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ABSTRACT

Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the
sequence space near a target protein, seeking variants with improved properties (e.g., stability,
activity, immunogenicity). In order to improve the hit-rate of beneficial variants in such
mutagenesis libraries, we develop methods to select optimal positions and corresponding sets
of the mutations that will be used, in all combinations, in constructing a library for experi-
mental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), en-
compasses both degenerate oligonucleotides and specified point mutations, and can be directed
accordingly by requirements of experimental cost and library size. It evaluates the quality of
the resulting library by one- and two-body sequence potentials, averaged over the variants. To
ensure that it is not simply recapitulating extant sequences, it balances the quality of a library
with an explicit evaluation of the novelty of its members. We show that, despite dealing with a
combinatorial set of variants, in our approach the resulting library optimization problem is
actually isomorphic to single-variant optimization. By the same token, this means that the two-
body sequence potential results in an NP-hard optimization problem. We present an efficient
dynamic programming algorithm for the one-body case and a practically-efficient integer
programming approach for the general two-body case. We demonstrate the effectiveness of
our approach in designing libraries for three different case study proteins targeted by previous
combinatorial libraries—a green fluorescent protein, a cytochrome P450, and a beta lacta-
mase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for
the massive design problem of selecting 18 mutations to generate 107 variants of a 443-residue
P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore
and evaluate trade-offs between quality and novelty as well as library construction technique,
and identify optimal libraries for experimental evaluation.

Key words: combinatorial mutagenesis, combinatorial optimization, experiment planning, library

diversity, protein engineering.

1. INTRODUCTION

B iotechnology is harnessing proteins for a wide range of significant applications, from

medicine to biofuels (Nelson and Reichert, 2009, la Grange et al., 2010). In order to enable such

applications, it is often necessary to modify extant proteins, developing variants with improved properties
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(e.g., stability, activity, immunogenicity) (Reetz and Carballira, 2007, Fox et al., 2007, Parker et al., 2010) for

the task at hand. However, there is a massive space of potential variants to consider. Some protein engi-

neering techniques—e.g., error-prone PCR) (Cadwell and Joyce, 1992), DNA shuffling (Stemmer, 1994),

and staggered extension (StEP) (Zhao et al., 1998)—rely primarily on experiment to explore the sequence

space, whereas others—e.g., structure-based protein redesign (Bolon and Mayo, 2001, Jiang et al., 2008,

Chen et al., 2009)—employ sophisticated models and algorithms in order to identify a small number of

variants for experimental evaluation.

Computational design of combinatorial libraries (Voigt et al., 2002, Meyer et al., 2003, Pantazes et al.,

2007, Treynor et al., 2007, Ye et al., 2007, Zheng et al., 2009) provides a middle ground between the

primarily experimental and primarily computational approaches to development of improved variants.

Library-design strategies seek to experimentally evaluate a diverse but focused region of sequence space in

order to improve the likelihood of finding a beneficial variant. Such an approach is based on the premise that

prior knowledge can inform generalized predictions of protein properties, but may not be sufficient to specify

individual, optimal variants (resulting in both false positives and false negatives). Libraries are particularly

appropriate when the prior knowledge does not admit detailed, robust modeling of the desired properties, but

when experimental techniques are available to rapidly assay a pool of variants. Example scenarios would be

instances where a three-dimensional structure is not available (Levin et al., 2007) or cases where definitive

decisions regarding specific amino acid substitutions are non-obvious (Reetz and Carballira, 2007).

Nature employs both random mutation and recombination in generating diverse variants, and modern

molecular biology has reconstituted these processes as highly controlled in vitro techniques. Here we develop

library design methods for mutagenesis, wherein individual residue positions and corresponding mutations

are first chosen, and then all possible combinations are constructed and subjected to screening or selection

(Fig. 1). Most library optimization work has focused on recombination (i.e., selecting breakpoints), including

approaches by Arnold and co-workers (Voigt et al., 2002, Otey et al., 2004, Meyer et al., 2006, Otey et al.,

2006), Maranas and co-workers (Moore and Maranas, 2003, Saraf et al., 2004, Saraf et al., 2005), and us (Ye

et al., 2007, Zheng et al., 2007, Zheng et al., 2009, Zheng et al., 2010). Mayo and co-workers (Treynor et al.,

2007) have extended structure-based variant design to structure-based mutagenic library design, and applied

it to the design of a library of green fluorescent proteins. Maranas and co-workers (Pantazes et al., 2007) have

developed methods for optimizing both recombination and mutagenesis libraries, and applied them to the

design of libraries of cytochrome P450s. LibDesign (Marco and Daugherty, 2005) is another useful tool for

combinatorial mutagenesis; however, it requires as input a predesigned library specification (positions and

mutations). As we discuss further below, we develop here a more general method that encompasses different

forms of computational library evaluation and optimization and experimental library construction, and

explicitly optimizes both the quality and the novelty of the variants in the library.

Two techniques are commonly employed to introduce mutations in constructing combinatorial muta-

genesis libraries (Fig. 1). When point mutagenesis is employed (Fig. 1, left), an individual oligonucleotide

specific to a desired mutation is incorporated; there is a separate oligonucleotide for each such mutation.

