The zero exemplar distance problem*

Minghui Jiang
Department of Computer Science, Utah State University, Logan, UT 84322, USA
mjiang@cc.usu.edu

November 5, 2010

Abstract

Given two genomes with duplicate genes, Zero Exemplar Distance is the problem of deciding whether the two genomes can be reduced to the same genome without duplicate genes by deleting all but one copy of each gene in each genome. Blin, Fertin, Sikora, and Vialette recently proved that Zero Exemplar Distance for monochromosomal genomes is NP-hard even if each gene appears at most two times in each genome, thereby settling an important open question on genome rearrangement in the exemplar model. In this paper, we give a very simple alternative proof of this result. We also study the problem Zero Exemplar Distance for multichromosomal genomes without gene order, and prove the analogous result that it is also NP-hard even if each gene appears at most two times in each genome. For the positive direction, we show that both variants of Zero Exemplar Distance admit polynomial-time algorithms if each gene appears exactly once in one genome and at least once in the other genome. In addition, we present a polynomial-time algorithm for the related problem Exemplar Longest Common SUbSEQUENCE in the special case that each mandatory symbol appears exactly once in one input sequence and at least once in the other input sequence. This answers an open question of Bonizzoni et al. We also show that Zero Exemplar Distance for multichromosomal genomes without gene order is fixed-parameter tractable if the parameter is the maximum number of chromosomes in each genome.

1 Introduction

Given two genomes with duplicate genes, Genome Rearrangement with Gene Families [12] is the problem of deleting all but one copy of each gene in each genome, so as to minimize some rearrangement distance between the two reduced genomes. The minimum rearrangement distance thus attained is called the exemplar distance between the two genomes. For example, each of the following two monochromosomal genomes

$$
\begin{array}{ll}
G_{1}: & -4+1+2+3-5+1+2+3-6 \\
G_{2}: & -1-4+1+2-5+3-2-6+3
\end{array}
$$

[^0]has at most two copies of each gene, and each of the following two reduced genomes
\[

$$
\begin{array}{ll}
G_{1}^{\prime}: & -4+1+2-5+3-6 \\
G_{2}^{\prime}: & -4+1+2-5+3-6
\end{array}
$$
\]

has exactly one copy of each gene. Recall that in the study of genome rearrangement, a gene is usually represented by a signed integer: the absolute value of the integer (the unsigned integer) denotes the gene family to which the gene belongs; the sign of the integer denotes the orientation of the gene in its chromosome. Then a chromosome is a sequence of signed integers, and a genome is a collection of chromosomes.

Genome Rearrangement with Gene Families is not a single problem but a whole class of related problems, because the choice of rearrangement distance is not unique. This choice becomes irrelevant, however, when we ask the fundamental question: Is the distance zero? In the example above, the two reduced genomes G_{1}^{\prime} and G_{2}^{\prime} are identical, thus the exemplar distance between the two original genomes G_{1} and G_{2} is zero for any reasonable choice of rearrangement distance.

In this paper, we study the most basic version of the problem Genome Rearrangement with Gene Families: Given two sequences of signed integers, Zero Exemplar Distance (for monochromosomal genomes) is the problem of deciding whether the two sequences have a common subsequence including each unsigned integer exactly once in either positive or negative form.

Due to its generic nature, the problem Zero Exemplar Distance has been extensively studied by several groups of researchers [5, 4, 2] focusing on different rearrangement distances, and, not surprisingly, has acquired several different names. Except for trivial distinctions, Zero Exemplar Distance is essentially the same problem as Zero Exemplar Conserved Interval Distance [5], Exemplar Longest Common Subsequence (deciding whether a feasible solution exists) [4], and Zero Exemplar Breakpoint Distance [2].

It is easy to check that if only one of the two genomes has duplicate genes, then Zero Exemplar Distance can be solved in linear time: we simply need to decide whether the genome without duplicates is a subsequence of the genome with duplicates. In sharp contrast, if both genomes contain duplicate genes, then even if each gene appears at most three times in each genome, the problem Zero Exemplar Distance is already NP-hard, as shown independently in three papers [5, 4, 2]. The quest for the exact boundary between polynomial solvability and NP-hardness led to the following open question first raised by Chen et al. in 2006:

Question 1 (Chen, Fowler, Fu, and Zhu, 2006 [5). Is the problem Zero Exemplar Distance for monochromosomal genomes still NP-hard if each gene appears at most two times in each genome?

This question was finally settled in the affirmative by Blin et al. in 2009:
Theorem 1 (Blin, Fertin, Sikora, and Vialette, 2009 [3]). Zero Exemplar Distance for monochromosomal genomes is NP-hard even if each gene appears at most two times in each genome.

In Section 2, we give a very simple alternative proof of this theorem.
Both the previous proof of Theorem [1 3) and our alternative proof depend crucially on the order of the genes in the chromosomes. One may naturally wonder whether the complexity of Zero Exemplar Distance would change if gene order is not known. Note that genome rearrangement distances such as the syntenic distance [8] can be defined in the absence of gene order.

