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ABSTRACT

Many estimation problems in bioinformatics are formulated as point estimation problems in
a high-dimensional discrete space. In general, it is difficult to design reliable estimators for
this type of problem, because the number of possible solutions is immense, which leads to an
extremely low probability for every solution—even for the one with the highest probability.
Therefore, maximum score and maximum likelihood estimators do not work well in this
situation although they are widely employed in a number of applications. Maximizing ex-
pected accuracy (MEA) estimation, in which accuracy measures of the target problem and
the entire distribution of solutions are considered, is a more successful approach. In this
review, we provide an extensive discussion of algorithms and software based on MEA. We
describe how a number of algorithms used in previous studies can be classified from the
viewpoint of MEA. We believe that this review will be useful not only for users wishing to
utilize software to solve the estimation problems appearing in this article, but also for
developers wishing to design algorithms on the basis of MEA.
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1. INTRODUCTION

In bioinformatics, there are many estimation and prediction problems, such as gene prediction

from genomic sequences (Picardi and Pesole, 2010), alignment of biological sequences (Pirovano and

Heringa, 2008; Pei, 2008), biological network prediction (e.g., protein-protein interaction prediction)

(Skrabanek et al., 2008), phylogenetic tree estimation (Whelan, 2008), and RNA secondary structure pre-

diction (Andersen, 2010). These problems give rise to specific point estimation problems, whose general

paradigm can be stated as follows.

Problem 1 (Discrete-Space Point Estimation Problem [DSPEP]). Given data D and a discrete space Y

correlated to D, find a point y in Y.
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In this review, Y is called a predictive (solution) space, and it contains all the possible solutions (for the

data D) of the target problem. For example, prediction of the secondary structure of an RNA sequence x is

formulated as Problem 1 where D = fxg and Y =S(x) is the (discrete) space of all possible secondary

structures of the RNA sequence x (see Example 3).

To solve this estimation problem, a score model S(yjD) (which gives a score of y 2 Y) or a probability

distribution p(yjD) (which gives a probability of y), for given data D, is often employed. In many cases, a

score model S(yjD) leads to a probability distribution p(yjD) on the predictive space. For example, in RNA

secondary structure prediction, the energy model (Mathews et al., 2004) leads to a probability distribution

of secondary structures known as the McCaskill model (McCaskill, 1990), and in alignment, a score model

of alignments (specified by a score matrix and gap open/extension costs) leads to a probability distribution

of pairwise alignments known as the Miyazawa model (Miyazawa, 1995). In this study, we, therefore,

make the following assumption.

Assumption 1. In Problem 1, a (posterior) probability distribution p(yjD) on a predictive space Y is given.

It is difficult to design reliable estimators for Problem 1. This is because there are an immense number of

candidate solutions, and therefore, any point estimation, even if it is the prediction with the highest

probability, is not reliable as its probability is extremely small. Hence, maximum likelihood (ML) and

maximum score (minimum energy) estimators (both of which have been widely utilized) are not sufficient

in those estimation problems. Moreover, as pointed out in Carvalho and Lawrence (2008), consistency,

asymptotic normality, and asymptotic efficiency are not established for the ML estimator for Problem 1,

although those properties have been established for the ML estimator on continuous spaces. Carvalho and

Lawrence (2008) also pointed out that there is no reason for the ML estimation to be a representative

solution in Y, because ML estimators do not consider the entire distribution of solutions.

When accuracy measures of a target problem are given (e.g., sensitivity, positive predictive value [PPV],

Matthew’s correlation coefficient [MCC], or F-score [Baldi et al., 2000]) (see Section A.1 in the Appendix),

it is reasonable to design estimators that are suited to those accuracy measures. Maximizing expected

accuracy (MEA) estimators, which are the main focus of this study, are able to consider both accuracy

measures of the target problem and an entire distribution of solutions, and have been successfully applied to

a number of estimation problems in bioinformatics (Do et al., 2006a; Sahraeian and Yoon, 2010; Lu et al.,

2009; Nánási et al., 2010). In this article, we classify existing algorithms and software from the viewpoint

of MEA, which will provide useful information not only for users but also for developers of such software.

