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ABSTRACT

Emerging research demonstrates the potential of protein-protein interaction (PPI) networks
in uncovering the mechanistic bases of cancers, through identification of interacting pro-
teins that are coordinately dysregulated in tumorigenic and metastatic samples. When used
as features for classification, such coordinately dysregulated subnetworks improve diagnosis
and prognosis of cancer considerably over single-gene markers. However, existing methods
formulate coordination between multiple genes through additive representation of their
expression profiles and utilize fast heuristics to identify dysregulated subnetworks, which
may not be well suited to the potentially combinatorial nature of coordinate dysregulation.
Here, we propose a combinatorial formulation of coordinate dysregulation and decompose
the resulting objective function to cast the problem as one of identifying subnetwork state
functions that are indicative of phenotype. Based on this formulation, we show that coor-
dinate dysregulation of larger subnetworks can be bounded using simple statistics on
smaller subnetworks. We then use these bounds to devise an efficient algorithm, Crane, that
can search the subnetwork space more effectively than existing algorithms. Comprehensive
cross-classification experiments show that subnetworks identified by Crane outperform
those identified by additive algorithms in predicting metastasis of colorectal cancer (CRC).
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1. INTRODUCTION

Recent advances in high-throughput screening techniques enable studies of complex pheno-

types in terms of their associated molecular mechanisms. While genomic studies provide insights into

genetic differences that relate to certain phenotypes, functional genomics (e.g., gene expression, protein

expression) helps elucidate the variation in the activity of cellular systems (Schadt, 2005). However, cellular

systems are orchestrated through combinatorial organization of thousands of biomolecules (Papin et al.,

2005). This complexity is reflected in the diversity of phenotypic effects, which generally present themselves

as weak signals in the expression profiles of single molecules. For this reason, researchers increasingly focus
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on identification of multiple markers that together exhibit differential expression with respect to various

phenotypes (Ideker and Sharan, 2008; Rich et al., 2005).

1.1. Network-based approaches to identification of multiple markers

High-throughput protein-protein interaction (PPI) data (Ewing et al., 2007) provide an excellent substrate

for network-based identification of multiple interacting markers. Network-based analyses of diverse phe-

notypes show that products of genes that are implicated in similar phenotypes are clustered together into

‘‘hot spots’’ in PPI networks (Goh et al., 2007; Rhodes and Chinnaiyan, 2005). This observation is

exploited to identify novel genetic markers based on network connectivity (Franke et al., 2006; Karni et al.,

2009; Lage et al., 2007). For the identification of differentially expressed subnetworks with respect to

GAL80 deletion in yeast, Ideker et al. (2002) propose a method that is based on searching for connected

subgraphs with high aggregate significance of individual differential expression. Variants of this method

are shown to be effective in identifying multiple genetic markers in prostate cancer (Guo et al., 2007),

melanoma (Nacu et al., 2007), diabetes (Liu et al., 2007), and others (Cabusora et al., 2005; Patil and

Nielsen, 2005; Scott et al., 2005).

1.2. Coordinate/synergistic dysregulation

Network-based approaches are further elaborated to capture coordinate dysregulation of interacting

proteins at a sample-specific resolution (Chowdhury and Koyutürk, 2010). Ulitksy et al. (2008) define

dysregulated pathways as subnetworks composed of products of genes that are dysregulated in a large

fraction of phenotype samples. Chuang et al. (2007) define subnetwork activity as the aggregate expression

of genes in the subnetwork, quantify the dysregulation of a subnetwork in terms of the mutual information

between subnetwork activity and phenotype, and develop fast algorithms to identify subnetworks that

exhibit significant dysregulation. Subnetworks identified by this approach are also used as features for

classification of breast cancer metastasis, providing significant improvement over single-gene markers

(Chuang et al., 2007). Nibbe et al. (2009, 2010) show that this notion of coordinate dysregulation is also

effective in integrating protein and mRNA expression data to identify important subnetworks in colorectal

cancer (CRC). Anastassiou (2007) introduces the concept of synergy to delineate the complementarity of

multiple genes in the manifestation of phenotype. While identification of multiple genes with synergistic

dysregulation is intractable (Anastassiou, 2007), important insights can still be gained through pairwise

assessment of synergy (Watkinson et al., 2008).

1.3. Contributions of this study

Despite significant advances, existing approaches to the identification of coordinately dysregulated

subnetworks have important limitations, including the following: (i) additive formulation of subnetwork

activity can only highlight the coordinate dysregulation of interacting proteins that are dysregulated in the

same direction, overlooking the effects of inhibitory and other complex forms of interactions; (ii) simple

heuristics that make greedy decisions may not be able to adequately capture the coordination between

multiple genes that provide weak individual signals. In this article, with a view to addressing these

challenges, we develop a novel algorithm, Crane, for the identification of Combinatorially dysRegulAted

subNEtworks. The contributions of the proposed computational framework include the following:

� We formulate coordinate dysregulation combinatorially, in terms of the mutual information between

subnetwork state functions (specific combinations of quantized mRNA expression levels of proteins in

a subnetwork) and phenotype (as opposed to additive subnetwork activity).
� We decompose combinatorial coordinate dysregulation into individual terms associated with indi-

vidual state functions, to cast the problem as one of identifying state functions that are informative

about the phenotype.
� Based on this formulation, we show that the information provided on phenotype by a state function can

be bounded from above using statistics of subsets of this subnetwork state. Using this bound, we

develop bottom-up enumeration algorithms that can effectively prune out the subnetwork space to

identify informative state functions efficiently.
� We use subnetworks identified by the proposed algorithms to train neural networks for classification of

phenotype, which are better suited to modeling the combinatorial relationship between the expression
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levels of genes in a subnetwork, as compared to classifiers that require aggregates of the expression

profiles of genes as features (e.g., Support vector machines [SVMs]).

We describe these algorithmic innovations in detail in Section 2.

1.4 Results

We implement Crane in Matlab and perform comprehensive cross-classification experiments for pre-

diction of metastasis in CRC. These experiments show that subnetworks identified by the proposed

framework outperform subnetworks identified by additive algorithms in terms of accuracy of classification.

We then conduct comprehensive experiments to evaluate the effect of parameters on the performance of

Crane. We also investigate the highly informative subnetworks in detail to assess their potential in

highlighting the mechanisms of metastasis in human CRC. We present these results in Section 3 and

conclude our discussion in Section 4.

2. METHODS

In the context of a specific phenotype, a group of genes that exhibit significant differential expression and

whose products interact with each other may be useful in understanding the network dynamics of the

phenotype. This is because, the patterns of (i) collective differential expression and (ii) connectivity in PPI

network are derived from independent data sources (sample-specific mRNA expression and generic protein-

protein interactions, respectively). Thus, they provide corroborating evidence indicating that the corre-

sponding subnetwork of the PPI network may play an important role in the manifestation of phenotype. In

this article, we refer to the collective differential expression of a group of genes as coordinate dysregulation.

We call a group of coordinately dysregulated genes that induce a connected subnetwork in a PPI network a

coordinately dysregulated subnetwork. The terminology and notation in this article are described in Table 1.

