first (resp. second) probability

is obtained from a binomial distribution with size
P

k2SR kzRn(k) (resp:
P

l2Sr lzrn(l)) and probability

1 - a(i)if
P

k2SR kzRn(k)qmRn + 1 (resp.
P

l2Sr lzrn(l)qmrn + 1), that is, if the total number of offspring given

by all mating units of a type is greater than the total number of males of this type; otherwise, it is equal to 0.

3.2. The M Step

The M step consists of finding the values of the parameters that maximize the expectation of the complete

log-likelihood. This expectation has been calculated previously in the E step. In our case, we must find the

vector ( pR(i + 1), pr(i + 1), a(i + 1)) that maximizes the expression E�i [ log L(pR‚ pr‚ ajZN‚FMN )]. Following a

similar argument to that given in the calculation of the MLEs, based on the observation of the complete family

tree (see Supplementary Material, Theorem 1), one obtains that the value for a in the (i + 1)-th iteration is

a(i + 1) =
PN - 1

n = 0 Fn + 1PN - 1
n = 0 (Fn + 1 + MRn + 1 + Mrn + 1)

:

Notice that a(i + 1) does not depend on the iteration i because it is only based on FMN , which is observed.

The sequence fa(i)giq1 is thus constant in all iterations of the method, and its value will be denoted âEM‚ N .

This value coincides with the MLE given in Equation (5) based on observing the entire family tree.

For each pR
k with k 2 SR and each pr

l with l 2 Sr, the values obtained in the (i + 1)-th iteration are,

respectively,

p
R(i + 1)
k =

PN - 1
n = 0 E�i [ZRn(k)]PN - 1

n = 0 ZRn

‚ k 2 SR‚ and p
r(i + 1)
l =

PN - 1
n = 0 E�i [Zrn(l)]PN - 1

n = 0 Zrn

‚ l 2 Sr:
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Intuitively, p
R(i + 1)
k (resp. p

r(i + 1)
l ) is the ratio of the average number of R couples (resp. r couples) that

have generated k (resp. l) offspring to the total number of R couples (resp. r couples). To calculate these

average numbers, one has to use the probability distribution determined in E step.

The values obtained in this M step, (pR(i + 1)
k ‚ p

r(i + 1)
l ‚ a(i + 1)), are used to begin another E step, and the

process is repeated until some convergence criterion is verified, in which case the process stops and the

final values are denoted by (p̂R
EM‚ N‚ p̂r

EM‚ N‚ âEM‚ N ). For simplicity, when the meaning is clear, we shall

drop the use of the subindex N and write simply (p̂R
EM‚ p̂r

EM‚ âEM). In McLachlan and Krishnan (2008), it is

shown that, under general conditions of differentiability and continuity of the expectation of the complete

log-likelihood function, estimates obtained using the EM algorithm converge to a stationary point of the

incomplete data likelihood function. The multinomial structure of our complete likelihood function means

that usually those conditions are verified, and also that the incomplete data likelihood function is unimodal.

Then, in this case, (p̂R
EM‚ p̂r

EM‚ âEM) are the MLEs of ( pR, pr, a) based on FMN , which we call expectation-

maximization MLEs.

Remark 1. Another general scenario that can be considered is to observe only the number of couples

of each type up to generation N, i.e., f(ZRn‚ Zrn)‚ n = 0‚ . . . ‚ Ng. However, in this situation, the parameter a
often can not be estimated using the EM algorithm, because the incomplete data likelihood function is not

unimodal. For instance, if one has a Y-linked BBP with preference where ZR0 = 1‚ Zr0 = 4‚ pR
4 = 1‚ pr

3 = 1‚

ZR1 = 2, and Zr1 = 3, then the total number of individuals from R couples in the 1st generation is equal to 4.