This rest of this review is organized as follows. In Section 2, we explain the concepts of maximizing

expected accuracy (MEA) estimation. In Section 3, we present a classification of existing algorithms from

the viewpoint of MEA; therein, in Table 1, we summarize the classification. In Section 4, we discuss

additional issues related to MEA estimations. In Section 5, we conclude, and in Section 6, we provide an

Appendix.

2. CONCEPTS OF MAXIMIZING EXPECTED ACCURACY (MEA) ESTIMATION

2.1. Maximizing expected gain (MEG) estimator

In Problem 1 with Assumption 1, the following estimator is called a Maximum expected gain (MEG)

estimator (Hamada et al., 2011a).

ŷ = argmax
y2Y

EhjD[G(h‚ y)] = argmax
y2Y

X
h2Y

G(h‚ y)p(hjD)‚ (1)

where G(h, y) on Y · Y is called a gain function, which gives higher values (gains) when h and y are

similar.

This MEG estimator is closely related to statistical decision theory, in which an estimator that minimizes

expected loss is often considered (Carvalho and Lawrence, 2008). In order to facilitate the understanding of

the relationship with MEA, in this review we use a gain function that should be maximized instead of

minimizing a loss.

When the gain function G is designed according to the accuracy measures of the target problem (e.g.,

MCC, F-score, PPV and Sensitivity), the MEG estimator is called a maximum expected accuracy (MEA)

estimator. (This does not mean the gain function is exactly equal to the accuracy measure.) On the other
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hand, when G(h, y) is equal to the delta function, d(h, y), that is 1 only when h is exactly equal to y, the

estimator is called a maximum likelihood (ML) estimator. Note that it is quite unreasonable to employ the

delta function as the accuracy measure, because the condition described by the delta function is too strict.

ML estimators are, therefore, unsuitable as accuracy measures in many bioinformatics problems, and the

gain function should be designed more carefully.

In the following two subsections, we introduce several commonly used predictive spaces and gain

functions, which are used in the classification in Section 3 (and Table 1 therein).

2.2. Commonly used predictive (solution) spaces, Y

2.2.1. Y is a subset of Ln for jLj < N. Typically, L is a set of labels and the data D is a biological

sequence with length n (e.g., DNA, RNA, or protein sequence) as in the following examples.

Example 1 (The space of protein secondary structures: P(x)). For a protein sequence x and L = {a-

helix, b-strand,loop} (a set of labels for components of protein secondary structures), a protein secondary

structure y (of x) can be represented as y = fyigjxji = 1 2 Ljxj, where yi 2 L indicates the label of the i-th

position in x. P(x) denotes the set of possible protein secondary structures of a protein sequence x.

Example 2 (The space of gene structures: G(x)). For a genome sequence x and L = {exon, intron,

intergenic} (a set of labels for components of gene structures), a gene structure y can be represented as

y = fyigjxji = 1 2 Ljxj, where yi 2 L indicates the label of the i-th position in x. G(x) denotes the space of gene

structures of a genome sequence x (Fig. 1).

In general, Y is not equal to Ln but is a subset of Ln, which means that the labels of each dimension

(position) in a prediction are mutually correlated and cannot be estimated independently.

2.2.2. Y is a subset of {0 1}n. Although this is a special case of the predictive space described in

Subsection 2.2.1 (where L = {0, 1}), we consider it separately for convenience. In this case, 0 and 1 in a

binary vector y 2 Y typically mean positive and negative predictions, respectively. Hence, accuracy

measures (such as sensitivity, PPV, MCC, and F-score) are naturally introduced, each of which is defined

by using the number of true positive, true negative, false positive, and false negative predictions (denoted as

TP, TN, FP, and FN, respectively) (Baldi et al., 2000) (see Section A.1 in the Appendix).