FIG. 1. Combinatorial mutagene-

sis libraries. (Left) Specific point

mutations at selected positions are

introduced and shuffled to generate a

library of all combinations of muta-

tions. (Right) Degenerate oligonu-

cleotides (represented here in a

regular expression-like notation, ra-

ther than IUPAC codes) are incor-

porated at selected positions, and

shuffled to generate a library. Each

degenerate oligo can code for a mul-

tiset of amino acids; consequently,

some mutations may be represented

more than others in the resulting li-

brary (e.g., in the first position, two

codons for E vs. just one for D).
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Combinatorial shuffling techniques (Stutzman-Engwall et al., 2005, van den Beucken et al., 2001) mix and

match the mutated genes. When degenerate oligonucleotides are employed (Fig. 1, right), multiple amino

acid-level mutations at a position are encoded by a single degenerate 3-mer (Herman and Tawfik, 2007). As

with point mutagenesis, a library is generated by combinatorial shuffling. While the degenerate oligo

approach is experimentally cheaper (a library costs about the same as a single variant), it can result in

redundancy (multiple codons for the same amino acid) and junk (codons for undesired amino acids or stop

codons), and is thus more appropriate when a larger library and lower hit rate are acceptable (e.g., when a

high-throughput screen is available) (Griswold et al., 2006).

Our method, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both these approaches

to experimental library construction. The key question is which mutations to introduce, given that the goal

is isolation of functional variants with desired properties. A library-design strategy should therefore assess

the predicted quality of prospective library members, e.g., by a sequence potential (Pantazes et al., 2007) or

explicit structural evaluation (Treynor et al., 2007). We adopt a general sequence potential based on

statistical analysis of a family of homologs to the target. The potential reveals both important residues

(single-body conservation) and residue interactions (two-body coupling) for maintenance of protein sta-

bility and activity. Importantly, optimizing quality as a sole objective function might well result in libraries

composed of sequences that are highly similar or even identical to extant proteins, an undesirable outcome.

Thus it is necessary to balance quality assessment with novelty or diversity assessment. While this balance

has been explicitly optimized for site-directed recombination (Zheng et al., 2009), previous mutagenic

library-design methods have only addressed this issue indirectly, e.g., by controlling factors such as the

overall library size and the number of positions being mutated. Here we develop a new metric to explicitly

account for the novelty of the variants compared to extant sequences, and we simultaneously optimize

libraries for both novelty and quality.

While we have previously characterized the complexity of recombination library design for both quality

(Ye et al., 2007) and diversity (Zheng et al., 2007), to our knowledge, mutagenesis library design has never

been similarly formalized or characterized. We show that, despite the combinatorial number of variants in

the library, the OCoM design of an entire library is equivalent to the design of a single variant. Thus, like

single-variant design, library optimization is NP-hard when accounting for a two-body potential. This

stands in contrast to the polynomial-time algorithms for combinatorial recombination library design (Ye et

al., 2007, Zheng et al., 2007). Consequently, we develop an integer programming approach that works

effectively in practice on general OCoM problems, along with a polynomial-time dynamic programming

approach that is appropriate for those without the two-body sequence potential.

To summarize the key contributions of OCoM, it supports a general scoring mechanism for variant

quality, explicitly evaluates variant novelty, subsumes different approaches to library construction, ac-

counts for bounds on library size and mutational sites, and evaluates the trade-offs between quality and

diversity. While we focus on a statistical sequence potential for proposing and assessing mutations, our

method is general and could employ a potential based on an initial round of experiments (e.g., from a

randomization approach to remove phylogenetic bias) ( Jackel et al., 2010) or a list of high-quality results

from structure-based design (Chen et al., 2009) from which it is desired to construct a library.

Our results illustrate the effectiveness of our approach. We show library plans for 3 proteins previously

examined in combinatorial library experiments: a green florescent protein, a cytochrome P450, and a beta-

lactamase. Our results span 6 orders of magnitude of library size, from 102 to 107 members. For each

protein, libraries optimized under a range of constraints display distinct trade-offs between quality and

novelty, as well as for the choice of library construction method (point mutations or degenerate oligos).

2. METHODS

Given a target protein, our goal is to design an optimal combinatorial mutagenesis library, as measured

by the overall quality and novelty of its variants.

2.1. Variant evaluation

We start with metrics for assessing variants in a given library. The metrics we present employ position-

specific one- and two-body scores, based on a multiple sequence alignment, but our methodology could
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accept other scoring schemes of a similar form. We first summarize a standard metric for evaluating the

quality of a variant (is it likely to be folded and functional?), and then introduce a new metric for evaluating

its novelty (how different is it from extant sequences?). While we treat individual variants here, we later

show how to use these metrics to evaluate a library as a whole, without enumerating its constituents.