2.1. Dysregulation of a gene with respect to a phenotype

For a set V of genes and U of samples, let Ei 2 RjUj denote the properly normalized (Quackenbush, 2002)

gene expression vector for gene gi 2 V where Ei(j) denotes the relative expression of gi in sample sj 2 U.

Assume that the phenotype vector C annotates each sample as phenotype or control, such that Cj¼ 1

indicates that sample sj is associated with the phenotype (e.g., taken from a metastatic sample) and Cj¼ 0

indicates that sj is a control sample (e.g., taken from a non-metastatic tumor sample). Then, the mutual

information I(Ei; C)¼H(C)�H(CjEi) of Ei and C is a measure of the reduction of uncertainty about

phenotype C due to the knowledge of the expression level of gene gi. Here, H(X)¼ �
P

x2X p(x) log p(x)

denotes the Shannon entropy of discrete random variable X with support X . The entropy H(Ei) of the

expression profile of gene gi is computed by quantizing Ei properly. Clearly, I(Ei; C) provides a reasonable

measure of the dysregulation of gi, since it quantifies the power of the expression level of gi in distin-

guishing phenotype and control samples.

2.2. Additive coordinate dysregulation

Now let G¼ (V, E) denote a PPI network where the product of each gene gi 2 V is represented by a node

and each edge gigj 2 E represents an interaction between the products of gi and gj. For a subnetwork of G
with set of nodes S � V, Chuang et al. (2007) define the subnetwork activity of S as ES ¼

P
gi2S Ei=

ffiffiffiffiffiffi
jSj

p
,

i.e., the aggregate expression profile of the genes in S. Then, the dysregulation of S is given by I(ES; C),

which is a measure of the reduction in uncertainty on phenotype C, due to knowledge of the aggregate

expression level of all genes in S. In the following discussion, we refer to I(ES ; C) as the additive

coordinate dysregulation of S.

2.3. Combinatorial coordinate dysregulation

Additive coordinate dysregulation is useful for identifying subnetworks that are composed of genes

dysregulated in the same direction (either up- or down-regulated). However, interactions among genes and

proteins can also be inhibitory (or more complex), and the dysregulation of genes in opposite directions can
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also be coordinated, as illustrated in Figure 1. Combinatorial formulation of coordinate dysregulation may

be able to better capture such complex coordination patterns.

To define combinatorial coordinate dysregulation, we consider binary representation of gene expression

data. Binary representation of gene expression is commonly utilized for several reasons, including removal

of noise, algorithmic considerations, and tractable biological interpretation of identified patterns. Such

approaches are shown to be effective in the context various problems, ranging from genetic network

inference (Akutsu et al., 1999) to clustering (Koyutürk et al., 2004) and classification (Akutsu and Miyano,

Table 1. Summary of Notations

Symbol Meaning

V Set of genes

U Set of samples

gi Individual member (i.e. gene product) of V
p (x) Probability that random variable X is equal to x

G Protein protein interaction network

S Subnetwork of G
Ei Normalized gene expression profile of gi

ÊEi Binarized expression profile of gi

Ei (j) Relative expression of gi in sample sj

ES Subnetwork activity of S
FS Combination of binary expression states of the genes in S
fS State function (observation of random variable FS)

C Phenotype vector

Cj Phenotype associated with sample sj

H (C) Shannon entropy of C

H (CjEi) Entropy of C after knowledge of Ei

I (Ei; C) Mutual information of Ei and C

I (ES ; C) Additive coordinate dysregulation of S
I (FS ; C) Combinatorial coordinate dysregulation of S
J (fS ; C) Information provided by fS on C

fS w fR Superset, i.e. R � S and fR maps each gene in R to an expression level that is identical to the

mapping provided by fS
Jbound (fS , C) The maximum achievable J(fS ; C) for any fR w fS
j* The threshold on information provided by a state function to be considered as informative

b The number of extensions recorded for a state function during the bottom-up search for informative

state functions

d The maximum height of the search tree during bottom up enumeration of state functions

FIG. 1. Additive versus combina-

torial coordinate dysregulation.

Genes (g) are shown as nodes; in-

teractions between their products

are shown as edges. Expression

profiles (E) of genes are shown by

colormaps. Dark red indicates high

expression (H); light green indicates

low expression (L). None of the

genes can differentiate phenotype

and control samples individually.

Aggregate subnetwork activity (av-

erage expression) for each subnetwork is shown in the row below its gene expression matrix. The aggregate activity of

S1 can perfectly discriminate phenotype and control, but the aggregate activity of S2 cannot discriminate at all. For

each subnetwork S1 and S2, each column of the gene expression matrix specifies the subnetwork state in the corre-

sponding sample. The states of both subnetworks can perfectly discriminate phenotype and control (for S2, up-

regulation of g7 alone or g5 and g6 together indicates phenotype; we say state functions LLH and HHL are indicative of

phenotype).
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2001). Ulitsky et al. (2008) also use binary representation of differential expression to identify dysregulated

pathways with respect to a phenotype. There are also many algorithms for effective binarization of gene

expression data (Shmulevich and Zhang, 2002).

For our purposes, let ÊEi denote the binarized expression profile of gene gi. We say that gene gi has high

expression in sample sj if ÊEi(j)¼H and low expression if ÊEi(j)¼ L. Then, the combinatorial coordinate

dysregulation of subnetwork S is defined as

I(FS; C)¼H(C)�H(CjÊE1, ÊE2, . . . , ÊEm), (1)

where FS ¼ fÊE1, ÊE2, . . . , ÊEmg 2 fL;Hgm
is the random variable that represents the combination of binary

expression states of the genes in S and m¼ jSj.
The difference between additive and combinatorial coordinate dysregulation is illustrated in Figure 1.

Anastassiou (2007) also incorporates this combinatorial formulation to define the synergy between a pair of

genes as w(g1, g2)¼ I(ÊE1, ÊE2; C)� (I(ÊE1; C)þ I(ÊE2; C)). Generalizing this formulation to the synergy be-

tween multiple genes, it can be shown that identification of multiple genes with synergistic dysregulation is

an intractable computational problem (Anastassiou, 2007). Here, we define combinatorial coordinate

dysregulation as a more general notion than synergistic dysregulation, in that coordinate dysregulation is

defined based solely on collective differential expression, whereas synergy explicitly looks for genes that

cannot individually distinguish phenotype and control samples.

Subnetworks that exhibit combinatorial coordinate dysregulation with respect to a phenotype may shed

light into the mechanistic bases of that phenotype. However, identification of such subnetworks is in-

tractable, and due to the combinatorial nature of the associated objective function (I(FS; C)), simple

heuristics may not suit well to this problem. This is because, as also demonstrated by the example in Figure

1, it is not straightforward to bound the combinatorial coordinate dysregulation of a subnetwork in terms of

the individual dysregulation of its constituent genes or coordinate dysregulation of its smaller subnetworks.

Motivated by these considerations, we propose to decompose the combinatorial coordinate dysregulation of

a subnetwork into individual subnetwork state functions and show that information provided by state

functions of larger subnetworks can be bounded using statistics of their smaller subnetworks.

