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ABSTRACT

We address a specific case of joint probability mapping, where the information presented is
the probabilistic associations of random variables under a certain condition variable (con-
ditioned associations). Bayesian and dependency networks graphically map the joint
probabilities of random variables, though both networks may identify associations that are
independent of the condition (background associations). Since the background associations
have the same topological features as conditioned associations, it is difficult to discriminate
between conditioned and non-conditioned associations, which results in a major increase in
the search space. We introduce a modification of the dependency network method, which
produces a directed graph, containing only condition-related associations. The graph nodes
represent the random variables and the graph edges represent the associations that arise
under the condition variable. This method is based on ridge-regression, where one can
utilize a numerically robust and computationally efficient algorithm implementation. We
illustrate the method’s efficiency in the context of a medically relevant process, the emer-
gence of drug-resistant variants of human immunodeficiency virus (HIV) in drug-treated,
HIV-infected people. Our mapping was used to discover associations between variants that
are conditioned by the initiation of a particular drug treatment regimen. We have dem-
onstrated that our method can recover known associations of such treatment with selected
resistance mutations as well as documented associations between different mutations.
Moreover, our method revealed novel associations that are statistically significant and bi-
ologically plausible.

Key words: Bayesian networks, dependency networks, HIV, joint probability mapping, resistance

mutations, ridge regression.

1. INTRODUCTION

The search methods of associations, dependencies, and correlations between random variables

have been thoroughly studied during the past five decades. In some cases, there is a need to recover a
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specific type of association: those that result from the existence of a joint event. For example, dependencies

between variables can change with the appearance of another variable; a different pattern of associations are

created with the appearance of this variable. This variable will herein be referred to as ‘‘condition,’’ and the

associations generated by this condition will be called ‘‘conditioned associations.’’

Mathematically speaking, we want to find a subset S out of a set of random variables fx1‚ x2‚ . . . xng
where p(S/c) significantly differs from p(S).

Exploring the conditioned associations can uncover hidden mechanisms or processes that operate only

when the condition exists. For example, such mechanisms can be quantitative and qualitative modifications

of elements of the immune system in response to pathogens, emergency services recruitment upon a

catastrophic event, or DNA mutations in an infecting virus arising under the selection pressure of a novel

treatment.

Pearl (2009) specifies the benefits of using a graph representation of joint probability mapping—

specifically clarity, convenience, and economical representation. Graphical notation and terminology will

be used in this article.

Problem example

Assume there are three random binary variables (car rental shortage [x1], airport closure [x2], Western

wind [x3]) and one condition (Icelandic volcano eruption (c)).

Exploring the correlations between x1, x2, and x3 will show that x1 correlates with x2, whereas none of

them correlates with x3. Thus, normally there is no apparent correlation between western wind and airport

closure or car rental shortage, or p(x1, x2/x3) = p(x1, x2). Yet, when an Icelandic volcano erupts, a Western

wind can carry the ash cloud over the airport, causing it to shut down, in which case p(x2, x3/c) [ p(x2,

x3). In a graph representation, retrieving the x3 / x2 edge will suggest that a new association was created

under the condition c (Fig. 1).

Using Bayesian networks to infer about conditioned patterns

Bayesian networks (BNT) represent the conditional dependencies between random variables, using a

Directed A-cyclic Graph (DAG) (Cooper and Herskovits, 1992). BNT are commonly used in problems

similar to ours, such as mapping the associations between genes (Friedman et al., 2000) and the associa-

tions between HIV DNA mutations (Deforche et al., 2006).

The condition variable is usually referred to as a variable with a predefined value. Predefining the value

of a variable is commonly termed ‘‘intervention’’ or ‘‘perturbation’’ of the observed data.

Pearl (2009) uses the term ‘‘Atomic Intervention’’ to describe an external manipulation of a network

variable value. He suggests adding to the condition variable a parent variable that activates the induced

state (Pearl, 1993).

Pe’er et al. (2001) explored the causal relationships between genes’ expression level. In their article, they

note that external perturbations such as medical treatment, which have no direct influence over other

FIG. 1. Graphical representation

of the dependencies between three

random variables. (a) General case.