2.1.1. Quality metric /. To evaluate quality, we employ one- and two-body position-specific se-

quence potentials. Our current implementation uses potential scores derived from statistical analysis of an

evolutionarily diverse multiple sequence alignment (MSA) of homologs of the target protein, but the

method is generic to any potential of the same form. Details have been previously published (Ye et al.,

2007, Parker et al., 2011). Before computing the potentials, we filter the MSA to 90% sequence identity.

The one-body term /i(a) for amino acid a position i then captures conservation as the negative log

frequency of a in the ith column of the MSA. Similarly, the two-body term /ij(a, b) for amino acid a at i

and b at j captures correlated/compensating mutations as the negative log frequency of the pair (a, b) at the

ith and jth columns, minus the independent terms /i(a) and /j(b). By subtracting the independent terms

from the pairwise term, /ij contains only the additional information regarding the correlation between the

two positions.

/i(a)¼ � log
jfP 2 S : P[i]¼ agj

jSj (1)

/i‚ j(a‚ b)¼ � log
jfP 2 S : P[i]¼ a ^ P[j]¼ bgj

jSj �/i(a)�/j(b) (2)

The quality score of variant S is then +
i
/i(S[i])þ+

ij
/ij(S[i]‚ S[j]) and the total quality score of a library is

the sum of the quality scores of its variants. Note that since we subtracted out the one-body terms from the

two-body ones, this sum correctly avoids double-counting the contributions from the individual positions.

As these scores are based on negative logarithms, smaller is better.

To mitigate overfitting, we restrict /ij to a relatively small, significant set of residue pairs by a v2 test of

significant correlation. We compute a p-value, subject to a Bonferroni correction for multiple hypothesis

testing, dividing the desired p-value by the number of pairs being tested. Alternatively, we could restrict

two-body terms to those residues in contact, but we use the v2 approach here since in previous work

(Thomas et al., 2008, 2009a,b) we have found purely statistical models to outperform contact-restricted

ones in predictive ability.

2.1.2. Novelty metric m. Given a whole sequence, we can assess its novelty in terms of how similar it

is to the closest homolog (other than the target) in the MSA. That is, compute the minimum percent

sequence identity to an extant sequence; the smaller the score, the more novel the variant. Without

explicitly accounting for this, a library focused on quality could simply recapitulate natural sequences

(which are of course high quality), wasting experimental effort.

To compute the percent sequence identity, we need an entire sequence. However, during the course of

optimization, we want to be able to assess the impact on novelty of each mutation under consideration.

Thus, we introduce a position-specific novelty score mi(a) for amino acid a at position i, analogous to the

quality score discussed above. The novelty contribution mi(a) assesses the sequence space distance between

the mutant sequence containing a at i and homologs in the MSA.

�i(a)¼ min
H2SnS

+
n

j¼ 1

IfSi)a[j]¼H[j]g
n

(3)

where S is the target and Si)a is the target with a mutation to amino acid a at position i, S is the MSA, n is

the length of S and number of columns of S, and I{} the indicator function that returns 1 iff the predicate is

true. Note that each mi(a) can be precomputed from the target and the MSA.

As with quality, the novelty score of variant S is then +imi(S[i]), and the novelty score of a library sums

the novelty scores of its variants. (Again, smaller is better.) The value for a variant is much like the percent

sequence identity, except that each position does not account for mutations at other positions in computing

the identity, and thus could underestimate the contribution. The value for a library is then much like the

average percent sequence identity, and reduces the error in the total over the positions, since the library is

comprised of the various combinations of mutations. While these thus are only approximations to the
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overall sequence identity, the error is independent of the actual mutations being made, and thus does not

affect the optimization. We find in practice for the case studies presented in the results that the one-body

potential is very highly correlated (over 0.99) with the full n-body one. Thus, there is no need to go to a

higher-order potential.

2.2. Library representation and evaluation

Since we are optimizing an entire library, rather than individual variants, we need an efficient mechanism

for evaluating its overall quality and novelty, without explicitly enumerating all its variants. This section

develops a novel ‘‘tube’’ representation compactly encoding the substitutions defining a library, and then

shows how to efficiently evaluate quality and novelty of a library represented in that manner. The following

section then uses this representation and evaluation to optimize the choices.

2.2.1. ‘‘Tube’’ representation of a library. Recall (Fig. 1) that there are two common molecular

biology techniques for generating combinatorial mutagenesis libraries: point mutations and degenerate

oligonucleotides. A convenient abstraction subsuming these two methods of library construction is to

consider for each position a multiset of amino acids, which we call a tube (as in the experiment). For point

mutation, a tube contains a selected set of amino acids to be incorporated at a position. For degenerate

oligonucleotides, a tube contains a multiset of amino acids encoded by all codons represented by a

degenerate oligonucleotide 3-mer. In this abstraction, we always mean 3-mer. Note that the representation

even supports multiple degenerate oligonucleotides (or a degenerate oligonucleotide and a specific one) at a

position, which might be desirable to obtain the best balance of library quality, novelty, and size (Herman

and Tawfik, 2007).

Given a set of tubes, one per position, the resulting library is defined by the cross-product of the tubes,

with separate variants for each instance of an amino acid appearing multiple times in the multiset (Fig. 1).