Now model each chromosome as a set of unsigned integers instead of a sequence of signed integers. Then Zero Exemplar Distance for multichromosomal genomes without gene order is the following problem: Given two collections G_{1} and G_{2} of subsets of the same ground set S
of unsigned integers, decide whether both G_{1} and G_{2} can be reduced, by deleting elements from subsets and deleting subsets from collections, to the same collection G^{\prime} of subsets of S such that each unsigned integer in S is contained in exactly one subset in G^{\prime}, i.e., G^{\prime} is a partition of S. For example,

$$
\begin{array}{rllll}
S: & \{1,2,3,4,5\} & & \\
G_{1}: & \{1,2,3\} & \{2,3,4\} & \{4,5\} & \\
G_{2}: & \{1,2\} & \{2,3,4\} & \{3,4,5\} & \{1,5\} \\
G^{\prime}: & \{1,2\} & \{3\} & \{4,5\} &
\end{array}
$$

In Section 3, we prove the following theorem analogous to Theorem [1;
Theorem 2. Zero Exemplar Distance for multichromosomal genomes without gene order is $N P$-hard even if each gene appears at most two times in each genome.

As decision problems, both variants of Zero Exemplar Distance, for monochromosomal genomes and for multichromosomal genomes without gene order, are in NP. Thus, following the NP-hardness results in Theorem 1 and Theorem [2, these two decision problems are both NPcomplete. Moreover, the NP-hardness results in Theorem 1 and Theorem 2 imply that unless $\mathrm{NP}=\mathrm{P}$, the corresponding minimization problems of computing the exemplar distance between two genomes do not admit any approximation. We refer to [5, 6, 4, 2, , 1 for related results.

The problem Zero Exemplar Distance for monochromosomal genomes, as mentioned earlier, has been studied under several different names. Given two sequences A and B over an alphabet $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, where Σ_{1} is a set of mandatory symbols and Σ_{2} is a set of optional symbols, ExEmplar Longest Common Subsequence [4] is the problem of finding a longest common subsequence of A and B that contains all mandatory symbols in Σ_{1}. For example, if $\Sigma_{1}=\{1,2,3\}$ and $\Sigma_{2}=\{4,5\}$, then $C=124355$ is an exemplar longest common subsequence of the two sequences $A=12423545$ and $B=1142443555$.

Due to the strict requirement on mandatory symbols, Exemplar Longest Common SubSEQUENCE does not always have a feasible solution. It is not difficult to see that simply deciding whether a feasible solution to Exemplar Longest Common Subsequence exists for two sequences A and B is the same as the problem Zero Exemplar Distance for two monochromosomal genomes A^{\prime} and B^{\prime} obtained from A and B by deleting all optional symbols. Recall that the problem Zero Exemplar Distance for monochromosomal genomes becomes trivial when only one of the two genomes has duplicate genes. For the equivalent problem of deciding whether a feasible solution to Exemplar Longest Common Subsequence exists, Bonizzoni et al. [4] showed another tractable special case: If each mandatory symbol appears a total of at most three times in A and B, then there is a polynomial-time algorithm, based on 2SAT, that decides whether A and B have a common subsequence containing all mandatory symbols. This algorithm does not solve the maximization problem, however, and the following question was left open:

Question 2 (Bonizzoni et al. [4). Is there a polynomial-time algorithm for Exemplar Longest Common Subsequence in the special case that each mandatory symbol appears a total of at most three times in the two input sequences?

Without loss of generality, we assume that each input sequence contains each symbol in the alphabet at least once. If each mandatory symbol appears a total of at most three times in the two input sequences, then it must appear exactly once in one sequence, and at least once in the
other sequence, as in the example shown earlier. In Section 4, we prove the following theorem that complements Theorem 1 and answers the open question of Bonizzoni et al. in the affirmative:

Theorem 3. Zero Exemplar Distance for monochromosomal genomes admits a polynomialtime algorithm in the special case that each gene appears exactly once in one genome and at least once in the other genome. Exemplar Longest Common Subsequence admits a polynomialtime algorithm in the special case that each mandatory symbol appears exactly once in one input sequence and at least once in the other input sequence.

Finally, in Section 5, we prove the following theorem that complements Theorem 2,
Theorem 4. Zero Exemplar Distance for multichromosomal genomes without gene order admits a polynomial-time algorithm in the special case that each gene appears exactly once in one genome and at least once in the other genome, and is fixed-parameter tractable if the parameter is the maximum number of chromosomes in each genome.

2 Alternative Proof of Theorem 1

We prove that Zero Exemplar Distance for monochromosomal genomes is NP-hard by a reduction from the well-known NP-complete problem 3SAT [9]. Let (V, E) be a 3SAT instance, where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of n boolean variables, $E=\left\{e_{1}, \ldots, e_{m}\right\}$ is a conjunctive boolean formula of m clauses, and each clause in E is a disjunction of exactly three literals of the variables in V. We will construct two sequences (genomes) G_{1} and G_{2} over $2 n+6 m+1$ distinct unsigned integers (genes):

- Two variable genes x_{i}, y_{i} for each variable $v_{i}, 1 \leq i \leq n$;
- Three clause genes a_{j}, b_{j}, c_{j} for each clause $e_{j}, 1 \leq j \leq m$;
- Three literal genes r_{j}, s_{j}, t_{j} for the three literals of each clause $e_{j}, 1 \leq j \leq m$;
- One separator gene z.