(b) Cases under the condition c

(Icelandic Volcano eruption). The

edge x3 / x2 is unique to cases

under condition c.
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variables (in this case gene expression level) but indirectly affect the values of many other variables, should

be regarded as ‘‘indicator variables,’’ and added to the BNT with the constraint that they cannot have other

variables as network parents.

Note that the above examples require manipulating or placing constraints over the discovered network

structure.

The result of inducing the condition variable to our data will be a joint probability map, containing a

node representing the condition. In order to deduce the conditioned associations, one can traverse through

the nodes connected to the condition node, or review the whole connected component containing the

condition node.

Figure 2 displays the joint probability mapping of our example, represented by a BNT. It is clear that the

new edge, x3 / x2, which appears in the resulting network, suggests that this unique association has been

discovered.

However, this case demonstrates the ambiguity encountered when trying to discover conditioned asso-

ciations using BNT. The x3 / x2 association can result from an existing correlation between (x3) and (x2)

in the general population and is not specific to the conditioned case, in which c = true. When this graph is

the only source of information, there is no way to distinguish between background associations (in the

general case) and conditioned associations (in the conditioned case).

This matter could be resolved by exploring the differences between the BNT without the condition

variable and the BNT containing the condition variable. Yet in many cases, the proportion of the samples

with a positive value of the condition variable may be large enough for the conditioned associations to

appear in the BNT without the condition variable. In other cases, when the proportion of the samples with a

positive condition value is small enough, the conditioned associations will not be discovered in the BNT

with the condition variable. In fact, the former ambiguity was clearly visible in a simulation described later

in this article.

Deforche et al. (2006) overcomes this issue by preexamining the candidate variables for the BNT and

selecting variables that show significant correlation with the condition. This way the chance that back-

ground associations will arise is lowered; conversely, conditioned associations with variables that are not

significantly correlated with the condition may be lost. In the above example, since Western wind (x3) is

not correlated with the volcanic eruption (c), (x3) will not be used in our BNT; therefore, the x3 / x2

association will be lost.

FIG. 2. Bayesian Network representing the joint

distribution mapping of X1, X2, X3, and the condition

C. The edge x3 / x2 was retrieved using the BNT.
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Another drawback might be caused by the stochastic nature of searching the BNT model and its DAG

structure. Reconstructing the BNT structure from given observational data requires searching through all

possible models and looking for the model that maximizes the log-likelihood of the data. Since this problem

is NP-Hard (Chickering et al., 2004), cases with more than a few variables require heuristic search methods

(Friedman et al., 2000). Since prior causal knowledge is missing in many cases, our model search can result

in structures that satisfy the observed statistical dependencies, but cannot accurately recover the underlying

‘‘real’’ structure or suggest an equivalent model that may hide the conditioned associations.

Consider the case displayed in Figure 3a, where an additional variable is added to our network: ash cloud

(x4). This DAG can be observationally equivalent (Pearl, 2009) DAGs (Fig. 3b) where the statistical de-

pendencies between the variables (herein, d-separation [Pearl, 2009]) are still maintained, i.e., (c) and (x2) are

independent given (x4). In the case displayed in Figure 3b, the causal relationship is obviously wrong.

This example shows the ambiguity faced when trying to draw conclusions concerning the conditioned

association while exploring the graph structure of the BNT. In cases where the network structure is

unknown, a single criterion cannot be applied in order to locate the conditioned associations, since we can

alternate between two different graph structures that represent a single conditioned association.

This ambiguity affects the search procedure applied in order to locate the novel conditioned associations.

To ensure that the conditioned association edges are covered by our search space, the edge directions

should be ignored and the edges of the connected component containing the condition should be added to

our search space. However, our search space will be greatly obscured by background association added to

our result. Applying the methods described above, such as adding an activating variable (Pearl, 1993) to the

condition variables, or removing the edges from the parents of the condition variable, while increasing the

inference capabilities of the network, still does not eliminate the ambiguity regarding other variables.

Dependency networks

Heckerman et al. (2000) suggest a method that deals with some of the problems that arise, when

interpreting a resultant BNT, especially the tight topology constraints, such as DAG, and the dependencies

implied from the d-separation criteria.

This method iteratively regresses, using probabilistic decision trees. Each variable uses the rest of the

model variables, and uses the prediction capabilities of the regressor variables as criteria for adding an edge

between the regressor variables and the predicted variable. This method retains the ‘‘Markov Blanket’’

property of the BNT—given the parents’ values for a network variable; it renders this variable independent

of all other variables.