2.4. Subnetwork state functions informative of phenotype

Let fS 2 fH, Lgm
denote an observation of the random variable FS , i.e., a specific combination of the

expression states of the genes in S. By definition of mutual information, we can write the combinatorial

coordinate dysregulation of S as

I(FS; C)¼
X

fS2fH, Lgm

J(fS ; C) (2)

where

J(fS; C)¼ p(fS)
X

c2f0, 1g
p(cj fS) log (p(cj fS)=p(c)): (3)

Here, p(x) denotes P(X¼ x), that is the probability that random variable X is equal to x (similarly, p(xjy)

denotes P(X¼ xjY¼ y)). In biological terms, J(fS ; C) can be considered a measure of the information

provided by subnetwork state function fS on phenotype C. Therefore, we say a state function fS is infor-

mative of phenotype if it satisfies the following conditions:

� J(fS ; C) � j�, where j* is an adjustable threshold.
� J(fS ; C) � J(fR; C) for all fR v fS . Here, fR v fS denotes that fR is a substate of state function fS , that

is R � S and fR maps each gene in R to an expression level that is identical to the mapping provided

by fS .

Here, the first condition ensures that the information provided by the state function is considered high

enough with respect to a user-defined threshold. The second condition ensures that informative state

functions are non-redundant, that is, a state function is considered informative only if it provides more

information on the phenotype than any of its substates can. This restriction ensures that the expression of

each gene in the subnetwork provides additional information on the phenotype, capturing the synergy
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between multiple genes to a certain extent. For a given set of phenotype and control samples and a

reference PPI network, the objective of our framework is to identify all informative state functions.

The following theorem shows that for any S � V, 0 � J(fS; C) � maxf� q log p(c),

� (1� q) log (1� q)g¼ jmax(q) where q denotes the fraction of phenotype samples among all available

samples.

Theorem 1. For a given gene expression dataset, let the fraction of phenotype samples be q¼ p(1)¼
P(C¼ 1). Then, for any subnetwork S � V,

0 � J(fS , C) � maxf� q log q, � (1� q) log (1� q)g: (4)

We use the following conventions for notational convenience:

� z denotes p(fS)¼P(FS ¼ fS), that is the probability that subnetwork S is in state fS in a given sample.
� s denotes p(1j fS)¼P(C¼ 1jFS ¼ fS), that is the probability that a sample with state fS for the genes in

S is associated with the phenotype of interest.

Proof. Assume that q and z are fixed. Then we can write J(fS ; C) as a function of s:

J(s)¼ z(s log (s=q)þ (1� s) log ((1� s)=(1� q))): (5)

Taking the derivative of this function with respect to s, we obtain

J0(s)¼ z log
s(1� q)

q(1� s)
: (6)

Observe that J0(s) assumes its zero at s¼ q. Furthermore, for s> q, since s/q> 0 and (1� s)/(1� q)< 0,

J0(s) is always positive and J is an increasing function of s. Similarly, for s< q, J0(s) is always negative and

J is a decreasing function of s. Consequently, J(s) is always non-negative and it assumes its maximum at

one of the boundaries of the range of values that s can take. Therefore, for fixed q, if we bound J(s) at the

boundaries that are enforced by z, we can write the bound on J as a function of z. The maxima of this

function over all values of z will provide a bound on J over all possible values of z and s for fixed q. We

analyze the cases z� q and z� q separately.

Case A: z� q, that is the state function is observed at least as commonly as the phenotype of interest. In

this case, since the number of phenotype samples in which the state function is observed can be at most

equal to the number of all phenotype samples, we have s� q/z. On the other hand, if z� 1� q, then it is

possible that none of the samples that exhibit the state function are associated with the sample, and

therefore s� 0. Finally, when z� 1� q (which is only possible if z� 1/2, the s will be minimized if all

samples that are not associated with the phenotype exhibit the state function, and therefore we have

s� 1� (1� q)/z. Consequently, we have three boundary cases for s:

1. s¼ q/z, subject to q� z� 1.

2. s¼ 0, subject to q� z� 1� q.

3. s¼ 1� (1� q)/z, subject to max {q, 1� q}� z� 1.

We consider each of these boundary cases separately.

Case A1: Letting s¼ q/z in (5), we obtain

JA1(z)¼ z
q

z
log

1

z
þ z� q

z
log

z� q

z(1� q)

� �
, (7)

and therefore JA1(z)¼ (z� q) log((z� q)/(1� q))� zlogz. Consequently, J0A1(z)¼ log ((z� q)=
(z(1� q))) � 0 for q� z� 1 and therefore JA1(z)� J(q)¼� q log q, proving the bound for this case.

Case A2: Letting s¼ 0 in (5), we obtain JA2(z)¼� z log(1� q) and therefore JA2(z)� J(1� q)¼ (1� q)

log(1� q) for q� z� 1� q, proving the bound for this case.

Case A3: Letting s¼ 1� (1� q)/z in (5), we obtain

JA3(z)¼ z
qþ z� 1

z
log

qþ z� 1

qz
þ 1� q

z
log

1

z

� �
(8)
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and therefore JA3(z)¼ (qþ z� 1) log((qþ z� 1)/q)� z log z. Consequently, J0A3(z)¼ log ((qþ z� 1)=qz).

J0A3(z) assumes its zero at z¼ 1, corresponding to a minimum at J(1)¼ 0. Therefore, if q� 1� q, then JA3(z)

attains its maximum at z¼ 1� q, which gives JA3(z)� JA3(q)¼� (1� q) log(1� q). Otherwise (q> 1� q

and hence q> 1/2), JA3(z) attains its maximum at z¼ q, which gives JA3(z)� JA3(1� q)¼ (2q� 1)

log((2q� 1)/q)� (1� q) log(1� q)�� (1� q) log(1� q) since (2q� 1)/q� 1 for 1/2� q� 1. This proves

the bound for this case.

Case B: z� q, that is the state function is observed at most as commonly as the phenotype of interest. In

this case, s can attain the value 1 if all samples that exhibit the state function are associated with the

phenotype of interest, thus s� 1. On the other hand, for z� 1� q, s can be as low as 0 if all samples that

exhibit the state function are samples that are not associated with the phenotype. Finally, if z� 1� q, then s

has to be at least 1� (1� q)/z since at most this fraction of samples that exhibit the state function can be

samples that are not associated with the phenotype. Consequently, we have three boundary cases for s:

1. s¼ 1, subject to 0� z� q.

2. s¼ 0, subject to 0� z�min{1� q,q}.

3. s¼ 1� (1� q)/z, subject to 1� q� z� q.

We consider each of these boundary cases separately.

Case B1: Letting s¼ 1 in (5), we obtain JB1(z)¼� z log q and therefore JB1(z)�� q log q for 0� z� q,

proving the bound for this case.

Case B2: Letting s¼ 0 in (5), we obtain JB2(z)¼� z log(1� q) and therefore JB2(z)�� (1� q)

log(1� q) for q� z� 1� q, proving the bound for this case.

Case B3: Observe that JB3(z)¼ JA3(z). As we know from case A3, JB3(z) is a decreasing function of z

and JA3(1� q)�� (1� q) log(1� q), so JB3(1� q)�� (1� q) log(1� q), proving the bound for this

case. &

Based on this result, we allow the user to specify a threshold j** in the range [0, 1] in practice and adjust

it as j*¼ j**jmax( p(c)), to make the scoring criterion interpretable and uniform across all datasets.