In our construction, all genes appear in the positive orientation in the two genomes, so we will omit the signs in our description. The two genomes G_{1} and G_{2} are represented schematically as follows:

$$
\begin{array}{ll}
G_{1}: & \left\langle v_{1}\right\rangle \ldots\left\langle v_{n}\right\rangle z\left\langle e_{1}\right\rangle \ldots\left\langle e_{m}\right\rangle \\
G_{2}: & \left\langle v_{1}\right\rangle \ldots\left\langle v_{n}\right\rangle z\left\langle e_{1}\right\rangle \ldots\left\langle e_{m}\right\rangle
\end{array}
$$

For each variable v_{i}, the variable gadget $\left\langle v_{i}\right\rangle$ consists of one copy of x_{i} and two copies of y_{i} in G_{1}, two copies of x_{i} and one copy of y_{i} in G_{2}, and, for each literal of the variable in the clauses, one copy of the corresponding literal gene (r_{j}, s_{j}, or t_{j} for some clause e_{j}) in each genome. Let $p_{i, 1}, \ldots, p_{i, k_{i}}$ be the literal genes for the positive literals of v_{i}, and let $q_{i, 1}, \ldots, q_{i, l_{i}}$ be the literal genes for the negative literals of v_{i}. The genes $x_{i}, y_{i}, p_{i, 1}, \ldots, p_{i, k_{i}}, q_{i, 1}, \ldots, q_{i, l_{i}}$ in the variable gadget $\left\langle v_{i}\right\rangle$ are arranged in the following pattern in the two genomes:

$$
\begin{array}{ll}
G_{1}\left\langle v_{i}\right\rangle: & y_{i} p_{i, 1} \ldots p_{i, k_{i}} x_{i} q_{i, 1} \ldots q_{i, l_{i}} y_{i} \\
G_{2}\left\langle v_{i}\right\rangle: & p_{i, 1} \ldots p_{i, k_{i}} x_{i} y_{i} x_{i} q_{i, 1} \ldots q_{i, l_{i}}
\end{array}
$$

For each clause e_{j}, the clause gadget $\left\langle e_{j}\right\rangle$ consists of two copies of each clause gene a_{j}, b_{j}, c_{j} and one copy of each literal gene r_{j}, s_{j}, t_{j}. These genes in $\left\langle e_{j}\right\rangle$ are arranged in the following pattern in the two genomes:

$$
\begin{array}{ll}
G_{1}\left\langle e_{j}\right\rangle: & r_{j} a_{j} b_{j} c_{j} s_{j} a_{j} b_{j} c_{j} t_{j} \\
G_{2}\left\langle e_{j}\right\rangle: & a_{j} r_{j} b_{j} a_{j} s_{j} c_{j} b_{j} t_{j} c_{j}
\end{array}
$$

This completes the construction. It is easy to check that each gene appears at most two times in each genome, and that each genome includes exactly $3 n+12 m+1$ genes including duplicates. We give an example:

Example 1. For a 3SAT instance of 4 variables and 2 clauses $e_{1}=\left\{r_{1}=v_{1}, s_{1}=\neg v_{2}, t_{1}=\neg v_{3}\right\}$ and $e_{2}=\left\{r_{2}=\neg v_{1}, s_{2}=v_{3}, t_{2}=v_{4}\right\}$, the reduction constructs the following two genomes:

$$
\begin{aligned}
& G_{1}: \quad y_{1} r_{1} x_{1} r_{2} y_{1} \quad y_{2} x_{2} s_{1} y_{2} \quad y_{3} s_{2} x_{3} t_{1} y_{3} \quad y_{4} t_{2} x_{4} y_{4} \\
& z \quad r_{1} a_{1} b_{1} c_{1} s_{1} a_{1} b_{1} c_{1} t_{1} \quad r_{2} a_{2} b_{2} c_{2} s_{2} a_{2} b_{2} c_{2} t_{2} \\
& G_{2}: \quad r_{1} x_{1} y_{1} x_{1} r_{2} \quad x_{2} y_{2} x_{2} s_{1} \quad s_{2} x_{3} y_{3} x_{3} t_{1} \quad t_{2} x_{4} y_{4} x_{4} \\
& z \quad a_{1} r_{1} b_{1} a_{1} s_{1} c_{1} b_{1} t_{1} c_{1} \quad a_{2} r_{2} b_{2} a_{2} s_{2} c_{2} b_{2} t_{2} c_{2}
\end{aligned}
$$

The assignment $v_{1}=$ true, $v_{2}=$ false, $v_{3}=$ false, $v_{4}=$ true satisfies the 3SAT instance and corresponds to the following common reduced genome:

$$
G^{\prime}: \begin{array}{lllllll}
& r_{1} x_{1} y_{1} & y_{2} x_{2} s_{1} & y_{3} x_{3} t_{1} & t_{2} x_{4} y_{4} & z & a_{1} b_{1} c_{1}
\end{array} r_{2} a_{2} s_{2} b_{2} c_{2}
$$

The reduction clearly runs in polynomial time. It remains to prove the following lemma:
Lemma 1. The 3SAT instance (V, E) is satisfiable if and only if the two genomes G_{1} and G_{2} have a common subsequence G^{\prime} including exactly one copy of each gene.