Example 3 (The space of secondary structures of an RNA sequence: S(x)). For an RNA sequence x,

a secondary structure of x is represented as a upper triangular binary-valued matrix, y = {yij}1 £ i £ j £ jxj,

where yij = 1 means xi and xj (the i-th and j-th bases of x) form a base pair and yij = 0 means xi and xj do

not form a base pair. S(x) denotes the space of possible secondary structures of x.

Example 4 (The space of alignments of two sequences: A(x‚ x0). For two biological sequences x and

x0, a pairwise alignment y between x and x0 is represented as a binary-valued matrix y = fyikg1�i�jxj‚ 1�k�jx0 j,
where yik = 1 means xi aligns with x0k and yik = 0 means xi does not align with x0k. A(x‚ x0) denotes the space

of possible pairwise alignments of biological sequences x and x0.

Note that the above predictive spaces are a subset of binary space, which means that every element in the

predictive space has complicated constraints.

2.3. Commonly used gain functions

2.3.1. A gain function for Y � Ln: label gain function. For h, y 2 Y � Ln, the following gain

function (originally proposed in Kall et al. [2005]) is introduced.

FIG. 1. Example of gene prediction. The top

and bottom figures are a reference gene structure

h and a predicted gene structure y, respectively.

The labels X, E, and I indicate intergenic regions,

exons, and introns, respectively. The vertical

lines in red show boundaries (exon-intron and

intergenic region-exon boundaries). We compute

G(label) (h, y) = 19 and G(boundary)
c (h, y) = 4c + 12.

XXEEEEIIIIIEEEIIEEEXX
123456789012345678901

Reference

Prediction
XXXEEEIIIIIIEEIIEEEXX
123456789012345678901
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G(label)(h‚ y) =
X

1�i�n

I(hi = yi): (2)

Here, I(condition) is the indicator function that returns 1 only when condition is true. When h is a correct

(reference) sequence and y is a prediction, Eq. (2) is equal to the number of correctly predicted labels. The

MEG estimator of this gain function, therefore, maximizes the expected number of correctly predicted

labels.

Example 5 (G(label) for gene prediction). In gene prediction from a genomic sequence, when h is a

reference sequence and y is a prediction, G(label) (h, y) is the number of correctly predicted labels. For

example, in Figure 1, G(label) (h, y) = 19.

2.3.2. A gain function for Y � Ln: boundary gain function. For h, y 2 Y � Ln, the following gain

function is introduced. (This gain function was originally proposed by Gross et al. (2007a) in the context of

gene prediction.)

G(boundary)
c (h‚ y) =X

2�i�n

[I((hi - 1‚ hi) =2 B) I ((yi - 1‚ yi) =2 B) + c � I((hi - 1‚ hi) 2 B) I ((yi - 1‚ yi) 2 B)]‚ (3)

where B is the list of all pairs of labels corresponding to a boundary (e.g., an exon-intron boundary for gene

prediction). When h is a correct prediction and y is a prediction, Eq. (3) is equal to a weighted sum of the

number of correctly predicted boundaries and non-boundaries. The MEG estimator of this gain function is,

therefore, suitable for accurate prediction of boundary of annotation (boundary accuracy).

Example 6 (G(boundary)
c for gene prediction). In gene prediction, when h is a reference genomic

sequence and y is a prediction, G(boundary)
c (h, y) is the weighted number of correctly predicted boundaries

and non-boundaries. B is the list of all pairs of labels corresponding to a boundary (e.g., an exon-intron

boundary for gene prediction). Therefore, this gain function fits with exon-level or gene-level accuracy in

gene prediction (Gross et al., 2007a). For example, in Figure 1, G(boundary)
c (h‚ y) = 4c + 12.

The c in Eq. (3) is a parameter that adjusts between the sensitivity and PPV of a prediction. Using larger

c leads to more boundaries (that is, more genes) in the prediction.