2.5 Algorithms for the identification of informative state functions

Since the space of state functions is very large, the problem of discovering all informative state functions

is intractable. Here, we address this challenge by utilizing a bound on the value of J to effectively prune the

search space. Our approach is inspired by a similar result by Smyth and Goodman (1992) on information-

theoretic identification of association rules in databases. In the following theorem, we show that the

information that can be provided by all superstates of a given state function can be bounded based on the

statistics of that state function, without any information about the superstate.

Theorem 2. Consider a subnetwork S � V and associated state function fS . For any fR w fS the

following bound holds:

J(fR; C) � p(fS) max
c2f0, 1g

p(cj fS) log
1

p(c)

� �
¼ Jbound( fS , C): (9)

The proof of this theorem is based on a more general result by Smyth and Goodman (1992) in the context

of association rule mining. We first prove two lemmas necessary for the proof of Theorem 2.

Lemma 1. For 0 � x5 a5 b � 1,
(a� x)

(b� x)
� a

b
.

Proof. Let x1< x2. Since b� a> 0, we have x1(b� a)< x2(b� a). Adding x1x2þ ab to both sides of

the inequality, we obtain (a� x2)(b� x1)< (a� x1)(b� x2). Consequently, x1< x2 implies

a� x2

b� x2

5
a� x1

b� x1

, (10)

and therefore the maximum of
(a� x)

(b� x)
for the interval 0� x< a occurs at x¼ 0, which is equal to

a

b
. &

Lemma 2. For 0 � b5 a5 x � 1,
(x� a)

(x� b)
� 1� a

1� b
.
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Proof. Let x1> x2. Since a� b> 0, we have x1(a� b)> x2(a� b). Adding x1x2þ ab to both sides of

the inequality, we obtain (x1� a)(x2� b)> (x1� b)(x2� a). Consequently, x1> x2 implies

x1� a

x2� a
4

x1� b

x2� b
, (11)

and therefore the maximum of
(x� a)

(x� b)
for the interval a< x� 1 occurs at x¼ 1, which is equal to

1� a

1� b
. &

To prove Theorem 2, we use the following conventions for notational convenience:

� r denotes p(1j fR)¼P(C¼ 1jFS ¼ fR), that is the probability that a sample with state fR for the genes in

R is associated with the phenotype of interest.
� T denotes RnS and fT denotes the state of T that is consistent with fR.
� g denotes P(FT ¼ fT jFS ¼ fS), that is the probability of observing state fT for subnetwork T , given that

subnetwork S is in state fS .

y denotes P(C¼ 1jFS ¼ fS , FT 6¼ fT ), that is the probability that a sample is associated with the

phenotype of interest, given that subnetwork S is in state fS , but subnetwork T is not in state fT in that

sample.

Proof of Theorem 2. We can write J(fR; C) and Jbound(fS , C) as follows:

J(fR; C)¼ zc(r log (r=q)þ (1� r) log ((1� r)=(1� q))): (12)

Jbound(fS; C)¼ z maxfs log (1=q), (1� s) log (1=(1� q))g: (13)

We will show that, for fixed S and fS , the maximum value that J(fR; C) attains cannot exceed

Jbound(fS ; C) (for any choice of T and fT ). First, by definition of conditional probability, we note the

following equality:

s¼ crþ (1� c)h: (14)

Since s is fixed, this equation represents a constraint that must be satisfied by r, g, and y. Thus, we will

bound J(fR; C) subject to this constraint. Note also that we can write this constraint as

c¼ s� h
r� h

¼ h� s

h� r
: (15)

Without loss of generality, we assume s> q, that is the observation of state function fS increases the

probability of a sample being associated with the phenotype (fS ‘‘indicates’’ phenotype). Since we consider

only two classes for the samples (phenotype or control), if the assumption does not hold (i.e., if fS
‘‘indicates’’ control), then the following arguments still hold if we simply interchange the labels of sample

classes.

Given that s> q, five different cases are possible: (i) q< s< r, (ii) q< s¼ r, (iii) q< r< s, (iv) q¼ r< s,

and (v) r< q< s. We consider each case separately.

Case (i): q< s< r. In this case, the probability of phenotype given the state of the larger subnetwork is

larger than the probability of phenotype given the state of the smaller subnetwork (and thus the additional

part of the larger subnetwork provides additional evidence indicating that the sample might be associated

with phenotype).

Since s< r, we have r> grþ (1� g)y from (14) and thus r> y. Therefore, since 0� y< s< r� 1, we

can write by Lemma 1 that g� s/r, without putting any additional constraint on r. Consequently, from (12),

we obtain

J(fR; C) � z
s

r
(r log (r=q)þ (1� r) log ((1� r)=(1� q))) (16)

and thus

J(fR; C) � zs( log (r=q)þ (1=r� 1) log ((1� r)=(1� q))): (17)

Since q< r� 1, the second term in parenthesis is negative. Consequently, noting r� 1, we obtain
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J(fR; C) � zs log (1=q) � Jbound(fS , C): (18)

This proves the theorem for case (i).

Case (ii): q< s¼ r. In this case, the probability of phenotype given the state of the larger subnetwork is

equal to the probability of phenotype given the state of the smaller subnetwork (and thus the additional part

of the larger subnetwork does not provide additional information).

Noting l�1 and replacing r with s, we can write

J(fR; C) � z(s log (s=q)þ (1� s) log ((1� s)=(1� q))): (19)

Since 1� s< 1� q, the second term in parentheses is negative, so we have

J(fR; C) � z(s log (s=q)) � Jbound(fS , C): (20)

This proves the theorem for case (ii).

Case (iii): q< r< s. In this case, the observation of the state of the larger subnetwork increases the

probability of phenotype compared to background, but not to the extent that the smaller subnetwork does.

The proof here is very similar to that in case (ii). Let y(x)¼ x log(x/q)þ (1� x) log((1� x)/(1� q)). Then

we have y0(x)¼ log(x/q)� log((1� x)/(1� q)). Therefore, for x> q, since x/q> 1 and (1� x)/(1� q), y0(x)

is always positive and y is an increasing function of x. Consequently, for q< r< s, we have:

r log (r=q)þ (1� r) log ((1� r)=(1� q)) � s log (s=q)þ (1� s) log ((1� s)=(1� q)): (21)

Once this inequality is etablished, the rest of the proof for case (iii) follows the proof for case (ii).

Case (iv): q¼ r< s. In this case, the probability of phenotype given the state of the larger subnetwork is

equal to background, thus the additional part of the larger subnetwork takes away all the evidence provided

by the smaller subnetwork in favor of phenotype.

By definition of J(.), J(fR; C)¼ 0 (both r/q and (1� r)/(1� q) are equal to 1 in (12)). Thus, J(fR; C)

trivially satisfies the bound, proving the theorem for this case.

Case (v): r< q< s. In this case, the additional part of the larger subnetwork reverses the direction of

evidence provided by the smaller subnetwork, that is the state function of the larger subnetwork increases

the probability of the sample being associated with control.