Note that in a multiset, every recurring appearance of an amino acid introduces redundancy, a scenario that

is especially undesirable when screening is difficult. In optimizing a library, we select one tube for each

position, from a preenumerated set of allowed tubes. These are in turn determined by the amino acids that

should be considered as possible substitutions. Our current implementation only allows those appearing at

expected uniform frequency 5% or greater in the MSA. This averages to 4 to 5 per position in our case

studies, for at most 25 - 1 = 31 tubes when considering all sets of point mutations. For degenerate oligos,

we only allow tubes that have a ratio of at least 3:2 between codons for allowed substitutions and those for

disallowed ones. We also eliminate tubes that code for the same proportions of amino acids in a larger

multiset, for example, we would keep [GC]TC, coding for {L, V} instead of [GC]T[GC], coding equiv-

alently but redundantly for {L, L, V, V}. Finally, we disallow tubes with STOP codons, though recognize

that with a very high-throughput screen, those may still be acceptable. All combinations of the 4 nucle-

otides in each of 3 positions would yield 3375 possible degenerate oligos, but after our global filters there

are fewer than 1000, which are further filtered for each position according to allowed substitutions, for an

average of 10 in our case studies.

2.2.2. Efficient tube-based library evaluation. Our quality and novelty metrics are expressed in

terms of variants in a library. However, in the course of optimizing libraries (next section), we do not want

to enumerate all their variants in order to compute these values. In previous work, we showed how to lift

one- and two-body position-specific sequence potentials for single variants to corresponding potentials for

recombination libraries (Ye et al., 2007, Zheng et al., 2009). We do the same here for combinatorial

mutagenesis. For simplicity, consider just the one-body term /i; the two-body term /ij and the novelty mi

work similarly.

+
S02T1 · T2 · ... · Tn

+
n

i¼ 1

/i(S
0[i])¼ +

n

i¼ 1

+
a2Ti

jT1j � jT2j � . . . � jTnj
jTij

/i(a)

¼ jLj +
n

i¼ 1

+
a2Ti

/i(a)

jTij
(4)

This follows by recognizing that amino acid type a at position i contributes /i(a) to each variant, i.e., each

choice of amino acid types for the other positions.
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Thus, we develop a tube-based library potential by averaging over the set of amino acids in the tube,

taking a convex combination of quality and novelty under a weighting factor a:

hi(T)¼ a
+

a2T
/i(a)

jT j þ (1� a)
+

a2T
�i(a)

jT j (5)

hi‚ j(Ti‚ Tj)¼ a
+

a2Ti
+

b2Tj
/i‚ j(a‚ b)

jTij � jTjj
(6)

For simplicity of subsequent formulas, we assume that a is fixed before computing hi; recall that we do not

have a two-body novelty term.

Note that our tube-based scores avoid a potential pitfall by automatically accounting for the relative

frequencies of amino acids at a position, and their relative contribution to the library. That is, if one position

has three amino acid types and another two (Fig. 1), then the contributions of the constituent amino acids

are weighted by 1/3 and 1/2, respectively.

2.3. Library optimization

With the pieces in place, we can now formally define our problem.

Problem 2.1 (OCoM). Given a protein sequence S of length n and, for each position i a set T i of

allowed tubes, optimize a library L¼ T1 · T2 · . . . · Tn where for each i, Ti 2 T i, so as to minimize

f (T1‚ . . . ‚ Tn)¼ +
n

i¼ 1

hi(Ti)þ +
n� 1

i¼ 1

+
n

j¼ iþ 1

hij(Ti‚ Tj) (7)

The experimental cost can be constrained by the number of sites being substituted, the number of amino

acids (including duplicates) in each tube, and the size of the library.

Recall that hi is defined in terms of a parameter a that controls the relative trade off between quality and

novelty. For the results, we try a range of values, recognizing that in the future it is desirable to consider all

trade-offs and select plans that are Pareto optimal (He et al., 2010).

2.3.1. Complexity. As Eq. 7 makes clear, once we have normalized tube scores, library optimization

looks just like single-variant optimization, though over an ‘‘alphabet’’ of tubes rather than amino acids or

rotamers. It immediately follows from the NP-hardness of protein design with a two-body potential (Pierce

and Winfree, 2002) that OCoM-based combinatorial mutagenesis library design is NP-hard.

2.3.2. Dynamic programming. Without the two-body sequence potential, we can readily develop an

efficient dynamic programming algorithm. Let M(i, T) be the best score of a library optimized through

position i, with tube T at position i. Because the one-body score allows for the choice of the optimal T at

each position without consideration of any other position, the optimal library determined by the additional

choice of T at i depends only on the library through i - 1. Thus

M(i‚ T)¼
hi(T) i¼ 1

min
T 02T i� 1

M(i� 1‚ T 0)þ hi(T) i > 1

(
(8)

The time and space complexity is quadratic in the size of the input: O(nm) for n the length of the

sequence and m the maximum number of allowable tubes at any position. We can easily add a dimension to

the DP matrix to count total mutational sites (up to M), for a total complexity of O(nmM).