2.3.3. A gain function for Y � {0, 1}n: c-centroid gain function. For h, y 2 Y( � f0‚ 1gn), we

introduce the gain function

G(centroid)
c (h‚ y) =

X
1�i�n

[I(hi = 0)I(yi = 0) + c � I(hi = 1)I(yi = 1)]‚ (4)

where c ‡ 0 is a weight parameter. When y is a prediction and h is a reference sequence, this gain function

is equal to a weighted sum of the number of TP and TN. (This gain function was originally proposed in the

context of RNA secondary structure prediction, in Hamada et al. [2009a].)

Example 7 (G(centroid)
c for RNA secondary structure). For two secondary structures y and h in S(x),

where y is a prediction and h is a reference structure, G(centroid)
c (h‚ y) is equal to the weighted sum of the

number of true-positive base pairs and true-negative base pairs. For example, in Figure 2,

G(centroid)
c (h‚ y) = 147 + 3c.

Example 8 (G(centroid)
c for pairwise alignment). For two secondary structures y and h in A(x‚ x0),

where y is a prediction and h is a reference structure, G(centroid)
c (h‚ y) is equal to the weighted sum of the

number of true-positive aligned bases and true-negative aligned bases. For example, in Figure 3,

G(centroid)
c (h‚ y) = 63 + 4c.

An MEG estimator with this gain function is often called a c-centroid estimator. The parameter c in the

c-centroid estimator can be naturally introduced based on the criterion that more true predictions and fewer

false predictions are required (Hamada et al., 2011a). The parameter is used for adjusting between the

sensitivity and PPV of a prediction. It is easily seen that the MEG estimator of G
(centroid)
1 (1-centroid

estimator) is equivalent to the centroid estimator (Carvalho and Lawrence, 2008), which minimizes the

expected Hamming distance.
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2.3.4. A gain function for Y � {0, 1}n: MCC/F-score. For h, y 2 Y � f0‚ 1gn
, we introduce the

gain function

G(Acc)(h‚ y) = Acc(h‚ y)‚ (5)

where Acc is either MCC or F-score (Baldi et al., 2000), both of which are accuracy measures providing a

balance between sensitivity and PPV. If G(h, y) = MCC(h, y) or F-score(h, y), where h is a reference and y

is a prediction, the MEG estimator of the gain function maximizes the expected accuracy (Acc).

Example 9 (G(Acc) for RNA secondary structure prediction). For h, y 2 S(x), where h is a reference

structure and y is a prediction, G(Acc) (h, y) for Acc = MCC is equal to MCC with respect to the base pairs,

which is a widely used accuracy measure. For example, in Figure 2, MCC(h, y) = 0.661.

Unlike the c-centroid estimators, the MEG estimator of this gain function does not contain any pa-

rameter. However, it is generally difficult to compute the estimator. Instead, Hamada et al. (2010) have

proposed an approximate method to maximize expected MCC/F-score. In Hamada et al. (2010), the authors

focused on RNA secondary structure prediction, but the method is applicable to other problems.

2.3.5. A gain function for Y � {0, 1}n · {0, 1}m. Suppose that each binary vector has two indices,

that is, Y � {0, 1}n · {0, 1}m (like S(x) and A(x‚ x0)). For h = {hij} and y = {yij} (hiy‚ yiy 2 f0‚ 1g), the gain

function

G(2dim)
c (h‚ y) = 2c �

X
i‚ j

I(hij = 1)I(yij = 1) +

X
i

Y
j

I(hij = 0)I(yij = 0) +
X

j

Y
i

I(hij = 0)I(yij = 0)
(6)

12-3456789
1234-5-678

1-23456789
123--45678

Reference

Prediction

TP=4 FP=2 FN=3TN=63

pxp--xxppp
p-pxlxxppp

x
x’

x
x’

x
x’

FIG. 3. Example of pairwise alignment. The

top and bottom alignments are a reference h and

prediction y, respectively. (The numbers indicate

positions in the sequences and ‘‘-’’ indicates a

gap.) (a) ‘‘p’’ and ‘‘l’’ indicate the correctly

predicted positions of aligned columns, whereas

‘‘x’’ indicates a wrongly predicted position.