We first prove the direct implication. Suppose that the 3 SAT instance (V, E) is satisfiable. We will compose a common subsequence G^{\prime} of the two genomes G_{1} and G_{2} from a common subsequence of each variable gadget $\left\langle v_{i}\right\rangle$, the separator gene z in the middle, and a common subsequence of each clause gadget $\left\langle e_{j}\right\rangle$. Consider a truth assignment that satisfies the 3SAT instance. For each variable v_{i}, take the subsequence $p_{i, 1} \ldots p_{i, k_{i}} x_{i} y_{i}$ if v_{i} is set to true, and take the subsequence $y_{i} x_{i} q_{i, 1} \ldots q_{i, l_{i}}$ if v_{i} is set to false. For each clause e_{j}, at least one of its three literals is true; correspondingly, at least one of the three literal genes r_{j}, s_{j}, t_{j} has been taken from some variable gadget $\left\langle v_{i}\right\rangle$. Now take a subsequence from the clause gadget $\left\langle e_{j}\right\rangle$ following one of three cases:

1. If r_{j} has been taken, then take the subsequence $a_{j} b_{j} \underline{s_{j}} c_{j} \underline{t_{j}}$.
2. If s_{j} has been taken, then take either the subsequence $r_{j} b_{j} a_{j} c_{j} \underline{t_{j}}$ or the subsequence $r_{j} a_{j} c_{j} b_{j} \underline{t_{j}}$.
3. If t_{j} has been taken, then take the subsequence $\underline{r_{j}} a_{j} \underline{s}_{j} b_{j} c_{j}$.

Here an underlined literal gene is omitted from the subsequence taken from the clause gadget $\left\langle e_{j}\right\rangle$ if its other copy has already been taken from some variable gadget $\left\langle v_{i}\right\rangle$. The common subsequence G^{\prime} thus composed clearly includes exactly one copy of each gene.

We next prove the reverse implication. Suppose that the two genomes G_{1} and G_{2} have a common subsequence G^{\prime} including exactly one copy of each gene. We will find a satisfying assignment for the 3SAT instance (V, E) as follows. Due to the strategic location of the separator gene z in the two genomes, each literal gene must appear in the common subsequence either before z in both
genomes, in some variable gadget $\left\langle v_{i}\right\rangle$, or after z in both genomes, in some clause gadget $\left\langle e_{j}\right\rangle$. The crucial property of the clause gadget $\left\langle e_{j}\right\rangle$ is that it cannot have a common subsequence including exactly one copy of each clause gene a_{j}, b_{j}, c_{j} unless at least one of the three literal genes r_{j}, s_{j}, t_{j} is omitted. A literal gene omitted from the common subsequence of the clause gadget $\left\langle e_{j}\right\rangle$ has to appear in the common subsequence of some variable gadget $\left\langle v_{i}\right\rangle$, where the two variable genes x_{i} and y_{i} must appear in the order $x_{i} y_{i}$ if the literal is positive and appear in the order $y_{i} x_{i}$ if the literal is negative. Now set each variable v_{i} to true if the two variable genes x_{i} and y_{i} appear in the common subsequence G^{\prime} in the order $x_{i} y_{i}$, and set it to false otherwise. Then each clause gets at least one true literal. This completes the proof of Theorem 1 .

3 Proof of Theorem 2

We prove that Zero Exemplar Distance for multichromosomal genomes without gene order is NP-hard by a reduction again from 3SAT. Let (V, E) be a 3 SAT instance, where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of n boolean variables, $E=\left\{e_{1}, \ldots, e_{m}\right\}$ is a conjunctive boolean formula of m clauses, and each clause in E is a disjunction of exactly three literals of the variables in V. Without loss of generality, assume that no clause in E contains two literals of the same variable in V. We will construct two genomes G_{1} and G_{2} over $n+9 m$ distinct genes:

- One variable gene x_{i} for each variable $v_{i}, 1 \leq i \leq n$;
- Six clause genes $a_{j}, b_{j}, c_{j}, a_{j}^{\prime}, b_{j}^{\prime}, c_{j}^{\prime}$ for each clause $e_{j}, 1 \leq j \leq m$;
- Three literal genes r_{j}, s_{j}, t_{j} for the three literals of each clause $e_{j}, 1 \leq j \leq m$.

For each variable v_{i}, let $p_{i, 1}, \ldots, p_{i, k_{i}}$ be the literal genes for the positive literals of v_{i}, and let $q_{i, 1}, \ldots, q_{i, l_{i}}$ be the literal genes for the negative literals of v_{i}. G_{1} includes one subset and G_{2} includes two subsets of genes including x_{i} :

$$
\begin{aligned}
G_{1}\left\langle v_{i}\right\rangle: & \left\{p_{i, 1}, \ldots, p_{i, k_{i}}, x_{i}, q_{i, 1}, \ldots, q_{i, l_{i}}\right\} \\
G_{2}\left\langle v_{i}\right\rangle: & \left\{p_{i, 1}, \ldots, p_{i, k_{i}}, x_{i}\right\} \quad\left\{x_{i}, q_{i, 1}, \ldots, q_{i, l_{i}}\right\}
\end{aligned}
$$