The proof in this case is very similar to that for case (i). Since r< s, using Equation 14 we have

r< grþ (1� g)y and thus r< y. Therefore, since 0� r< s< y� 1, we can write by Lemma 2 (see

below) that g� (1� s)/(1� r), without putting any additional constraint on r. Consequently, from (12), we

obtain

J(fR; C) � z
1� s

1� r
(r log (r=q)þ (1� r) log ((1� r)=(1� q))) (22)

and thus

J(fR; C) � z(1� s)( log ((1� r)=(1� q))þ (r=(1� r)) log (r=q)): (23)

Since r< q, the second term in parenthesis is negative and also 1� r� 1; therefore

J(fR; C) � z(1� s) log (1=(1� q)) � Jbound(fS , C): (24)

This proves the theorem for case (v). &

Note that this theorem does not state that the J-value of a state function is bounded by the J-value of its

smaller parts, it rather provides a bound on the J-value of the larger state function based on simpler

statistics of its smaller parts. Using this bound, we develop an algorithm, Crane, to efficiently search for

informative state functions. Crane enumerates state functions in a bottom-up fashion, by pruning out the

search space effectively based on the following principles:

1. A state function fS is said to be a candidate state function if jSj¼ 1 or J(fS; C) � J(fSnfgig; C) for all

gi 2 S.

2. A candidate state function fS is said to be extensible if Jbound(fS; C) � j�. This restriction enables

pruning of larger state functions using statistics of smaller state functions.
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3. An extension of state function fS is obtained by adding one of the H or L states of a gene gi 2 VnS
such that gigj 2 E, where gj is the most recently added gene to fS . This ensures network connectivity

of the subnetwork associated with the generated state functions.

4. For an extensible state function, all possible extensions are considered and among those that qualify

as candidate state functions, the top b state functions with maximum J(.) are selected as candidate

state functions. Here, b is an adjustable parameter that determines the breadth of the search and the

case b¼ 1 corresponds to a greedy algorithm.

5. An extensible state function fS is not extended if jSj¼ d. Here, d is an adjustable parameter that

determines the depth of the search.

Crane enumerates all candidate state functions that qualify according to these principles, for given j*, b,

and d. At the end of the search process, the candidate state functions that are not superceded by another

candidate state function (the leaves of the enumeration tree) are identified as informative state functions, if

their J-value exceeds j*. A detailed pseudo-code for this procedure is given as Algorithm 1.

Algorithm 1: Crane-ExtendStateFunction ((S, fS), T , j�, b, d)h : Extends a subnetwork and associ-

ated state function. Invoked for each gi 2 V and ÊEi 2 f0, 1g as Crane-ExtendStateFunction,

((fgig, fÊEig), ;, j�, b, d), where j*, b, and d are user-defined.

Global: "V: Set of genes, C: Phenotype vector

" E: Gene expression associated with V and C, E: PPI dataset associated with V
Inputs: " (S, fS): Subnetwork/state-function pair to be extended

" j*: Threshold on information provided by a state function on phenotype

" d: Maximum number of genes in a subnetwork

" b: Maximum number of immediate extensions of a subnetwork/state-function pair

Input/Output: " T : Set of state functions informative of phenotype.

1: if jSj¼ ¼ d then

2: if (J(fS ; C) � j� then

3: T  T [ f(S, fS)g
4: end if

5: return

6: end if

7: Q  ;; gi/most recently added gene to S
8: for each gk : (gi, gk) 2 E and gk 62 S do

9: S0  S [ fgkg
10: for each ÊEk 2 f0, 1g do

11: fS0  fS0 [ ÊEk; redundant/ false

12: for gj 2 S0 do

13: if (J(fS0nfgjg; C) � J(fS0 ; C) then

14: redundant/ true; break

15: end if

16: end for

17: if (not redundant) and ((Jmax(fS0 ; C)4 j�)) then

18: Q  Q[ f(S0, fS0 )g
19: end if

20: end for

21: end for

22: if Q¼; then

23: if J(fS ; C) � j� then

24: T  T [ f(S, fS)g
25: end if

26: return

27: end if

28: Qb  set of top b subnetwork/state-function pairs in Q with respect to J(fS0 ; C)

29: for each (S0, fS0 ) 2 Qb do

30: Crane-ExtendStateFunction ((S0, fS0 ), T , j�, b, d)

31: end for
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2.6. Using state functions to predict metastasis in cancer

An important application of informative state functions is that they can serve as features for classification

of phenotype. Since the genes that compose an informative state function are by definition highly dis-

criminative of phenotype and control when considered together, they are expected to perform better than

single-gene features (Chuang et al., 2007). Note here that Crane discovers specific state functions that are

informative of phenotype, as opposed to subnetworks that can discriminate phenotype or control. However,

by Equation 2, we expect that a high J(fS , C) for a specific state function fS is associated with a potentially

high I(FS , C) for the corresponding subnetwork S. Therefore, for the application of Crane in classification,

we sort the subnetworks that are associated with discovered state functions based on their combinatorial

coordinate dysregulation I(FS , C) and use the top K disjoint (non-overlapping in terms of their gene

content) subnetworks with maximum I(FS , C) as features for classification. In the next section, we report

results of classification experiments for different values of K.

Deriving representative features for subnetworks is a challenging task. Using simple aggregates of

individual expression levels of genes along with traditional classifiers (e.g., regression or SVMs) might not

be adequate, since such representations may not capture the combinatorial relationship between the genes

in the subnetwork. For this reason, we use neural networks that incorporate subnetwork states (FS) directly

as features. The proposed neural network model is illustrated in Figure 2. In the example of this figure, two

subnetworks are used to build the classifier. Each input is the expression level of a gene and the inputs that

correspond to a particular subnetwork are connected together to an input layer neuron. All input layer

neurons, each representing a subnetwork, are connected to a single output layer neuron, which produces the

output. Each layer’s weights and biases are initialized with the Nguyen-Widrow layer initialization method

(provided by Matlab’s initnw parameter). Then for a given gene expression dataset for a range of control

and phenotype samples (which, in our experiments, is identical to that used for identification of informative

state functions), the network is trained with Levenberg-Marquardt backpropagation (using Matlab’s trainlm

parameter), so that, given expression profiles in the training dataset, the output of the second layer matches

the associated phenotype vector within minimal mean squared error. This learned model is then used to

perform classification tests on a different gene expression dataset for the same phenotype.

Since Neural Networks show stochastic behavior, we train 30 independent NNs with the same training

data and use the following voting scheme to consolidate these 30 different runs. For each run, we feed both

the training and test samples as separate test data to the trained neural network and collect the real valued

predictions for all training and test sample cases. For each neural network, we convert the quantitative NN

outputs to binary predictions based on the NN outputs of training samples. We then predict the discrete

class label of each test sample using output of NN as features. This procedure generates 30 separate class

labels for each sample, each predicted by a particular NN. Then the final class label of each sample is

determined based on the majority of the predicted class labels for that sample (i.e., for a particular sample,

if more than 50% of the output labels represent phenotype, we declare it as a phenotype sample).