Hence, we compute G(2dim)
c (h‚ y) = 10c + 1. (b)

TP, TN, FP, and FN are the numbers of true

positive, true negative, false positive, and false

negative aligned pairs, respectively. We, there-

fore, compute G(centroid)
c (h‚ y) = 4c + 63.

FIG. 2. Example of RNA secondary structure

prediction. The top and bottom structures are a

reference h and prediction y, respectively. (a)

‘‘p’’ and ‘‘l’’ show the correctly predicted posi-

tions of base pairs and loops, respectively, while

‘‘x’’ indicates wrongly predicted positions.

Hence, we compute G(2dim)
c (h‚ y) = 6c + 6. (b) TP,

TN, FP and FN are the numbers of true positive,

true negative, false positive, and false negative

base pairs, respectively. We, therefore, compute

G(centroid)
c (h‚ y) = 3c + 147.
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is introduced. The second and third terms in the right-hand side are equal to 1 when hij = yij = 0 for all j and

hij = yij = 0 for all i, respectively. If the products (Pi and Pj) are replaced by sums (Si and Sj), the gain

function is equal to (twice) the c-centroid gain function, Eq. (4).

Interestingly, this gain function was independently proposed in Do et al. (2006a) (in the context of RNA

secondary structure prediction) and in Schwartz et al. (2005) (in the context of pairwise alignment).

Example 10 (G(2dim)
c for RNA secondary structure). When Y is the space of secondary structures of a

given RNA sequence x (i.e., Y =S(x)), h is a reference secondary structure and y is a prediction, G(2dim)
c

(h,y) is equal to a (weighted) sum of the numbers of correctly and incorrectly predicted positions in the

RNA sequence x. For example, in Figure 2, G(2dim)
c (h‚ y) = 6c + 6.

Remark 1. In RNA secondary structure prediction, the c-centroid gain function G(centroid)
c is more

suitable than G(2dim)
c in terms of widely used accuracy measures (Hamada et al., 2009a).

Example 11 (G(2dim)
c for pairwise alignment). When Y is the space of possible pairwise alignments

between two sequences x and x0 (i.e., Y =A(x‚ x0)), h is a reference alignment and y is a predicted

alignment, G(2dim)
c (h‚ y) is equal to a (weighted) sum of the numbers of correctly and incorrectly predicted

columns in the alignment. For example, in Figure 3, G(2dim)
c (h‚ y) = 10c + 1.

2.4. Two variants of MEG/MEA estimators

The following two variants of an MEG/MEA estimator were proposed in Hamada et al. (2011a) (in the

context of a restricted class of MEA estimators, that is, the c-centroid estimators).

2.4.1. Representative/common MEG/MEA estimator. In some cases, the data D consists of several

data-points dn, for example, D = fdngN
n = 1 in Problem 1, and we would like to predict a common or consensus

solution for these data, as described in the following examples.

Example 12 (Common RNA secondary structure prediction). Given a set of RNA sequences

D = fxigK
i = 1 and multiple alignments of length l, predict their common secondary structure as a point in

S(l), which is the space of all the possible secondary structures of length l.

Example 13 (Sequence feature prediction in a multiple alignment). Given a set of biological se-

quences D = fxigK
i = 1 and multiple alignments of length l, predict their common sequence feature as a point

in F (l), which is the space of all the possible predictions of sequence features of length l.

For those problems, the following estimator (called a representative MEG estimator) can be introduced.

It gives a consensus or common prediction for probability distributions of every data point:

ŷ = argmax
y2Y

XN

n = 1

X
hn2Y

G(hn‚ y)p(hnjdn)‚ (7)

where h = fhngn 2 YN‚ y 2 Y , y 2 Y and p(hnjdn) is a probability distribution on Y, given dn.