For each clause e_{j}, G_{1} includes six subsets and G_{2} includes seven subsets of clause/literal genes:

$$
\begin{aligned}
G_{1}\left\langle e_{j}\right\rangle: & \left\{a_{j}, b_{j}\right\}\left\{b_{j}, c_{j}\right\}\left\{c_{j}, a_{j}\right\} \quad\left\{a_{j}^{\prime}, r_{j}\right\}\left\{b_{j}^{\prime}, s_{j}\right\}\left\{c_{j}^{\prime}, t_{j}\right\} \\
G_{2}\left\langle e_{j}\right\rangle: & \left\{a_{j}, b_{j}, c_{j}\right\} \quad\left\{a_{j}, a_{j}^{\prime}, r_{j}\right\}\left\{b_{j}, b_{j}^{\prime}, s_{j}\right\}\left\{c_{j}, c_{j}^{\prime}, t_{j}\right\} \quad\left\{a_{j}^{\prime}\right\}\left\{b_{j}^{\prime}\right\}\left\{c_{j}^{\prime}\right\}
\end{aligned}
$$

This completes the construction. It is easy to check that each gene appears at most two times in each genome, G_{1} includes exactly $n+15 m$ genes including duplicates, and G_{2} includes exactly $2 n+18 m$ genes including duplicates. We give an example:

Example 2. For a 3SAT instance of 4 variables and 2 clauses $e_{1}=\left\{r_{1}=v_{1}, s_{1}=\neg v_{2}, t_{1}=\neg v_{3}\right\}$ and $e_{2}=\left\{r_{2}=\neg v_{1}, s_{2}=v_{3}, t_{2}=v_{4}\right\}$, the reduction constructs the following two genomes:

$$
\begin{array}{rlrl}
G_{1}: & \left\{r_{1}, x_{1}, r_{2}\right\} \quad\left\{x_{2}, s_{1}\right\} \quad\left\{s_{2}, x_{3}, t_{1}\right\} \quad\left\{t_{2}, x_{4}\right\} \\
& \left\{a_{1}, b_{1}\right\}\left\{b_{1}, c_{1}\right\}\left\{c_{1}, a_{1}\right\} & \left\{a_{1}^{\prime}, r_{1}\right\}\left\{b_{1}^{\prime}, s_{1}\right\}\left\{c_{1}^{\prime}, t_{1}\right\} \\
& \left\{a_{2}, b_{2}\right\}\left\{b_{2}, c_{2}\right\}\left\{c_{2}, a_{2}\right\} & \left\{a_{2}^{\prime}, r_{2}\right\}\left\{b_{2}^{\prime}, s_{2}\right\}\left\{c_{2}^{\prime}, t_{2}\right\} & \\
G_{2}: & \left\{r_{1}, x_{1}\right\}\left\{x_{1}, r_{2}\right\} \quad\left\{x_{2}\right\}\left\{x_{2}, s_{1}\right\} \quad\left\{s_{2}, x_{3}\right\}\left\{x_{3}, t_{1}\right\} & \left\{t_{2}, x_{4}\right\}\left\{x_{4}\right\} \\
& \left\{a_{1}, b_{1}, c_{1}\right\} \quad\left\{a_{1}, a_{1}^{\prime}, r_{1}\right\}\left\{b_{1}, b_{1}^{\prime}, s_{1}\right\}\left\{c_{1}, c_{1}^{\prime}, t_{1}\right\} \quad\left\{a_{1}^{\prime}\right\}\left\{b_{1}^{\prime}\right\}\left\{c_{1}^{\prime}\right\} \\
& \left\{a_{2}, b_{2}, c_{2}\right\} & \left\{a_{2}, a_{2}^{\prime}, r_{2}\right\}\left\{b_{2}, b_{2}^{\prime}, s_{2}\right\}\left\{c_{2}, c_{2}^{\prime}, t_{2}\right\} \quad\left\{a_{2}^{\prime}\right\}\left\{b_{2}^{\prime}\right\}\left\{c_{2}^{\prime}\right\}
\end{array}
$$

The assignment $v_{1}=$ true, $v_{2}=$ false, $v_{3}=$ false, $v_{4}=$ true satisfies the 3SAT instance and corresponds to the following common reduced genome:

$$
\left.\begin{array}{rl}
G^{\prime}: & \left\{r_{1}, x_{1}\right\} \quad\left\{x_{2}, s_{1}\right\} \quad\left\{x_{3}, t_{1}\right\} \quad\left\{t_{2}, x_{4}\right\} \\
& \left\{a_{1}\right\}\left\{b_{1}, c_{1}\right\} \\
& \left\{a_{1}^{\prime}\right\}\left\{b_{1}^{\prime}\right\}\left\{c_{1}^{\prime}\right\} \\
& \left\{c_{2}\right\}\left\{a_{2}, b_{2}\right\}
\end{array} \quad\left\{a_{2}^{\prime}, r_{2}\right\}\left\{b_{2}^{\prime}, s_{2}\right\}\left\{c_{2}^{\prime}\right\}\right\}
$$

The reduction clearly runs in polynomial time. It remains to prove the following lemma:
Lemma 2. The 3SAT instance (V, E) is satisfiable if and only if the two genomes G_{1} and G_{2} have a common reduced genome G^{\prime} including exactly one copy of each gene.