Dependency networks provide another advantage over other modeling methods: since the computation is

done locally over the variable’s immediate neighborhood, the computational effort is polynomial over the

number of variables and, as such, more efficient.

FIG. 3. Alternate Bayesian Net-

work representation of our data. These

networks maintain the d-separation

criteria between the variables, though

now the novel conditioned association

(x3 / x2) should be searched within

the whole connected component

containing C.
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Meinshausen et al. (2006) suggest a method for reconstructing the variables’ graphical neighborhood

using an estimation of Tibshirani’s (1996) lasso method, applying penalty over the regression coefficients

norm, and applying a zero value to coefficients with negligible prediction values. While regressing a

variable using all the other variables as predictors. Non-zero coefficients will add an edge between the

predictor and the predicted variables, that is, enabling a robust and computational efficient method for

reconstructing a dependency network, especially in high dimensional cases.

Friedman et al. (2008) later enhance this model, suggesting an efficient exact solution to the lasso peer

regression problem, using the Banerjee et al. (2008) blockwise coordinate descent approach. This method,

herein graphical lasso, is demonstrated on cell signaling data from 11 different proteins.

Dependency networks efficiently solve the above problems, providing a straightforward interpretation

and usage of a robust numerical mechanism. Yet the ambiguity between the background and conditioned

associations still needs to be solved, since the condition variable is still part of the resulting network.

Current state of the art and the proposed method

The above sections display the inherent limitations of locating conditioned associations using BNT

modeling, mainly the DAG structure that constrains the network structure and observational equivalency that

may produce different graphical models for similar variable dependencies. Both limitations can cause the

conditioned associations to appear far, or not on the path of the condition variable in the result graph, and so,

largely increase the number of associations that need to be tested as candidates for conditioned associations.

Dependency networks and their recent adaptations solve this problem by addressing the local depen-

dency neighborhood of the variable. Therefore, at least one of the conditioned association vertices should

be a neighbor of the condition variable.

Yet, both Bayesian and dependency networks may identify associations that are independent of the

condition (background associations). Since the background associations have the same topological features

as conditioned associations, it is hard to discriminate between conditioned and non-conditioned associa-

tions, which results in a major increase in the search space.

We introduce a modification of the dependency network method, which obtains a graph containing only

conditioned related associations.

We suggest a tool, based on an efficient and numerically robust implementation of ridge regression, which

maps the associations of variables under the condition. These properties render it invariant to the proportion of

the conditioned samples in the population. The resulting graph identifies the associations between variables

that are correlated specifically under the condition variables, and so solving the ambiguity between associ-

ations in the general population (background associations) and conditioned associations.

2. IRR METHOD

We suggest a method that graphically maps conditioned associations between variables. Each association

can be illustrated as a directed edge between the variables. The edges can be weighted according to the

assumed prediction strength between the variables under the condition. The result will be a network

structure (built as a directed graph) that will map the variable associations under the condition.

Exploring the network structure is done by regressing the condition variable using the remaining vari-

ables, observing the weight change of the regressor variables when omitting one, and then again regressing

the condition variable by the remaining variables.

We will show that the weight change in the remaining variables is relative to their predictive value over

the omitted variable under the condition.

Prediction capabilities of one variable by another, under the condition, can be used as a cue for con-

ditioned association, which can later be tested separately by a simple hypothesis testing tool.

Defining the problem

Let S = fx1‚ x2‚ . . . xng be a set of random binary variables (features), random binary variable c (con-

dition), and a data sample set D, where each sample represents a vector for the value of x1‚ x2‚ . . . xn and

their corresponding c value. Next, generate a graph (network) G = {V, E} where each node corresponds to

a variable of fx1‚ x2‚ . . . xng; add an edge xj / xk, if the association {xj, xk} under the condition c is
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significantly better than in the general population. The direction of the edge is dependent upon the pre-

diction direction between xj and xk if xj can predict the value of xk under the condition c, there will be an

edge directed from xj to xk, and vice versa.