3. RESULTS AND DISCUSSION

In this section, we evaluate the performance of Crane in identifying state functions associated with

metastasis of CRC. We first compare the classification performance of the subnetworks associated with

these state functions against single gene markers and subnetworks identified by an algorithm that aims to

FIG. 2. Neural network model

used to utilize subnetworks identi-

fied by Crane for classification.

Each subnetwork is represented by

an input layer neuron, and these

neurons are connected to a single

output layer neuron.
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maximize additive coordinate dysregulation. We then present comprehensive experimental results to

evaluate the effect of parameters on the performance of Crane. Subsequently, with a view to investigating

the benefits of pruning the subnetwork search space, we compare Crane’s performance with a version that

does not use the bound on J(.) value to prune the search space. Finally, we inspect the subnetworks that are

useful in classification, and discuss the insights these subnetworks can provide into the metastasis of CRC.

3.1. Datasets

In our experiments, we use two CRC-related microarray datasets obtained from GEO (Gene Expression

Omnibus; http://www.ncbi.nlm.nih.gov/geo/index.cgi). These datasets, referenced by their accession

number in the GEO database, include the following relevant data:

� GSE6988 contains expression profiles of 17,104 genes across 29 vs. 51 colorectal tumor samples with

and without liver metastasis, respectively (Ki et al., 2007).
� GSE3964 contains expression profiles of 5,845 genes across 28 vs. 18 colorectal tumor samples with

and without liver metastasis, respectively (Graudens et al., 2006).

The human protein-protein interaction data used in our experiments is obtained from the Human Protein

Reference Database (HPRD; http://www.hprd.org). This dataset contains 35023 binary interactions among

9299 proteins, as well as 1060 protein complexes consisting of 2146 proteins. We integrate the binary

interactions and protein complexes using a matrix model (e.g., each complex is represented as a clique of

the proteins in the complex), to obtain a PPI network composed of 42781 binary interactions among 9442

proteins.

3.2. Experimental design

For each of the datasets mentioned above, we discover informative state functions (in terms of dis-

criminating tumor samples with or without metastasis) using Crane. While state functions that are in-

dicative of either metastatic or non-metastatic phenotype can have high J(.) values, we use only those that

are indicative of (i.e., knowledge of which increases the likelihood of ) metastatic phenotype for classifi-

cation and further analyses, since such state functions are directly interpretable in terms of their association

with metastasis.

In the experiments reported here, we set b¼ 10. d is set at 3 for GSE3964 and at 6 for GSE6988. The

value of j** is set to and 0.15 and 0.40 for discovery of subnetworks on GSE3964 and GSE6988 re-

spectively. The top five non-overlapping subnetworks discovered on GSE6988 by Crane using these

parameter settings are shown in Table 2. Note that these parameters are used to balance the trade-off

between computational cost of subnetwork identification and classification accuracy. The reported values

are those that provide reasonable performance by spending a reasonable amount of time on subnetwork

identification (a few hours in Matlab for each dataset). The effect of different values of these parameters on

Crane’s performance are presented later in this section.

To binarize the gene expression datasets, we first normalize the gene expression profiles so that each

gene has an average expression of 0 and standard deviation 1. Then we set the top a fraction of the entries

in the normalized gene expression matrix to H (high expression) and the rest to L (low expression). In the

reported experiments, we use a¼ 0.25 (25% of the genes are expressed on an average) as this value is found

to optimize the classification performance.

Table 2. Five Non-Overlapping Subnetworks that Are Associated with the Most Informative State

Functions Discovered on GSE6988 with d¼ 6 and the Functional Enrichment of These Subnetworks

Rank Proteins

Comb. coor.

dysregulation

Most significantly

enriched process

Enrichment

p-value

1 SERPINA3, KLK3, EPOR, GNB2L1, RASA1, RAF1 0.94 Inflammation 1 · 10�3

2 E2F4, CCNE1, GSK3B, HNRPD, SF3B2, RPL13 0.85 Cell movement 1 · 10�3

3 DMTF1, CCND2, AKAP8, DDX5, FN1, CRP 0.85 Cell migration 1 · 10�4

4 ANXA11, PLSCR1, ESWR1, PTK2B, ITGB2, HP 0.81 Cell adhesion 1 · 10�4

5 SKP1A, CCNA2, CDKN1A, GADD45G, EEF1G, RGL2 0.81 Inflammation 1 · 10�4
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3.3. Implementation of other algorithms

We identify single gene markers by running Crane with d¼ 1 (i.e., by searching for subnetworks

composed of one gene). We also identify coordinately dysregulated subnetworks using an additive algo-

rithm, that is an algorithm that aims to maximize additive coordinate dysregulation (Chuang et al., 2007).

The additive algorithm identifies a subnetwork associated with each gene in the network by seeding a

greedy search process from that gene. It grows subnetworks by iteratively adding to the subnetwork a

network neighbor of the genes that are already in the subnetwork. At each iteration, the neighbor that

maximizes the coordinate dysregulation of the subnetwork is selected to be added. Once all subnetworks

are identified, we sort these subnetworks according to their coordinate dysregulation (I(ES; C) or (I(FS; C)

and use the top K disjoint subnetworks to train and test classifiers, for different values of K. While

quantizing ES to compute (I(ES ; C), as suggested in Chuang et al. (2007), we use blog2 (jUj)cþ 1 bins

where jUj denotes the number of samples. Note that, in Chuang et al. (2007), the subnetworks identified by

the greedy algorithm are filtered through three statistical tests. In our experiments, these statistical tests are

not performed for the subnetworks discovered by the additive algorithm and Crane. This is because,

testing of statistical significance based on multiple runs on permuted instances is computationally ex-

pensive, since Crane performs an almost exhaustive search of the subnetwork space. It should be noted

that this is currently an important limitation of Crane. In this respect, development of efficient algorithms

for testing statistical significance of subnetworks identified by such exhaustive algorithms remains an

important problem.

For the subnetworks with additive coordinate dysregulation, we compute the subnetwork activity ES for

each subnetwork, and use these as features to train and test two different classifiers: (i) a SVM using

Matlab’s svmtrain and svmclassify functions (this method is not applicable to combinatorial coordinate

dysregulation), (ii) feed-forward neural networks, in which each input represents the subnetwork activity

for a subnetwork and these inputs are connected to hidden layer neurons. For the single-gene markers, we

rank all genes according to the mutual information of their expression profile with phenotype (I(Ei; C)) and

use the expression level of K genes with maximum I(Ei; C) as features for classification.

3.4. Classification performance

We evaluate the cross-classification performance of the subnetworks in the context of predicting me-

tastasis of CRC. Namely, we use subnetworks discovered on the GSE6988 dataset to train classifiers and we

test the resulting classifiers on all the samples of GSE3964. Similarly, we use subnetworks discovered on

GSE3964 to train classifiers using the same dataset and perform testing of these classifiers on 28 metastatic

and 20 randomly selected non-metastatic samples of GSE6988. The cross-classification performance of

subnetworks discovered by an algorithm is not only indicative of the power of the algorithm in discovering

subnetworks that are descriptive of phenotype, but also the reproducibility of these subnetworks across

different datasets.