2.3.3. Integer programming. In order to solve the full library design problem, including the two-

body potential, we develop an integer programming formulation that works well in practice using the IBM

ILOG CPLEX solver.

Define singleton binary variable si,t to indicate whether or not tube t is at position i. Similarly, define

pairwise binary variable pi,j,t,u to indicate whether or not the tubes t,u are at i, j respectively.
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We rewrite our objective function (Eq. 7) in terms of these binary variables:

F¼ +
i‚ t

si‚ t � hi(t)þ +
i‚ j‚ t‚ u

pi‚ j‚ t‚ u � hi‚ j(t‚ u) (9)

In order to guarantee that the variable assignments yield a valid combinatorial library, we impose the

following constraints:

8i : +
t

si‚ t ¼ 1 (10)

8i‚ t‚ j > i : +
u

pi‚ j‚ t‚ u¼ si‚ t (11)

8j‚ u‚ i < j : +
t

pi‚ j‚ t‚ u¼ sj‚ u (12)

Eq. 10 ensures that exactly one tube is chosen at each position i. Eq. 11 and Eq. 12 maintain consistency

between singleton and pairwise variables.

In order to specify desired properties of the mutated sites and library size, we impose the following

additional constraints.

log (k)p +
i

+
t

si‚ t log (jtj)p log (L) (13)

lp +
i

+
t 6¼fS[i]g

si‚ tpM (14)

The bounds on the library size (Eq. 13) and number of mutations per position (Eq. 14) may be set by the

technology and resources available for library construction and screening. The expression t s {S[i]} de-

termines whether or not the tube has only the wild-type amino acid, and thereby whether or not that is a

mutated position. We could likewise incorporate additional constraints on the number of mutated positions.

We use these as constraints instead of terms in the objective function because there are likely to be a

relatively small number of values to try, and the results can be compared and contrasted. Furthermore, our

objective function incorporates an explicit novelty score; these terms somewhat implicitly affect diversity.

A larger k means more variants, which must be different from each other in some way, except in the case of

redundant codons. A larger l allows, but does not guarantee, greater site diversity.

2.3.4. Implementation. The integer program is solved by the IBM ILOG optimization software. The

code to generate the problem formulation and read the solution is implemented in Java. We have placed a

limited-capability demonstration at http://www.cs.dartmouth.edu/*cbk/ocom/;

our Java code is available for academic use by contacting the authors.

3. RESULTS

We applied OCoM to optimize libraries for three different proteins for which combinatorial libraries had

previously been developed. We found that OCoM worked quite efficiently in practice, requiring only 1 hour

even for the massive design problem of selecting 18 mutations to generate 107 variants for a 443-residue

sequence. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and

evaluate trade-offs between quality and novelty as well as library construction technique, and identify

optimal libraries for experimental evaluation.

3.1. Green fluorescent protein (GFP)

GFP presents a valuable engineering target due to its widespread use in imaging experiments; the availability

of distinct colors, some engineered, enables in vivo visualization of differential gene expression and protein

localization and measurement of protein association by fluorescence resonance energy transfer (Huh et al., 2003,

Heim et al., 1994, Soboleski et al., 2005, Zhang et al., 2002). Following the work of Mayo and colleagues, we

targeted the wild type 238-residue GFP from Aequorea victoria (uniprot entry name GFP_AEQVI) with mu-

tation S65T (Treynor et al., 2007). The sequence potential is derived from the 243 homologs in Pfam PF01353.

Figure 2 (left) illustrates the trade-offs between library quality and novelty scores for fixed library size

bounds and library construction techniques, over a range of a values (recall that higher a places more focus
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on quality). While we targeted 100- and 1000-member libraries, depending on the input and choice of

parameters, not every exact library size is possible. Thus these numbers represent lower bounds on the

library sizes; the upper bounds are slightly relaxed. The curves are fairly smooth but sometimes steep as a

swift change in one property is made at relatively little cost to the other. Interestingly, the & 100-member

library curves intersect the & 1000-member library curves. To the left of that point, the & 100-member

libraries yield better quality for a given novelty, while to the right, the & 1000-member libraries yield a

better novelty for a given quality, and thus would be preferred if that screening capacity is available. The

curves intersect where the larger library approaches its maximum quality and the smaller library reaches its

maximum novelty; thus adjusting a only sends library plans along the vertical or horizontal.

The right panels of Figure 2 summarize the mutations comprising each library. Within the degenerate oligo

plans we notice single substitutions at each site, while within the point mutation plans we notice a set of

different substitutions at the same site, including some that fall outside the natural degeneracy in the genetic

code. We also notice that a number of mutations are attractive across a range of a values, and under both

construction techniques. Several times both construction methods identify the same site and same mutation.

And in both cases, we see concentration of mutations on less conserved sites (e.g., 124[EK] where Lysine is the

consensus residue at 31%) for better quality, and spreading mutations over the sequence for better novelty.