Selection or regularized regression method

In a classic regression problem, we want to find a weight set W that satisfies the equation:

argmin
w

E Y -
X

i = 1!n

wixi

 !2

(1)

In order to handle the problem of regressing variables with high covariance (typical of the problems

explored by the Iterative Ridge Regression [IRR]), which cause instability when inverting the sample

matrix, a statistical method called ridge regression, or Tikhonov regularization (Tychonoff and Arsenin,

1977) is utilized. This method adds a penalty over the weight vector norm.

argmin
w

E Y -
X

i = 1!n

wixi

 !2

+ k kWk2 (2)

where the k parameter stands for the ridge parameter.

Another method, called the lasso regularization, suggested by Tibshirani (1996), replaces the ridge

regression’s L2 norm penalty of the weight vector, with L1 norm penalty:

k kWk ‘1

While it also has an efficient solution of the weight vector, it also tends toward a zero value for negligible

coefficients when using a large enough k value.

As was recently suggested, the elastic nets (Zou and Hastie, 2005) use a mix of L2 and L1 regularization

over the weight norm:

k((1 - a)kWk2 + akWk‘1)

where the a parameter value determines whether the penalty leans toward L2 (which displays the ridge

regression behavior) or L1 (lasso).

In their most recent article, Friedman et al. (2010) display a distinction between the above three reg-

ularization methods—ridge regression, lasso, and elastic nets—in regards to the effect of the weight change

of regressor variables after omitting one of them.

Since the L2 norm penalty amplifies an uneven weight distribution, ridge regression tends to split the

coefficient weight of the omitted variable between the highly correlated variables. Lasso, on the other hand,

tends to pick one correlated variable to receive the weight of the omitted variable. Elastic-nets behavior

depends on the value of the a parameter.

In our case, the inter-relations between the variables are more relevant than the precision of the model’s

prediction. Therefore, the ridge regression will be more suitable for our needs, while there is a need for a

threshold value to filter the negligible interaction,

Iterative interaction discovery

Once the regularization method is chosen, the conditioned interactions are discovered while iterating

over the model variables.

At the first stage, the regression of the condition variable will be done, using the variables in S:

WB = argmin
w

E C -
X
xi2S

wixi

 !2

+ k kWk2 (3)

Later, in each iteration j, the values of variable xj will be omitted from the samples’ data, and the

condition variable will again be predicted using the remaining variables:
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Wj = argmin
w

E C -
X

xi2S=xj

wixi

0@ 1A2

+ k kWk2 (4)

This results in a new set of weights for the remaining features, Wj, which will be compared with the

original set of weights. The weight difference of each feature can be computed: DWj = WB - Wj

As proved in Appendix 7c, DWj is the coefficients vector that gives the best regularized estimation of

WB
j xj.

DWj = argmin
w

E WB
j xj -

X
xi2S=xj

wixi

0@ 1A2

+ k kWB - Wk2 (5)

At this point, the benefits of ridge regression come in hand. The best estimation of WB
j xj is biased

towards the selection of DWj, which evenly distribute the weights between variables that are correlated with

xj under C.

For instance, if x1 and x2 are fully correlated with xj, the result will be [DWj]1 = [DWj]2 = 1
2
, while in L1

norm penalty, the result may be [DWj]1 = 1 and [DWj]1 = 0, or vice versa.

In this case, one can expect all of the variables that highly correlate with xj under c, to receive significant

value in the corresponding DWj index.

Therefore, each element i in DWj represents the prediction level of xj using xi under the condition c. This

element can be used as a cue for the conditioned association level between xi and xj.

If [DWj]i passes a known threshold t, the association xj / xk can be tested using an independent v2 test,

whether it is statistically significant under the condition c. The X2 test results are adjusted for false

discovery rate using the Hochberg-Benjamini correction (Benjamini and Hochberg, 1995).

Passing both criteria, an edge xj / xk will be added to our graph G.

See Appendix (sections 7a and 7b) for pseudo code and demonstration of the method.

Complexity of the IRR algorithm

Since the IRR algorithm uses both ridge regression and v2 test, both have many robust and efficient

implementations, its calculation time is a linear function over the sample size.

Overall, using an N size variable set and an M size sample set, the IRR regresses the sample set N times,

then tests again within the set all of the N variables for significant associations.

In this case, the IRR’s asymptotic complexity is O(N2M).