The classification performances of the subnetworks identified by Crane, the additive algorithm, and

single gene markers are compared in Figure 3. In the figure, for each 1�K� 10, the precision and recall

achieved by each classifier are reported. These performance criteria are defined as follows:

precision¼ # true positives

# true positivesþ# false positives
(25)

recall¼ # true positives

# true positivesþ# false negatives
(26)

Here, a true positive is defined as a metastatic sample that is correctly predicted as a metastatic sample,

while a false positive is a non-metastatic sample that is incorrectly predicted as metastatic. A false negative

is a metastatic sample that is incorrectly predicted as non-metastatic. Therefore, precision quantifies the

fraction of true positives among all samples predicted as metastatic by the classifier, while recall quantifies

the fraction of true positives among all metastatic samples.

As seen in Figure 3, subnetworks identified by Crane outperform the subnetworks identified by other

algorithms in predicting metastasis of colorectal cancer. In fact, in both cases, Crane has the potential to

deliver very high accuracy using very few subnetworks (maximum precision of 100% on both GSE6988

and GSE3964, maximum recall of and 95% and 86% for classification of samples in GSE6988 and
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GSE3964, respectively). While we use a simple feature selection method here for purposes of illustration,

the performance of Crane subnetworks are quite consistent, suggesting that these performance figures can

indeed be achieved by developing elegant methods for selection of subnetwork features. These results are

rather impressive, given that the best performance that can be achieved by the additive algorithm is 82%/

93% precision and 89%/100% recall for the classification of GSE3964 and GSE6988, respectively. Note

that, while the performance of other algorithms is improved by increasing number of subnetwork features,

the performance of Crane appears to decline. This is likely because Crane represents subnetwork features

as multi-dimensional state functions. Therefore, while a few subnetworks each containing a few genes

provide sufficient information for accurate classification, the accuracy declines as more subnetworks are

incorporated because of the growth in dimensionality.

3.5. Effect of pruning

An important feature of Crane is the use of a theoretical bound on J(.) to prune out the search space. In

order to verify the effectiveness of this feature in improving the efficiency of Crane, as well as its ability to

discover informative subnetworks, we compare Crane with a version that does not apply pruning using the

bound on J(.). The results of this comparison are shown in Figure 4. These experiments are performed on

GSE6988, by fixing b¼ 10, j**¼ 0.45, a¼ 0.25, and running Crane and its version without pruning for d

ranging from 1 to 8.

The runtimes of the Crane and the algorithm without pruning are compared in Figure 4. As seen in the

figure, the algorithm without pruning does not scale well with increasing d. This is expected, since the

algorithm performs exhaustive search with a breadth of b¼ 10, making the runtime exponential in d.

However, by pruning this search space using the bound on J(.), Crane reduces this runtime drastically,

providing orders of magnitude improvement for larger values of d. Note that, if b¼? , both Crane and its

version without pruning are guaranteed to discover all subnetworks with J(.)� j*. However, since the

breadth of search is limited by parameter b, both algorithms may miss some subnetworks. In the experi-

ments reported here, Crane is able to identify all subnetworks that are identified by the version without

pruning; i.e., Crane achieves the drastic improvement in runtime without compromising sensitivity. These

results clearly demonstrate the value of using the theoretical bound on J(.) value while searching for

informative subnetworks.

FIG. 3. Classification perfor-

mance of subnetworks identified by

Crane in predicting colon cancer

metastasis, as compared to single

gene markers and subnetworks

identified by algorithms that aim to

maximize additive coordinate dys-

regulation. Subnetworks identified

by Crane are used to train neural

networks (NNs), while those iden-

tified by the additive algorithm are

used to train NNs, as well as support

vector machines (SVMs). In the

graphs, horizontal axes show the

number of disjoint subnetwork fea-

tures (with maximum combinatorial

or additive coordinate dysregula-

tion) used in classification, and

vertical axes show the precision and

recall achieved by the classifier.
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3.6. Effect of parameters

We also investigate the effect of parameters used to configure Crane on classification performance of

identified subnetworks, by fixing all but one of the parameters to the above-mentioned values and varying

the remaining parameter. The tuneable parameters of Crane are the following:

� d: d is the maximum size of a subnetwork. Crane stops extending a subnetwork when the number of

genes in the subnetwork reaches d. In other words, d determines the depth of the search.
� b: b is the number of state functions selected by Crane at each iteration with maximum J(.) value.

Thus, b determines the breadth of the search.
� j**: j** is the minimum J(.) value of a subnetwork state function to be considered informative.
� a: a is the fraction of the entries in the normalized gene expressin matrix that is set to H (high

expression). The rest of the (1� a) entries of the gene expression matrix is set to L (low expression).

The results of our experiments on the effect of these parameters on the performance of Crane are shown

in Figure 5. In this figure, for each configuration of the parameters, we report the average F-measure across

different values of the number of subnetworks used in classification, ranging from 1 to 10. Here, F-measure

is defined as the harmonic mean of precision and recall, i.e.,

F - measure¼ 2 ·
precision · recall

precisionþ recall
(27)

FIG. 4. Comparison of the runtimes of Crane and its

version that does not prune the subnetwork search space

using the theoretical bound on J(.). Note that Crane

identifies all subnetworks that are identified by the al-

gorithm without pruning.

FIG. 5. The effect of parameters on

the classification performance of

subnetworks discovered by Crane.

For all experiments, subnetworks are

discovered on GSE3964 and tested on

samples of GSE6988. The F-measure

of a classifier is computed by in-

creasing the number of subnetworks

gradually from 1 to 10 and average F-

Measure in these experiments is re-

ported. (A–D) Performance of Crane

with respect to parameters d, b, j**,

and a, respectively. (A) b¼ 10, and

j**¼ 0.15. (B) d¼ 3, and j**¼ 0.15.

(C) b¼ 10, and d¼ 3. (D) b¼ 10,

j**¼ 0.15, and d¼ 3.
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We observe that classification performance is quite robust against variation in a ranging from 10% to 50%,

while best performance is observed at a¼ 25%. As expected, classification performance improves by

increasing j**. Increasing the breadth of search (b) improves classification performance in general, which is

also expected since larger values of b enable exploration of the search space further. Note that the special

case with b¼ 1 is algorithmically equivalent to the additive algorithm with a different objective function

(combinatorial coordinate dysregulation as opposed to additive coordinate dysregulation). We observe that

Crane outperforms the additive algorithm with b¼ 1 as well, indicating that the combinatorial formulation

of coordinate dysregulation is potentially more useful than the additive formulation for classification.