Figure 3 (left) illustrates trends in planning GFP libraries of a wide range of sizes. The y-axis gives the

total quality score summed over the unique variants in the library (lower is better). Compared to the number

degenerate oligos
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FIG. 2. GFP plans under varying quality-novelty trade-offs, at fixed library size bounds, with two library construction

techniques. Smaller scores are better. The left panels plot the scores of plans (one per point) for libraries of & 100

members (red diamond solid) and & 1000 members (blue square dash). The right panels detail the & 100-member

library plans, with selected positions and their wild-type amino acid types (underlined) and mutations.
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FIG. 3. Efficiency evaluation of

plans for different GFP (left) and

P450 (right) library sizes, under de-

generate oligos (blue solid squares)

and point mutations (red dashed

diamonds). The y-axis plots the total

quality score (/; lower is better) of

the unique variants in the library (i.e.,

removing duplicates from degener-

ate oligos). The degenerate oligo

curve is labeled with the number of

unique variants.
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of variants in the library to be screened, this is a measure of the library efficiency. The point mutation

libraries remain linear at an approximate slope of 1 on this log-log plot; essentially, each mutation is

picking up a constant ‘‘penalty’’ against quality. While, as we also see in Figure 2, degenerate oligo

libraries tend to have better quality scores due to their multiset nature, the redundancy leads to fewer unique

variants and thus fewer expected ‘‘hits’’ for the same screening effort. Consequently, up to a factor of 103

more degenerate oligo variants than point mutation variants need to be screened to achieve the unique

library size, consistent with trends in other studies (Reetz et al., 2008). On the other hand, degenerate oligo

libraries are also cheaper to construct. These curves help elucidate the trade-offs. The degenerate oligo

curve flattens out at 106 to 107 largely because the algorithm has reduced capacity to find more unique

reasonable quality variants on this particular and relatively smaller protein.

To further study the use of degeneracy in library generation, we compared libraries using selected

degenerate oligos with those using saturation mutagenesis, either with the NNK degenerate codon (coding

all 20 amino acids) or the NDT degenerate codon (12 diverse amino acids). Reetz et al. (2008) have studied

the relative efficiency of the two saturation mutagenesis techniques, in the context of directed evolution.

Using OCoM, we can further compare and contrast the selection of positions to mutate, at different levels

of degeneracy. We separately optimized relatively conserved core residues (positions 57–72) (Treynor

et al., 2007) and relatively less conserved surface ones. Figure 4 shows the efficiency of libraries (using the

total quality metric of the preceding paragraph) for different number of sites to mutate. As in our above

library studies, there are sufficient degrees of freedom in any method, and both in the core and on the

surface, to continue taking mutations at roughly the same penalty. Strikingly, the relative efficiency (ratio)

of saturation, half saturation, and any choice is about the same in the core or on the surface, across the

number of sites mutated. We also evaluated the use of ‘‘double-degenerate’’ oligos, combining two dif-

ferent degenerate oligos in a single tube. However, for these studies they yielded exactly the same plans as

did the regular degenerate oligos. There was apparently insufficient motivation to select amino acids

sufficiently different not to be naturally covered by the degeneracy in the genetic code.

Notably, all of our full length GFP plans in Figure 2 (right) avoid the conserved core region when

constructed with degenerate oligos or point mutations under a favoring quality or novelty. However, all

plans consistently choose the immediately adjacent mutation, 73[KR]. This is largely due to the fact that 73

is less conserved than the core positions, and Lys is the consensus residue at 57%. While these plans were
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FIG. 4. Efficiency evaluation (as

in Fig. 3) for GFP libraries optimized

at different levels of degeneracy, for

core or surface, at different numbers

of mutated sites.

Table 1. GFP Libraries for the Conserved Core 57–72 Positions, by Our Method OCoM,

along with OPTOLIGO by Pantazes et al. (2007) and DBISORBIT
by Treynor et al. (2007)

Method Library

OCoM 59[IT] 61[AV] 62[AT] 63[ST] 64[FL] 65[ST] 68[AV] 69[RQ] 72[AS]

OPTOLIGO 58[DP] 59[IT] 62[AT] 63[AT] 64[FL] 65[ST] 68[IV] 69[LQ] 72[AS]

DBIS ORBIT 58[AP] 59[ST] 61[LV] 62[AT] 65[AT] 68[AV] 69[LQ] 71[FL] 72[AS]

Underlined residue: wild type.
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designed by global optimization of our scoring metrics over the entire protein, it is possible to incorporate

addition constraints restricting the mutated positions and thereby targeting specific regions.

In order to compare with previous library studies (Treynor et al., 2007, Pantazes et al., 2007), which both

exclusively focused on the GFP core, we restricted OCoM to the core residues, 57–72. OCoM proposed a

29 plan that is highly similar to the OPTOLIGO one (Pantazes et al., 2007) and shares some similarity with

the DBISORBIT plan (Treynor et al., 2007). The plans are summarized in Table 1. OCoM and OPTOLIGO

choose 8 of the same 9 positions to mutate, and 5 of the same substitutions at those 8 positions. Inter-

estingly, for one mutation selected by OCoM but not OPTOLIGO, 68[AV], OCoM agrees with the

DBISORBIT library, which experimentally gave the best preservation of function and introduction of di-

versity among their designed libraries, and was the only one to include 68[AV]. However, as Pantazes et al.

noted, the very best Treynor et al. libraries score particularly poorly using a sequence potential because the

61[LV] and 65[AT] substitutions are not well represented in the sequence record. All three libraries reach

consensus at two positions: 62 and 72.