We first prove the direct implication. Suppose that the 3SAT instance (V, E) is satisfiable. We will compose a common reduced genome G^{\prime} of the two genomes G_{1} and G_{2} as follows. Consider a truth assignment that satisfies the 3SAT instance. For each variable v_{i}, take the subset $\left\{p_{i, 1}, \ldots, p_{i, k_{i}}, x_{i}\right\}$ if v_{i} is set to true, and take the subset $\left\{x_{i}, q_{i, 1}, \ldots, q_{i, l_{i}}\right\}$ if v_{i} is set to false. For each clause e_{j}, at least one of its three literals is true; correspondingly, at least one of the three literal genes r_{j}, s_{j}, t_{j} has been taken from some variable gadget $\left\langle v_{i}\right\rangle$. Now take some subsets of clause/literal genes following one of three cases:

1. If r_{j} has been taken, then take the subsets $\left\{a_{j}\right\},\left\{b_{j}, c_{j}\right\},\left\{a_{j}^{\prime}\right\},\left\{b_{j}^{\prime}, \underline{s_{j}}\right\},\left\{c_{j}^{\prime}, \underline{t_{j}}\right\}$.
2. If s_{j} has been taken, then take the subsets $\left\{b_{j}\right\},\left\{c_{j}, a_{j}\right\},\left\{a_{j}^{\prime}, \underline{r_{j}}\right\},\left\{b_{j}^{\prime}\right\},\left\{c_{j}^{\prime}, \underline{t_{j}}\right\}$.
3. If t_{j} has been taken, then take the subsets $\left\{c_{j}\right\},\left\{a_{j}, b_{j}\right\},\left\{a_{j}^{\prime}, \underline{r_{j}}\right\},\left\{b_{j}^{\prime}, \underline{s_{j}}\right\},\left\{c_{j}^{\prime}\right\}$.

Here an underlined literal gene is omitted from the subset taken from the clause gadget $\left\langle e_{j}\right\rangle$ if its other copy has already been taken from some variable gadget $\left\langle v_{i}\right\rangle$. The reduced genome G^{\prime} thus composed clearly includes exactly one copy of each gene.

We next prove the reverse implication. Suppose that the two genomes G_{1} and G_{2} have a common reduced genome G^{\prime} including exactly one copy of each gene. We will find a satisfying assignment for the 3SAT instance (V, E) as follows. The crucial property of the clause gadget $\left\langle e_{j}\right\rangle$ is that it cannot have a common reduced genome including exactly one copy of each clause gene $a_{j}, b_{j}, c_{j}, a_{j}^{\prime}, b_{j}^{\prime}, c_{j}^{\prime}$ unless at least one of the three literal genes r_{j}, s_{j}, t_{j} is omitted. A literal gene omitted from the clause gadget $\left\langle e_{j}\right\rangle$ has to appear in a subset in G^{\prime} that contains some variable gene x_{i}. By the construction of the variable gadgets, this subset contains, besides x_{i}, either literal genes for positive literals, or literal genes for negative literals. Now set each variable v_{i} to true if the subset in G^{\prime} that contains x_{i} also contains at least one literal gene for a positive literal, and set it to false otherwise. Then each clause gets at least one true literal. This completes the proof of Theorem 2.

4 Proof of Theorem 3

Let A and B be two sequences of lengths n and m, respectively, over an alphabet $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, where Σ_{1} is a set of mandatory symbols and Σ_{2} is a set of optional symbols. In the special case that each mandatory symbol in Σ_{1} appears exactly once in one sequence and at least once in the other sequence, we have the obvious but important property that any common subsequence of the two sequences can contain each mandatory symbol at most once. This property leads to a
very simple algorithm that decides whether a feasible solution to ExEmplar Longest Common SUBSEQUENCE exists in this special case:

Algorithm 1.

1. Obtain two sequences A^{\prime} and B^{\prime} from A and B by deleting all optional symbols in Σ_{2}.
2. Compute a longest common subsequence C^{*} of A^{\prime} and B^{\prime}.
3. If C^{*} contains all mandatory symbols in Σ_{1}, return yes. Otherwise, return no.

The time complexity of Algorithm 1 is $O(n m)$ by using a standard dynamic programming algorithm for longest common subsequence [10]. The correctness of Algorithm 1 is justified by the following lemma:

Lemma 3. A and B have a common subsequence containing all mandatory symbols in Σ_{1} if and only if the longest common subsequence C^{*} of A^{\prime} and B^{\prime} contains all mandatory symbols in Σ_{1}.

Proof. The reduction from A and B to A^{\prime} and B^{\prime} preserves the mandatory symbols. Thus A and B have a common subsequence containing all mandatory symbols in Σ_{1} if and only if A^{\prime} and B^{\prime} have a common subsequence containing all mandatory symbols in Σ_{1}. It remains to prove the equivalent claim that A^{\prime} and B^{\prime} have a common subsequence containing all mandatory symbols in Σ_{1} if and only if C^{*} contains all mandatory symbols in Σ_{1}.

The "if" direction of the claim is trivial because C^{*} is a common subsequence of A^{\prime} and B^{\prime}. To prove the "only if" direction, recall that in any common subsequence of A^{\prime} and B^{\prime}, each mandatory symbol can appear at most once. Thus the length of any common subsequence of A^{\prime} and B^{\prime} is at most the size of Σ_{1}. Moreover, if the length of some common subsequence of A^{\prime} and B^{\prime} is equal to the size of Σ_{1}, then this common subsequence must contain all mandatory symbols in Σ_{1}, and vice versa. Now suppose that A^{\prime} and B^{\prime} have a common subsequence C^{\prime} containing all mandatory symbols in Σ_{1}. Then the length of C^{\prime} must be equal to the size of Σ_{1}. Since the length of C^{*} is at least the length of C^{\prime}, the length of C^{*} must also be equal to the size of Σ_{1}. Then C^{*} must contain all mandatory symbols in Σ_{1} too. This completes the proof.