3. COMPARING THE IRR ALGORITHM WITH BNT

Herein is a performance comparison of the IRR algorithm with the state-of-the art BNT algorithm. Both

algorithms try to locate a priori induced associations between variables that correlate under a condition.

Data set construction

The sample set contains 1000 samples with 20 variables. Each variable can hold a binary value of - 1 or 1.

Each sample is assigned with a binary condition value; the total size of the condition vector is 1000

samples. All sample values were initialized to - 1, afterwards 0.2 of the samples had their values inversed

to simulate background noise.

Out of the 20 variables, four variables were randomly selected to hold the conditioned pattern – their

values will be correlated under the condition and random otherwise.

Out of the condition vector, a predefined ratio (0.8) of the samples was set as a condition, and their values

were set to 1. Out of the conditioned samples, a predefined ratio (0.2) was randomly selected to hold the

pattern. These samples will have a positive (1) value in the conditioned pattern variables.

After the construction of the sample set, sampling noise was induced by inversing the values of a

predefined ratio (noise level) of the sample set.
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Simulation overview

Both the IRR and the BNT algorithms were used to extract the conditioned pattern variables. We used

the BNT Matlab package of Murphy (2001) for BNT construction. The BNT was constructed using the K2

algorithm (Cheng et al., 1997) that outperformed other network construction algorithms (Leray and

Francois, 2004).

As described above, the BNT result DAG was searched for the connected component containing the

condition variable. All the variables in this connected component (ignoring edge directions) were tested as

the result pattern.

The BNT and the IRR result patterns were tested against the induced pattern and scored using the Jaccard

Index. For each noise level, 100 independent simulation executions were performed, and the mean and

standard deviation of the Jaccard score were used as a basis for performance comparison between the IRR

and the BNT (see exact simulation details in Appendix 7d).

Results

See Table 1 and Figure 4.

The comparison results

The simulation results show that the IRR performs well when trying to locate conditioned patterns in data

that have up to 25% noisy (i.e., reversed) values. At these noise levels, the IRR significantly ( p < 0.01)

outperforms known state-of-the-art algorithms such as the K2 BNT algorithm.

These results emphasize the effect of association ambiguity of the BNT, as shown in the following

simulation case:

In this case, a 4 sized pattern that includes variable numbers 1, 16, 17, and 20 was induced to a 20

random variables data set. These variables associate only under the condition; otherwise, they are randomly

correlated.

Table 1. Mean Jaccard Index Scoring Over 100 Iterations

of the IRR and Bayesian Network K2 Algorithms

Along Various Noise Levels

Noise level IRR K2

0 0.9340 0.7220

0.02 0.8980 0.6327

0.04 0.9163 0.6750

0.06 0.9180 0.7153

0.08 0.8828 0.6020

0.1 0.8923 0.6173

0.12 0.9012 0.6504

0.14 0.8593 0.5330

0.16 0.8418 0.5280

0.18 0.8160 0.6558

0.2 0.8001 0.3687

0.22 0.7030 0.3755

0.24 0.6382 0.3135

0.26 0.5423 0.2052

0.28 0.4298 0.2015

0.3 0.3153 0.1360

0.32 0.2223 0.0965

0.34 0.1480 0.0492

0.36 0.1093 0.0827

0.38 0.0470 0.0329

0.4 0.0295 0.0170
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Figure 5 shows that the IRR result is a fully connected graph, which includes the pattern variables. The

BNT graph, which by nature is a DAG, contains the pattern variables but also two other variables (var12

and var15) that were randomly associated with the pattern variables, regardless of the condition.

As described before, we can only assume about the conditional nature of the BNT result by exploring the

connected component of the graph containing the condition, and ignoring the direction of the edges, thus

including variables 12 and 15 in the suggested pattern result.

In this case, the Jaccard index score of the IRR graph will be 1 (fully compatible with the pattern), while

the BNT result will be 0.67.

4. APPLICATION OF THE IRR FOR PREDICTION
OF HUMAN IMMUNODEFICIENCY VIRUS (HIV)

RESISTANCE MUTATION PATTERNS

We used IRR to explore patterns of HIV RNA mutations that emerge in HIV-infected people after the

initiation of antiretroviral drug treatment. These mutations, termed drug-resistant mutations, are prefer-

entially selected because they render the virus resistant to the drugs admitted. In fact, this was the trigger

for the development of IRR in the first place.