Since Zr1 is not null and ZR1 = 2, there are two R males and thus there are also two females stemming from

R couples, which form two mating couples. Moreover, since Zr0 = 4 and pr
3 = 1, the total number of

individuals from r couples in the 1st generation is 12, of which 3 are females and 9 males or vice versa,

because Zr1 = 3. Thus, the incomplete data likelihood function is proportional to a5(1 - a)11 + a11(1 - a)5

(symmetric form), which is bimodal, so that the EM algorithm does not work correctly.

Hence, to estimate a correctly, it would be necessary to also observe Fn and Mn, n = 1‚ . . . ‚ N, with

Mn = MRn + Mrn. In general these last variables, together with ZRn and Zrn, n = 0‚ . . . ‚ N, uniquely

determine MRn and Mrn, n = 1‚ . . . ‚ N. Thus the samples FMN and fZR0‚ Zr0‚ Fn‚ Mn‚ ZRn‚ Zrn‚

n = 1‚ . . . ‚ Ng contain the same information.

The following summarizes our proposed EM algorithm to estimate the parameters of the model:

Step 0. i = 0. Set each component of ( pR(0),pr(0),a(0)) to some strictly positive values.

Step 1 (E Step). Based on ( pR(i),pr(i),a(i)),

(a) determine ZN j(pR(i)‚ pr(i)‚ a(i)‚FMN ) and

(b) calculate E�i [ log L(pR‚ pr‚ ajZN‚FMN)].
Step 2 (M Step). Obtain the vector

(pR(i + 1)‚ pr(i + 1)‚ a(i + 1)) = arg max(pR‚ pr‚ a) E�i [ log L(pR‚ pr‚ ajZN‚FMN )]:

Step 3. If maxfjpR(i + 1)
k - p

R(i)
k j‚ k 2 SR‚ jpr(i + 1)

l - p
r(i)
l j‚ l 2 Sr‚ ja(i + 1) - a(i)jg is less than some convergence

criterion, stop and denote by (p̂R
EM‚ p̂r

EM‚ âEM) these final estimates. Otherwise, increment i by 1 and

repeat steps 1–3.

Finally, we would point out that since mR and mr are obtained from pR and pr, respectively, then,

from p̂R
EM‚N and p̂r

EM‚N , one can obtain the expectation-maximization MLEs for mR and mr based on FMN ,

which will be denoted by m̂EM
R‚ N and m̂EM

r‚ N , respectively. Also, one can obtain a sample of the distribution

of (FN + s , MRN + s , MrN + s) knowing FMN for any s > 0 by simulating, through the Monte-Carlo

method, s generations of a Y-linked BBP with preference starting with (ZRN, ZrN) and considering

(p̂R
EM‚ N‚ p̂r

EM‚ N‚ âEM‚ N) as the parameters of the model. This allows one to forecast the number of indi-

viduals and couples for unobserved generations.

4. SIMULATION STUDY

The method presented in the previous section will now be applied using the R statistical computing

language and environment (R Development Core Team, 2012) to estimate the parameters of a Y-linked
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BBP with preference using simulated data. To this end, we consider a process with the following pa-

rameters: the probability to be female is a = 0.4 and the reproduction laws of each type of couple are

pR = (pR
0 ‚ pR

1 ‚ pR
2 ) = (0:0225‚ 0:2550‚ 0:7225) and pr = (pr

0‚ pr
1‚ pr

2‚ pr
3) = (0:0025‚ 0:0462‚ 0:3004‚ 0:6509).

Note that we have chosen the sex-ratio to be less than a half since, in most populations, the sex-ratio is

different from 0.5, and the analysis of Y-linked gene evolution turns out to be more interesting when

a < 0.5 (González et al., 2006 and González et al., 2008). Also, the average number of individuals

generated by each type of couple are mR = 1.7 and mr = 2.6, respectively, reflecting the possible difference

between the reproductive capacity of mating units of each type that exists in nature.

For this model, we simulated 20 generations starting with (ZR0, Zr0) = (3,10). Table 1 lists the

sample fm20 formed by the total numbers of females and of males of each type obtained in these

generations. The relatively small amount of sample information that this represents would make it

difficult to determine at first sight anything about the future behavior of the Y-linked character on the

basis of these observations.