Since deciding whether a feasible solution to Exemplar Longest Common Subsequence exists for two sequences A and B is the same as the problem ZERo ExEmplar Distance for two monochromosomal genomes A^{\prime} and B^{\prime} obtained from A and B by deleting all optional symbols, we also have an $O(\mathrm{~nm})$ algorithm for Zero Exemplar Distance for monochromosomal genomes in the special case that each gene appears exactly once in one genome and at least once in the other genome.

We next present an algorithm for the maximization problem ExEmplar Longest Common SUBSEQUENCE in the special case that each mandatory symbol appears exactly once in one input sequence and at least once in the other input sequence:

Algorithm 2.

1. Assign each mandatory symbol in Σ_{1} a weight of $w=\min \{n, m\}+1$, and assign each optional symbol in Σ_{2} a weight of 1 . Compute a common subsequence C^{*} of A and B of the maximum total weight.
2. If C^{*} contains all mandatory symbols in Σ_{1}, return C^{*}. Otherwise, report that no feasible solution exists.

If A and B have no common subsequence containing all mandatory symbols in Σ_{1}, then clearly the maximum-weight common subsequence C^{*} of A and B cannot contain all mandatory symbols in Σ_{1}, and hence the algorithm correctly reports that no feasible solution exists. Otherwise, the correctness of Algorithm 2 is justified by the following lemma:

Lemma 4. If A and B have a common subsequence containing all mandatory symbols in Σ_{1}, then the maximum-weight common subsequence C^{*} of A and B is a longest common subsequence of A and B that contains all mandatory symbols in Σ_{1}.

Proof. Suppose that A and B have a common subsequence C containing all mandatory symbols in Σ_{1}. We first show that the maximum-weight common subsequence C^{*} of A and B contains all mandatory symbols in Σ_{1}. Note that the number of optional symbols in C^{*} is at most the length of C^{*}, which is at most $\min \{n, m\}$. Also recall that any common subsequence of A and B can contain each mandatory symbol at most once. If C^{*} does not contain all mandatory symbols in Σ_{1}, then by our choice of $w=\min \{n, m\}+1$, the total weight of C^{*} would be at most

$$
\left(\left|\Sigma_{1}\right|-1\right) \cdot w+\min \{n, m\} \cdot 1<\left(\left|\Sigma_{1}\right|-1\right) \cdot w+w \cdot 1=\left|\Sigma_{1}\right| \cdot w .
$$

On the other hand, since C contains all mandatory symbols in Σ_{1}, the weight of C is at least $\left|\Sigma_{1}\right| \cdot w$. This contradicts the assumption that C^{*} is a maximum-weight common subsequence of A and B.

Now, since C^{*} contains all mandatory symbols and can contain each mandatory symbol at most once, C^{*} must contain each mandatory symbol exactly once. Then, to have the maximum total weight, C^{*} must be a longest common subsequence of A and B that contains all mandatory symbols in Σ_{1}.

Again, the overall time complexity of Algorithm 2 is clearly $O(n m)$. This completes the proof of Theorem [3.

5 Proof of Theorem 4

We present two algorithms for Zero Exemplar Distance for multichromosomal genomes without gene order. Let k_{1} and k_{2}, respectively, be the numbers of chromosomes in G_{1} and G_{2}. Let $A_{1}, \ldots, A_{k_{1}}$ be the k_{1} chromosomes in G_{1}. Let $B_{1}, \ldots, B_{k_{2}}$ be the k_{2} chromosomes in G_{2}. Let $k=\max \left\{k_{1}, k_{2}\right\}$. Let n be the total number of genes in G_{1} and G_{2}, i.e., $n=\sum_{i=1}^{k_{1}}\left|A_{i}\right|+\sum_{j=1}^{k_{2}}\left|B_{j}\right|$.

We first present a polynomial-time algorithm for Zero Exemplar Distance for multichromosomal genomes without gene order in the special case that each gene appears exactly once in one genome and at least once in the other genome. Our algorithm is based on maximum-weight matching in bipartite graphs:

Algorithm 3.

1. Construct a complete bipartite graph $G=\left(V_{1} \cup V_{2}, V_{1} \times V_{2}\right)$ with vertices $V_{1}=\left\{A_{1}, \ldots, A_{k_{1}}\right\}$ and $V_{2}=\left\{B_{1}, \ldots, B_{k_{2}}\right\}$. Associate with each edge between $A_{i} \in V_{1}$ and $B_{j} \in V_{2}$ a reduced chromosome $C_{i j}=A_{i} \cap B_{j}$ and a weight equal to its size.
2. Compute a maximum-weight matching M in the graph G.
3. If the set of reduced chromosomes corresponding to the edges in M includes all the genes, return yes. Otherwise, return no.
To see the correctness of Algorithm 3, note that each reduced chromosome of a common reduced genome is a common subset of two distinct chromosomes, one from each input genome, and corresponds to an edge of a matching in the complete bipartite graph. In the special case that each gene appears exactly once in one genome and at least once in the other genome, no gene can appear more than once in the reduced chromosomes corresponding to the edges of a matching. Thus the maximum possible weight of a matching is equal to the number of distinct genes, and a common reduced genome that includes all the genes corresponds to a matching of the maximum weight.