FIG. 4. Graphic representation of

the Jaccard index scoring mean and

STD of the IRR and Bayesian

Network K2 algorithms, over 100

iterations. The IRR algorithm sig-

nificantly outperforms the Bayesian

Network K2 algorithm ( p < 0.01).

The STD values show more stable

performance by the IRR as com-

pared with the K2 algorithm.

FIG. 5. Graphical result of pat-

tern locating. The pattern contains

four variables (Var1, Var16, Var17,

and Var20) in a 20 random vari-

ables data set. The IRR has fully

located the induced pattern, while

the BNT has also located two ran-

domly correlated variables (Var12

and Var15), not associated in the

pattern under the condition.
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In most cases, the treatment is targeted to interfere with the activity of specific HIV proteins, such as

viral protease, reverse-transcriptase and integrase. The mutations occur in parts of the viral RNA sequences

that map into the protein active sites upon translation. These are the sites that are affected by the HIV

treatment. Characterization of the associations between resistance mutations and treatment regimens can be

beneficial in the selection and optimization of treatment. It can be used to predict the appearance of

resistance mutations or to assess the functional behavior of the mutant protein and reveal interactions

among the drugs and among different coexisting mutations.

Deforche et al. (2006) have explored the interactions between resistance mutations using BNT modeling.

Their data set contained amino acid samples of the protease site from HIV patients and their treatment history

(focusing specifically on the protease inhibitor [PI] Nelfinavir [NFV]). First, v2 test was applied to identify

mutations that significantly correlated with the treatment. A new data set was then created, where the

presence/absence of a given mutation in each sample was represented by the Boolean value of a variable

assigned to this mutation. An additional variable was assigned to the NFV treatment status of this sample.

BNT modeling was used to explore associations between the variables described above. The resultant

network recovered some of the known interactions between the NFV-induced mutations. It also pointed to

new associations that were later found to be biologically meaningful.

We will briefly describe the application of IRR to the same biological process using our own data.

Data and method

A total of 1745 sample protease sequences were obtained from the depository of the National HIV

Reference Laboratory (NHRL): 1261 samples were of individuals infected with subtype-C HIV, of which

170 were treated with NFV, and 454 samples were of subtype-B, of which 29 patients were treated with

NFV.

Using IRR, we separately analyzed each subtype’s samples, since C and B subtypes display different

resistance mutation patterns (Grossman et al., 2004; Kantor et al., 2005; Rhee et al., 2006).

For each of the two subtypes, the amino acid sequences were compared to the subtype consensus

sequence (that is, the sequence that is the best representative of the wild-type virus). The subtype consensus

sequences were equal in samples from drug-naive HIV carriers and in the general sample population,

reflecting the fact that variants constitute a small minority in the sequence population. After the consensus

comparison, a mutations variable set was established by including every diversion from consensus that

occurred at least twice

For each mutation, a binary variable was created, indicating for each sample whether the mutation

appeared in that sample (positive value, set to + 1) or not ( - 1). Similarly, the condition variable binary

value indicates the NFV treatment status for each sample.

A binary frequency matrix of the mutation variables and the condition variable over the sample popu-

lation was used as input for the IRR algorithm.

The IRR algorithm used a value of 50 as the ridge parameter and p < 0.05 as the v2 test significance

range.

Results

Graphical representations of the HIV mutation data constructed via IRR are displayed in Figure 6a

(subtype B analysis) and 6b (subtype C analysis). Associations that showed exceptionally significant v2

scoring ( p < 0.00000) and IRR scoring of > 0.01 are marked by red edges.

A detailed comparison with previously established results and a discussion of the potential significance

of new, previously unknown associations is in preparation and will be published (Bar-Yaakov et al., 2011).

Briefly, out of the 31 mutations in the IRR-generated networks, 13 have been previously identified as

resistance mutations. The IRR network contains several directed paths that match known resistance mu-

tation pathways. In addition, the IRR network shared 24 mutations and a number of pathways with the BNT

generated through the analysis of Deforche et al. (2006). Importantly, the IRR method revealed novel

associations, such as V15I-D30N, that are biologically plausible and that provide new insights into the

mechanisms of drug-resistance development.