Let us now apply the EM algorithm using the above sample, fm20. To start the algorithm, we need the

initial values ( pR(0), pr(0), a(0)). Assuming the lack of information, we choose the values pR(0) and pr(0)

according to uniform distributions of sizes 3 and 4, respectively. Thus, p
R(0)
k = 1=3, with k = 0, 1, 2 and

p
r(0)
l = 1=4, with l = 0, 1, 2, 3. The best option to initialize a(0) is the MLE of a based on the entire family

tree, â (see Eq. (5)—recall that â only depends on the values recorded in fm20). Therefore, as was indicated

in the previous section, the sequence fa(i)giq0 is constant, and of value âEM = â — in the example, equal to

0.416.

We ran the EM algorithm and observed the sequence f(pR(i)‚ pr(i)‚ a(i))giq0‚ with pR(i) = fpR(i)
k gk = 0‚ 1‚ 2‚

pr(i) = fpr(i)
l gl = 0‚ 1‚ 2‚ 3 and a(i) = âEM‚ iq0, to converge from iteration 500 onwards (with the difference

between consecutive elements of the sequence being less than 10 - 5). The values obtained in the last

iteration were taken to be the expectation-maximization ML estimates. A discrete sensitivity analysis

applied to study the influence of the initial values ( pR(0), pr(0), a(0)) on the convergence of the method

showed that the procedure is stable with respect to the initial values, with there being no changes in the

limit.

From f(pR(i)‚ pr(i))giq0, it is straightforward to obtain the sequence f(m(i)
R ‚ m(i)

r )giq0 with the means of the

distributions pR(i) and pr(i), respectively, in each iteration of the method. This last sequence converges to the

expectation-maximization MLEs for mR and mr, denoted by m̂EM
R and m̂EM

r , respectively. From the values of

the sequence f(m(i)
R ‚ m(i)

r )gi = 1‚ ...‚ 500, one obtains that they are quite stable from iteration 200 onwards, with

the resulting expectation-maximization ML estimates of mR and mr based on fm20 being m̂EM
R = 1:724 and

m̂EM
r = 2:605, respectively.

In order to analyze the consistency of the expectation-maximization MLEs, we next applied the EM

algorithm by varying the number of generations observed, that is, we applied the algorithm 20 times, taking

the sample to be fmN, with N = 1‚ . . . ‚ 20. Each of these times, we performed 500 iterations of the method

and saved the estimates given in the last iteration, taking them to be the expectation-maximization ML

estimates of the corresponding parameters. At the end of the process, we thus had a sequence

(âEM‚ N‚ m̂EM
R‚ N‚ m̂EM

r‚ N) with N = 1‚ . . . ‚ 20. The three components of this sequence are plotted in Supple-

mentary Figure S1. The more generations one has, the closer the estimate approaches the true value of the

parameter (dashed line). Actually, under weak general conditions, the EM method leads to consistent

estimates (McLachlan and Krishnan, 2008), as in the case of the usual MLEs based on complete data

samples (see Supplementary Material).

To approximate the sampling distributions of p̂R
EM‚ 20‚ p̂r

EM‚ 20, and âEM‚ 20, we applied a bootstrap pro-

cedure, making use of the EM estimates obtained on the sample fm20 (i.e., the values of p̂R
EM‚ 20‚ p̂r

EM‚ 20, and

âEM‚ 20. These values were used as parameters to perform a Monte-Carlo simulation of 2,000 processes until

Table 1. Simulated Data

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fn 15 18 20 21 21 22 24 29 24 20 23 21 16 15 18 19 16 15 15 15

MRn 4 2 2 4 3 4 4 4 3 5 7 7 7 4 3 5 3 4 3 4

Mrn 16 16 25 27 26 25 29 27 44 34 18 27 25 15 14 16 24 16 19 17
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generation 20. For each of these bootstrap samples, we applied the EM method thus obtaining bootstrap

approximations to the sampling distributions of p̂R
EM‚ 20‚ p̂r

EM‚ 20, and âEM‚ 20. Obviously, from them it is

straightforward to obtain a bootstrap sample of m̂EM
R‚ 20 and m̂EM

r‚ 20. Supplementary Figure S2 illustrates the

bootstrap approximation to these sampling distributions. One observes that the variability associated with

the distribution of m̂EM
R was greater than that of m̂EM

r . This may have been because there were fewer R males

recorded in each generation than r males.