3.2. Cytochrome P450

Cytochrome P450 is an essential enzyme at all levels of cellular life and thus extensively studied,

especially given its significant engineering applications in biofuels (Fukuda et al., 1994). We chose as a

target a P450 from Bacillus subtilis, CYP102A2 (uniprot gene synonym cypD), used in previous library

studies (Otey et al., 2004, Pantazes et al., 2007). The P450 family is very diverse, so we identified a set of

194 homologs to our target by running PSI-BLAST for 3 iterations, and then multiply aligned them with

ClustalW using default parameters on the EBI portal. As in the earlier studies, we focused on residues

6–449 because the remaining portions of the MSA were too sparse for meaningful statistics.

degenerate oligos

0 5 10 15
−0.04

−0.03

−0.02

−0.01
N

ov
el

ty
 S

co
re

Quality Score

mutations

21[LS] 50[RT] 51[NSTY] 208[EGQR] 325[FLLL] 10.23 -0.03

48[AG] 50[RT] 51[NSTY] 208[EGQR] 325[FLLL] 9.43 -0.03

48[AG] 50[KMRT] 51[AITV] 176[IV] 325[FLLL] 8.65 -0.03

21[FLLLLL] 48[AG] 152[FLLLLL] 176[IV] 1.51 -0.01

point mutations
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Quality Score

mutations

24[KT] 48[AG] 79EK] 152FL] 176[IL] 208[AR] 231[DQ] 372[KS] 8.96 -0.04

25[DE] 48[AG] 84[AS] 161[GN] 176[IV] 238[AN] 266[IV] 372[EK] 4.25 -0.04

48[AG] 84[AS] 161[GN] 176[IV] 238[AN] 266[IV] 372[EK] 3.51 -0.03

48[AG] 84[ASV] 161[DGN] 176[IV] 372[EDK] 3.09 -0.03

FIG. 5. P450 plans under varying quality-novelty trade-offs (see Fig. 2 for description).

Table 2. P450 Plan Details for Three Residue Positions, under OCoM and OPTOLIGO

D25 N161 Q191

Library size OCoM OPTOLIGO OCoM OPTOLIGO OCoM OPTOLIGO

100 ADEKRS AL DGN LNS Q MPT

1000 ADEKRS ALS DGNS LNS KQT MPRT

10000 ADEKRS ALS DGNS ELNSY KNQRST MNPRST

100000 ADEKRS AELS DGNS AELNSY KNQRST MNPRST

The wild-type residue is underlined in the OCoM plans; OPTOLIGO does not restrict the library to include wild-type.
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The trade-off curves (Fig. 5) are more distinct than those for GFP, and are quite sharp and sparse. This

may be a result of looking here at a small library size with relatively few mutations, relative to the much

larger size of this protein. The degenerate oligo plans focus on a few positions (an average of 4), while the

point mutation plans are more spread over the sequence (an average of 7).

With increasing library size (Fig. 3, right), we see similar trends as for GFP. As the library size increases,

more and more screening effort (up to three orders of magnitude) is required to find fewer good unique

variants in the degenerate oligo libraries. This illustrates a fundamental difference between the two library

construction methods, and highlights a key advantage: using discrete oligos for each individual point

mutation can always specifically target beneficial amino acids, even with increasing library size.

While we can compare our designs with the OPTOLIGO ones by Pantazes et al. (2007), our plans are from

global optimization over the entire 400-residue protein, while theirs were limited to the 10 most variable

positions as determined by their sequence analysis. Remarkably, there is one design site in common, Asn161.

Our point mutation plans make 161[GN] or in one case 161[DGN]. However, OPOLIGO makes 161[NS] and

rules out substituting pairs Ser and Gly or Ser and Asp at the same position. They eliminated a number of pairs

of amino acids with similar qualities which therefore scored similarly under their metrics. These expert rules

precluded the two systems from adopting the same substitutions at site 161.
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53[AG] 77[FLLL] 85[EK] 125[AS] 139[RS] 228[EG] 8.36 -0.99

53[AG] 139[RRRS] 153[RRRS] 163[AT] 228[EG] 261[EK] 7.44 -0.99

53[AG] 163[RRSTTT] 242[EQ] 261[DEEKKN] 3.79 -0.85

1[HHQ] 53[AG] 166[HQQRRR] 184[DDE] 2.91 -0.66

53[AG] 114[FLLLLL] 184[DDE] 246[DDE] 2.88 -0.52

point mutations
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1[AH] 53[AG] 63[KQ] 87[EH] 125[AR] 163[AT] 261[AK] 262[EH] 6.51 -1.58

1[AH] 53[AG] 87[EH] 125[AR] 163[AT] G228N,Q242E,K261E 6.19 -1.58

1[AH] 53[AG] 87[EH] 121[AK] 228[GN] 261[ADEK] 4.55 -1.28

53[AG] 121[EK] 242[DEKQT] 261[ADEKQ] 4.18 -1.02

FIG. 6. Beta lactamase plans under varying quality-novelty trade-offs (see Fig. 2 for description).