As seen in Figure 5, increasing d improves performance as would be expected; however this im-

provement saturates for d> 3 and performance declines for larger subnetworks. This observation can be

attributed to curse of dimensionality, since the number of possible values of random variable F (expression

state of a subnetwork) grows exponentially with increasing subnetwork size. We also investigate the effect

of parameter d on Crane’s ability to discover larger subnetworks. For this purpose, we compare the

subnetworks identified by Crane on GSE6988 using d¼ 7 and d¼ 8 with those identified using d¼ 6. The

top five non-overlapping subnetworks identified using d¼ 7 and d¼ 8 are shown in Table 3. Comparison of

the subnetworks in Tables 2 and 3 shows that, while there is some overlap in subnetworks discovered using

different values of d, some subnetworks that can be discovered for larger values of d can be missed if a

smaller value of d is used. Note, however, that this does not mean that smaller subnetworks of these

subnetworks are not discovered by Crane. Rather, such subnetworks are often eliminated because of their

overlap with subnetworks that have higher combinatorial coordinate dysregulation. Indeed, comprehensive

comparison of subnetworks shows that many of the subnetworks composed of seven genes, which are

discovered using d¼ 7, are identified as different six-gene combinations when d is set 6. In other words, if d

is set to a smaller value, then a larger ‘‘naturally occurring’’ subnetwork can be ‘‘truncated’’ into smaller

subnetworks. For this reason, the parameter d needs to be set carefully, possibly by using different values of

d and inspecting the size and gene content of subnetworks discovered for each d.

3.7. Subnetworks and state functions indicative of metastasis in CRC

Cancer metastasis involves the rapid proliferation and invasion of malignant cells into the bloodstream or

lymphatic system. The process is driven, in part, by the dysregulation of proteins involved in cell adhesion and

motility (Paschos et al., 2009), the degradation of the extracellular matrix (ECM) at the invasive front of the

primary tumor (Zucker and Vacirca, 2004), and is associated with chronic inflammation (McConnell and

Yang, 2009). An enrichment analysis of the top five subnetworks identified on GSE6988 reveals that all of

these subnetworks are highly significant for the network processes underlying these phenotypes (Table 2).

Further, as CRC metastasis is our classification endpoint, we wanted to evaluate our subnetworks in

terms of their potential to propose testable hypotheses. In particular, to highlight the power of our model

approach, we choose a subnetwork for which at least one gene was expressed in the state function

Table 3. Five Non-Overlapping Subnetworks that Are Associated with the Most Informative State

Functions Discovered on GSE6988 for d¼ 7 and d¼ 8

Rank Proteins

Combinatorial coordinate

dysregulation

d¼ 7

1 MYC, GJB5, RPL35A, TRPM1, HYOU1, ARF3, CDK10 0.81

2 FLJ20487, ATP5F1, GNG3, RBM17, RCN1, ENO3 0.79

3 TCF7, NDUFV2, ARMCX1, LRP16, PPT1, KIF13B, MSL3L1 0.79

4 SMARCA4, ATP5D, BTBD2, FGFBP1, PPP2R5D, PYCARD, PPP2R3A 0.76

5 MPG, NT5C2, RCL1, SH3BP5, MYT1, EEF1G 0.76

d¼ 8

1 RARS, ARMCX1, SDF2, ARF3, HYOU1, F11R, LOC284361, ENO3 0.92

2 C18orf10, ATP5F1, VAV1, FBXW11, ASRGL1, EFHD1, KIAA0182, NDUFA1 0.89

3 SURB7, BRCA1, EXOSC4, PCBP2, RAD51C, TCF7, BCL2A1, CREB3 0.78

4 BMX, RAD51L3, PIN1, SLAMF1, CKLF, ELA3A, MMP2, N-PAC 0.77

5 SMARCA4, ATP5D, BTBD2, FGFBP1, PPP2R5D, PYCARD, PPP2R3A 0.76
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indicative of CRC metastasis. This subnetwork contains TNFSF11, MMP1, BCAN, MMP2, TBSH1, and

SPP1 and the state function LLLLLH (in respective order) indicates metastatic phenotype with J-value

0.33. The combinatorial dysregulation of this subnetwork is 0.72, while its additive coordinate dysregu-

lation is 0.37, i.e., this is a subnetwork which would likely have escaped detection by the additive algorithm

(this subnetwork is not listed in Table 2 since it is not among the top five scoring subnetworks). Using the

genes in this subnetwork as a seed, we construct a small subnetwork diagram for the purpose of more

closely analyzing the post-translational interactions involving these proteins. This is done using Metacore, a

commercial platform that provides curated, highly reliable interactions. From this subnetwork, we remove

all genes indicated to be not expressed in human colon by the database, and then selectively prune it in

order to clearly focus on a particular set of interactions (Fig. 6). It merits noting that, although Brevican

(BCAN) is in subnetwork, it is removed for being non-expressed in the human colon, although evidence

from the Gene Expression Omnibus (see accession GDS2609) (Hong et al., 2007) casts doubt on this, as

does the microarray we use for scoring (GSE6988).

As seen on the interaction diagram, SPP1 (osteopontin) and TBSH1 (thrombosponidin 1) interact with a

number of the integrin heterodimers to increase their activity (green line). Integrin heterodimers play a

major role in mediating cell adhesion and cell motility. SPP1, up-regulated in metastasis (Fig. 6), is a well-

studied protein that triggers intracellular signaling cascades upon binding with various integrin hetero-

dimers, promotes cell migration when it binds CD44, and when binding the alpha-5/beta-3 dimer in

particular, promotes angiogenesis, which is associated with the metastatic phenotype of many cancers

(Markowitz and Bertagnolli, 2009). MMP proteins are involved in the breakdown of ECM, particularly

collagen which is the primary substrate at the invasive edge of colorectal tumors (Vishnubhotla et al.,

2007). MMP-1 has an inhibitory effect on vitronectin (red line), hence the loss of expression of MMP-1

may ‘‘release the brake’’ on vitronectin, which in turn may increase the activity of the alpha-v/beta-5

integrin heterodimer. Likewise, MMP-2 shows an inhibitory interaction with the alpha-5/beta-3 dimer,

FIG. 6. Hypothesis-driver subnetwork: interaction diagram illustrating key interactions with gene products from a

subnetwork identified by Crane as indicative of CRC metastasis. Shown are the gene products in discovered sub-

network (red circles) and their direct interactions with other proteins. Green lines represent an activating interaction; red

lines indicate an inhibitory interaction. Arrows indicate direction of interaction. (Inset) Expression pattern of sub-

network proteins at the level of mRNA.
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which may counteract to some extent the activating potential of SPP1, suggesting that a loss of MMP-2

may exacerbate the metastatic phenotype. Taken together, these interactions suggest a number of pertur-

bation experiments, perhaps by pharmacological inhibition or siRNA interference of the integrin dimmers

or MMP proteins, to evaluate the role of these interactions, individually or synergistically, in maintaining

the metastatic phenotype. Note also that, alpha-v/beta-5 integrin does not exhibit significant differential

expression at the mRNA-level, suggesting that the state function identified by Crane may be a signature of

its post-translational dysregulation in metastatic cells.

4. CONCLUSION

We present a novel framework for network-based analysis of coordinate dysregulation in complex

phenotypes. Experimental results on metastasis of colorectal cancer show that the proposed framework can

achieve almost perfect performance when discovered subnetworks are used as features for classification.

These results are highly promising in that the state functions that are found to be informative of metastasis

can also be useful in modeling the mechanisms of metastasis in cancer. Detailed investigation of the state

functions and the interactions between proteins that together compose state functions might therefore lead

to development of novel hypotheses, which in turn may be useful for development of theurapetic inter-

vention strategies for late stages of cancer.
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