An interesting question applied is to predict, on the basis of the observed data, whether or not the process

will survive over time. Theoretically, it is known that the condition a < 0.5 and 1 < (1 - a)mR < amr

ensures that there exists a positive probability for both genotypes to grow without limit over time (González

et al., 2008). From the bootstrap approximation to the sampling distributions of m̂EM
R ‚ m̂EM

r , and âEM , we

calculated the proportion of samples in generation 20 that satisfied âEM < 0:5 and

1 < (1 - âEM)m̂EM
R < âEMm̂EM

r , finding the approximate value 0.886. The high value of this calculated

proportion is indicative that the theoretical condition might be satisfied. Indeed, the true values of the

parameters do satisfy this condition, and therefore there exists a positive probability that both genotypes

grow over the course of the generations.

Finally Supplementary Figure S3 illustrates the predictive distribution of the total numbers of females

and of each type of male in the 21st generation. The predicted behavior is in keeping with the fact that there

exists a positive probability that both genotypes survive over time.

5. CONCLUDING REMARKS

In order to study the natural selection of Y-linked genes, the estimation of the main parameters of

the Y-linked BBP with preference has been considered in a general nonparametric context. The model

assumes males can be distinguished by certain genetic characteristics linked to the Y chromosome,

characteristics which they either do or do not possess. The females choose their mates preferentially

according to whether or not this characteristic is present. Firstly, we assumed that the entire family tree

can be observed up to some generation and obtained the corresponding MLEs, studying their as-

ymptotic properties—consistency and limiting normality. The procedure applied represented a meth-

odological adaptation to the Y-linked models of some classical estimation theory procedures used in

branching processes. Secondly, we considered the problem of estimating the main parameters of the

model using only the sample information that is usually more plausibly observable in practice—that

given simply by the number of females and of the two different types of male in each generation. We

approached this problem as an incomplete data estimation problem, applying the expectation-

maximization method that has proven very effective in solving it. How well this estimation procedure

works was illustrated by means of a simulated example, in which we also showed the consistency of

the estimates, obtained bootstrap approximations to their sampling distributions, and inferred the

behavior of the process for future generations. This second procedure represents the principal objective

of the present communication, allowing the use of these Y-linked models in applied problems under

realistic assumptions.

We also showed that, when the only observable data are the total number of mating units of each

genotype, the expectation-maximization method cannot be relied on to operate appropriately in esti-

mating the probability of an individual being female, the reason being that the incomplete data

likelihood function may not be unimodal. We concluded that it is necessary to observe, as a minimum,

the numbers of females and of both male genotypes in each generation to guarantee the validity of the

method.

A line for future research is the question of inferences for the two-sex branching model introduced

in González et al. (2009b), in which it is considered that Y-linked genes are not expressed in the

phenotype of males, so that females mate following a blind choice. In this framework, the total number

of mating units of each type is not determined one-to-one from the total number of females and males

of each type, and a random component underlies the mating process. Computationally, therefore,

sampling the branching tree latent vector, ZN , is more difficult and needs to be studied in some

specific way. This complexity will probably lead to estimators whose sampling distributions will have

large variances.
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González, M., Hull, D.M., Martı́nez, R., et al. 2006. Bisexual branching processes in a genetic context: The extinction

problem for Y-linked genes. Math. Biosci. 202, 227–247.
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1026 GONZÁLEZ ET AL.