FIG. 7. Efficiency evaluation (as

in Fig. 3) of plans for different beta

lactamase library sizes, under de-

generate oligos (blue solid squares)

and point mutations (red dashed di-

amonds). The y-axis plots the total

quality score (/; lower is better) of

the unique variants in the library

(i.e., removing duplicates from de-

generate oligos). The degenerate

oligo curve is labeled with the

number of unique variants.
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For a more direct comparison, we targeted OCoM to the ten residue positions in the OPTOLIGO experiment,

and employed only point mutations, the same as OPTOLIGO. Of the ten targeted positions, the OPTOLIGO

plans were available for four in Figure 9 of Pantazes et al. (2007). OCoM plans incorporated three of those

four positions (25, 161, and 191, leaving out 441). We found the OCoM and OPTOLIGO plans to vary

substantially (Table 2). This can be attributed to the differences in the MSA and the subsequent sequence

analysis. OPTOLIGO uses a consensus sequence as a reference and does not always include a wild-type in the

library. Furthermore, our MSA shows some residues to be quite conserved, such that OCoM has very few

choices at these sites. There is some overlap when both methods consider a position variable, especially at the

larger library sizes. For example, at the 105 library size both methods employ Ala, Glu, and Ser at 25; Asn and

Ser at 161; and Asn, Arg, Ser, and The at 191. In general, we also notice the same phenomenon reported by

Pantazes et al., that substitutions chosen at smaller library sizes are largely retained at larger library sizes.

3.3. Beta lactamase

The beta lactamase enzyme family hydrolyzes the beta lactam ring of penicillin-like drugs thereby

conferring resistance to bacteria and presenting a potential drug target (Harding et al., 2005). As it supports

easy and inexpensive activity screening, beta lactamase is an ideal candidate for testing combinatorial

library methods (Meyer et al., 2003, 2006; Hiraga and Arnold, 2003, Ye et al., 2007, Zheng et al., 2009).

However, these previous studies use recombination, while OCoM uses mutagenesis. The assumptions

underlying the two techniques are quite different: recombination takes coarser-grained steps through se-

quence space, interpolating parental genes by mixing-and-matching, while mutagenesis takes finer-grained

steps, moving away from a wild-type. Ultimately, a combination of the two methods may be most helpful.

We took as target the TEM-1 beta lactamase from E. coli, and developed the sequence potential from an

MSA of 149 homologs aligned to 263 residues used in our previous combinatorial recombination work (Ye et

al., 2007). We found the trends too similar to our other case studies to merit repetition of detail here, but we

note that in contrast to P450, but like GFP (of a more similar size), the trade-off curves are less sharp and

more full (Fig. 6). The efficiency trends (Fig. 7) are quite similar to those of both GFP and P450 (Fig. 3). Like

GFP and P450, the targeted mutation sites are similar, but the repertoire of substitutions can differ. For

example, at Lys261 the degenerate oligo plans make D,E,N substitutions, while the point mutations make

A,D,E,Q,V substitutions.

4. DISCUSSION

OCoM provides a powerful and general mechanism to optimize combinatorial mutagenesis libraries so

as to improve the ‘‘hit-rate’’ of novel variants with properties of interest. It enables protein engineers to

study the trade-offs among predicted quality and novelty, library size, and expected success over two

different approaches to library construction. While it readily allows effort to be focused on residues or

regions of interest, that is not required; OCoM supports global design of a protein, accounting for inter-

related effects of mutations. While the design problem is NP-hard in theory and clearly combinatorial in

practice, our encoding of the constraints and homology-based filtering of poor choices, along with the

power of the IBM ILOG solver, yielded an implementation that was able to compute the optimal 107 size

library for each test case in under an hour.

As we have implemented here, 2-body quality scores are considered state-of-the art, and necessary for

evaluation of stability and activity of new proteins (Russ et al., 2005, Socolich et al., 2005). However, there may

be cases, such as large proteins (or complexes) with high degrees of sequence variability (and thus large tube

sets), where only a 1-body potential will be practical because of the combinatorial explosion. In such cases, our

dynamic programming formulation will still enable the optimization of libraries based on conservation statistics.

Since OCoM is modular, it is easily extensible to additional forms of variant and library evaluation and

constraint, and those are key steps for our future work. For example, rather than a general sequence

potential and global design, it could be targeted to exploration of sequence space most affecting activity or

stability, or it could be extended to incorporate evaluation of immunogenicity (Parker et al., 2010, 2011).

And as mentioned in the introduction, the potential could be derived from initial experiments or from

structure-based analysis. Although beyond the scope of this article, prospective application of OCoM in

designing libraries for targets of engineering interest is of course the whole motivation of the work.
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