We now analyze the time complexity of Algorithm 3. Steps 1 and 3 can be easily implemented in $O\left(n^{2}\right)$ time. Step 2 can be implemented in $O\left(k^{3}\right)$ time using a standard algorithm for weight bipartite matching; see e.g. [13]. Thus the overall time complexity is $O\left(n^{2}+k^{3}\right)$.

We next present a fixed-parameter tractable algorithm for this problem without any assumption on the distribution of duplicate genes. Refer to [7] for basic concepts in parameterized complexity theory. The parameter of our algorithm is $k=\max \left\{k_{1}, k_{2}\right\}$:

Algorithm 4.

1. Add $k-k_{1}$ empty chromosomes $A_{k_{1}+1}, \ldots, A_{k}$ to G_{1}, or add k - k_{2} empty chromosomes $B_{k_{2}+1}, \ldots, B_{k}$ to G_{2}, such that G_{1} and G_{2} have the same number k of chromosomes.
2. For each permutation π of $\langle 1, \ldots, k\rangle$, compute $C_{\pi}=\cup_{i=1}^{k}\left(A_{i} \cap B_{\pi(i)}\right)$.
3. If for some permutation π the set C_{π} includes all the genes, return yes. Otherwise return no.

To see the correctness of Algorithm 4, note again that each chromosome of a common reduced genome is a common subset of two distinct chromosomes, one from each input genome. All other chromosomes of the two input genomes that do not contribute to the common reduced genome are deleted. To handle the matching and the deletion of the chromosomes in a uniform way, we can think of each chromosome deleted from one genome as matched to a chromosome deleted from the other genome or to an empty chromosome. Thus by padding the two genomes to the same number of chromosomes, we only need to consider perfect matchings as permutations. The time complexity of Algorithm 4 is $O\left(k!n^{2}\right)$, with $O\left(n^{2}\right)$ time for each of the k ! permutations. This completes the proof of Theorem 4.

We remark that the problem Zero Exemplar Distance for multichromosomal genomes without gene order is unlikely to have a fixed-parameter tractable algorithm if the parameter is the maximum number of genes in any single chromosome. This is because 3SAT remains NP-hard even if for each variable there are at most five clauses that contain its literals 9 . As a result, the number of genes in each chromosome need not be more than some constant in our reduction from 3SAT.

Acknowledgment The author would like to thank Binhai Zhu for a brief discussion on Question 1 during a visit to University of Texas - Pan American in May 2008, and thank Guillaume Fertin for communicating the recent result [3. The alternative proof of Theorem 1 was obtained independently by the author in February 2010 without knowing the recent progress [3]. The author also thanks Pedro J. Tejada for bringing the open question of Bonizzoni et al. [4], Question 2, to his attention.

References

[1] S. S. Adi, M. D. V. Braga, C. G. Fernandes, C. E. Ferreira, F. V. Martinez, M.-F. Sagot, M. A. Stefanes, C. Tjandraatmadja, and Y. Wakabayashi. Repetition-free longest common subsequence. Discrete Applied Mathematics, 158:1315-1324, 2010.
[2] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. On the approximability of comparing genomes with duplicates. Journal of Graph Algorithms and Applications, 13:19-53, 2009.
[3] G. Blin, G. Fertin, F. Sikora, and S. Vialette. The Exemplar Breakpoint Distance for nontrivial genomes cannot be approximated. In Proceedings of the 3rd Workshop on Algorithms and Computation (WALCOM'09), pages 357-368, 2009.
[4] P. Bonizzoni, G. Della Vedova, R. Dondi, G. Fertin, R. Rizzi, and S. Vialette. Exemplar longest common subsequence. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4:535-543, 2007.
[5] Z. Chen, R. H. Fowler, B. Fu, and B. Zhu. On the inapproximability of the exemplar conserved interval distance problem of genomes. Journal of Combinatorial Optimization, 15:201221, 2008. (A preliminary version appeared in Proceedings of the 12th Annual International Conference on Computing and Combinatorics (COCOON'06), pages 245-254, 2006.)
[6] Z. Chen, B. Fu, and B. Zhu. The approximability of the exemplar breakpoint distance problem. In Proceedings of the 2nd International Conference on Algorithmic Aspects in Information and Management (AAIM'06), pages 291-302, 2006.
[7] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
[8] V. Ferretti, J. H. Nadeau, and D. Sankoff. Original synteny. In Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching (CPM'96), pages 159-167, 1996.
[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
[10] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.
[11] M. Jiang. The zero exemplar distance problem. In Proceedings of the 8th Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG'10), pages 74-82, 2010.
[12] D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15:909-917, 1999.
[13] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

[^0]: *Supported in part by NSF grant DBI-0743670. A preliminary version of this paper (including Theorem 1, Theorem 2, and a weaker version of Theorem 4) appeared in Proceedings of the 8th Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG 2010) 11.