Our results display some inconsistencies with previous publications. These and implications regarding

limitations of the method and possible remedies are discussed in more detail in elsewhere (Bar-Yaakov

et al., 2011).

ITERATIVE RIDGE REGRESSION AND CONDITIONED VARIABLES 513



5. CONCLUSION

This article introduced IRR, a modification of the dependency network method, which produces a

directed graph containing only condition-related associations. We have described a robust and computa-

tionally efficient estimator algorithm used to uncover such a network.

We showed that the IRR algorithm performs better than the current state-of-the-art BNT when the

purpose is to identify conditioned associations.

We also briefly describe, here and in a forthcoming publication, a real-life application of the IRR method

to the analysis of HIV mutation patterns that emerge in HIV-infected patients treated with a particular

antiretroviral drug. We have demonstrated that our method can recover, from a pool of viral sequences,

known associations of such treatment with selected resistance mutations as well as documented associa-

tions between different mutations. Moreover, the IRR method revealed novel associations that are statis-

tically significant and biologically plausible.

6. APPENDIX

For IRR pseudo code and detailed demonstration of the IRR algorithm, please refer to www.cs.tau.il/

*nin.

Analytical proof of the IRR method

Given a random variable set S = fx1‚ x2‚ . . . xng and a condition variable c, denote WB as the basis weight

vector of ridge regressing c using S:

WB = argmin
w

E c -
X
xi2S

wixi

 !2

+ k kWk2

FIG. 6. IRR graphical result of

amino acid mutations associations

found in subtype B (a) and subtype

C (b) HIV protease sequences,

conditioned by Nelfinavir (NFV)

treatment. Red edges suggest ex-

ceptionally significant associations

with high IRR and X2 scoring.

Edge directions are such that the

presence of the edge source will

increase the probability of the edge

target.
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Let Wj be the resulting weight vector, after the ridge regression of c using S excluding xj:

Wj = argmin
w

E c -
X

xi2S=xj

wixi

0@ 1A2

+ k kWk2

In the case where WB
j 6¼ 0, i.e., xj has significant part in estimating c, we receive:

E c -
X
xi2S

WB
j xj

 !2

+ k kWBk2 < E c -
X

xi2S=xj

Wj
ixi

0@ 1A2

+ k kWjk2

Lemma. Denote DWj to be the weight difference between the two results: DWj = WB - Wj. We wish

to prove that DWj is the coefficients vector that gives the best estimation of WB
j xj, while maintaining the

regularization expression small:

DWj = argmin
w

E WB
j xj -

X
xi2S=xj

wixi

0@ 1A2

+ k kWB - Wk2

Proof. Suppose there is an alternative set of weights: eW | 6¼ DWj that offers better regularized esti-

mation of WB
j xj than DWj, hence:

E WB
j xj -

X
xi2S=xj

eW |
{ xi

0@ 1A2

+ k kWB - eW |k2 < E WB
j xj -

X
xi2S=xj

DW
j
i xi

0@ 1A2

+ k kWB -DWjk2

Denote gDW | as their weight difference: gDW� = eW� -DWj. After decomposing eW |:

E WB
j xj -

X
xi2S=xj

(gDW |
{ +DW

j
i )xi

0@ 1A2

+ k kWB - eW |k2 < E WB
j xj -

X
xi2S=xj

DW
j
i xi

0@ 1A2

+ k kWB -DWjk2

Hence:

E WB
j xj -

X
xi2S=xj

DW
j
i xi +

X
xi2S=xj

gDW |
{xi

0@ 1A2

+ k kWB -DWj + gDW |k2

< E WB
j xj -

X
xi2S=xj

DW
j
i xi

0@ 1A2

+ k kWB -DWjk2

Since:

E c -
X
xi2S

WB
i xi

 !2

+ k kWBk2 < E c -
X

xi2S=xj

Wj
ixi

0@ 1A2

+ k kWjk2

After decomposing:

E c -
X

xi2S=xj

WB
i xi + WB

j xj

0@ 1A2

+ k kWBk2 < E c -
X

xi2S=xj

WB
i xi +

X
xi2S=xj

DW
j

i xi

0@ 1A2

+ kkWjk2
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Since we have a better regularized estimation for WB
jxj:

E c -
X

xi2S=xj

WB
i xi +

X
xi2S=xj

DW
j
i xi +

X
xi2S=xj

gDW |
{xi

0@ 1A2

+ k kWB -DWj + gDW |k2

< E c -
X

xi2S=xj

WB
i xi +

X
xi2S=xj

DW
j
i xi

0@ 1A2

+ k kWB -DWjk2

Therefore, it can use gDW | for better minimization of the condition variable estimation without

using xj:

E c -
X

xi2S=xj

W
j
i xi +

X
xi2S=xj

gDW |
{xi

0@ 1A2

+ k kWj + gDW |k2 < E c -
X

xi2S=xj

Wj
ixi

0@ 1A2

+ k kWjk2

And this contradicts with the argmin property of Wj. -

In the above procedure, we have proved that by simple reduction of Wj from WB we receive the best

regularized estimation of the omitted variable by its co-variables.

Exact details of the IRR—BNT simulation

(A) Data simulation

(1) Parameters

(a) Number of features—N

(b) Number of samples—M

(c) Condition ratio out of samples—ratio of samples that are conditioned.

(d) Pattern description

(i) Pattern size—number of features in the pattern.

(ii) Pattern-condition ratio—the ratio of the conditioned samples which contains the pattern.

(e) Background noise level—ratio of random data members which have positive value (before

pattern induction).

(f) Sampling noise level—ratio of random data members, which will have their value inverted.

(2) Data creation

(a) Allocate an N by M data matrix (samples).

(b) Allocate an M size vector (condition vector).

(c) Reset the sample matrix and the condition vector values to - 1.

(d) Randomly select cells out of the sample’s matrix, until selecting total cells ratio of background

noise level. Inverse their value to 1.

(e) Randomly select cells out of the condition vector, until selecting an amount of cells corre-

sponding to the condition ratio multiplied by the samples set size. These are the condition

indices, Inverse their value to 1.

(f) Pattern induction

(i) Randomly select total of pattern size indices out of the features indices. These are the pattern

indices.

(ii) Randomly select samples, until reaching total of (pattern-condition ratio * size of condition

indices), which their corresponding indices in the condition vector are positive. These are the

conditioned samples associated with the condition vector.

(iii) Change the values of the conditioned samples in the pattern indices to 1.

(g) Sampling noise induction

(i) Randomly select values until reaching a ratio of sampling noise level out of the samples

values, and inverse their values.
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(B) Single simulation execution

(1) IRR execution and scoring

(a) Use the sample matrix and the condition vector as an input to the IRR algorithm.

(b) IRR result is the estimated conditioned pattern; use Jaccard Index to evaluate the similarity

between the original induced pattern and the estimated IRR result pattern.

(2) BNT execution and scoring

(a) We used the BNT package (Murphy, 2001) for executing a Bayesian network analysis over the

simulated data.

(b) We compared the IRR with the K2 Bayesian network algorithms (Cheng et al., 1997), showed to

outperform or match other BNET algorithms (Leray and Francois, 2004)

(c) Input for the BN was created by concatenating the sample matrix and the condition vector—the

condition vector becomes another feature in the sample features.

(d) We used the DAG result of the Bayesian Network Power Constructor (BNPC) algorithm (Cooper

and Herskovits, 1992), for topological sorting used to deduct the variable order, needed as an

input for the K2 algorithm.

(e) The scoring was done by searching the connected component of the DAG result that contains the

condition feature.

(f) We assemble a variable set containing the variables in the connected component.

(g) The set is regarded as the result estimated pattern of the algorithm.

(h) We use Jaccard Index to evaluate the similarity between the original induced pattern and the

estimated BNT result pattern.

(C) Comparison method and parameters

(1) In each comparison iteration, we simulated an input data matrix with parameters values as follows

(a) Number of features—N = 20

(b) Number of samples—M = 1000

(c) Condition ratio out of samples = 0.8

(d) Single pattern induced

(i) Pattern size = 4

(ii) Pattern-condition ratio = 0.2.

(e) Background noise level = 0.2

(f) Sampling noise level = variable across the simulation

(2) We used the simulated data as an input to the IRR, BNPC, and K2 algorithms.

(3) For each set of parameters, we used 100 executions to get an average score on each sampling noise

level.
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