Example 14. For Example 12, the estimators used in McCaskill-MEA and PETfold can be considered

representative estimators of the G(2dim)
c type, and the one used in CentroidAlifold can be considered

representative estimator of the G(centroid)
c type. In Example 13, Kall et al. (2005) utilized a representative

estimator of G(label).

We remark that the following example can be also considered as a similar problem by taking dn =
di,k = {x(i), x(k)} for x(i) 2 A1 and x(k) 2 A2 (and, therefore, a representative estimator can be introduced).

Example 15 (Pairwise alignment between two multiple alignments). Given two multiple alignments

A1 and A2, predict a pairwise alignment between A1 and A2.

We will describe further applications of representative estimators in Section 3. See also the column

‘‘Rep’’ in Table 1 below.

2.4.2. Approximated MEG/MEA estimator with additional information. In Problem 1, by em-

ploying additional information appropriately, it is possible to improve accuracy.
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Example 16 (RNA secondary structure prediction with homologous sequences). Given a (target)

RNA sequence x and its homologous sequence h, predict a secondary structure y 2 S(x) of the target

sequence x by using homologous sequence information.

Example 17 (Pairwise alignment with homologous sequence information). For two biological se-

quences x and x0 and their homologous sequence h, predict a pairwise alignment y 2 A(x‚ x0) by using the

homologous sequence information.

Example 18 (RNA alignment with common secondary structure information). For two RNA se-

quences x and x0, predict a pairwise alignment y 2 A(x‚ x0) by using secondary structures that are common

to x and x0.

Ideally, a (refined) probability distribution on the predictive space Y is given by marginalizing onto S(x) a

probability distribution on a larger space Y0 given D and A ( p(y0rD, A)). In Example 16, we consider a

probability distribution of possible structural alignments between x and h, and then obtain a probability

distribution on Y =S(x) by marginalizing this distribution. In Example 17, we consider a probability distribution

of multiple alignments of x, x0, and h, and then obtain a probability distribution on Y =A(x‚ x0) by marginalizing

the distribution. In Example 18, we consider a probability distribution of possible structural alignments between

x and x0, and then obtain a probability distribution on Y =A(x‚ x0) by marginalizing this distribution.

By using these marginal probability distributions on a predictive space Y, the MEG estimators are

introduced directly. However, the computational cost of computing this MEG estimator is generally huge,

and several heuristic methods are, therefore, employed, including a factorization of the probability dis-

tribution p(y0rD, A). (For example, a probability distribution of possible structural alignments between x

and h is factorized into the distributions of secondary structures of x and x0, and the distribution of pairwise

alignments.) The factorization generally leads to a number of inconsistencies in the distribution and those

inconsistencies should be resolved when the gain function is designed.

We call this type of estimator an ‘‘approximated MEA estimator’’ (Hamada et al., 2011a).

Example 19. For Examples 16, 17, and 18, approximated MEA estimators are employed in Cen-

troidHomfold (Hamada et al., 2009c), ProbCons (Do et al., 2005), and CentroidAlign (Hamada et al.,

2009b), respectively.

We will also describe further applications of this type of estimator in Section 3. See also the column

‘‘Apr’’ in Table 1 below.

2.5. Commonly used approaches to compute MEG/MEA estimators

To obtain a final prediction of MEG/MEA (and related) estimators, we need to compute the ‘‘argmax’’

operation in Eq. (1). There are several commonly used approaches:

1. Dynamic programming (DP) (Eddy, 2004)

2. Integer programming (IP) (Nemhauser and Wolsey, 1988)

3. Stochastic sampling or other stochastic approaches such as the Simulated annealing, sequence an-

nealing (SA) (Schwartz and Pachter, 2007), or Gibbs sampling (GS)

DP algorithms are widely used in bioinformatics, including alignment and RNA secondary structure

prediction (Smith and Waterman, 1981). IP is also employed in bioinformatics problems (Sato et al., 2011;

Kato et al., 2010). Stochastic sampling enables us to sample directly from the posterior distribution p(yrD).

This approach has been proposed for pairwise alignments (Webb-Robertson et al., 2008), RNA secondary

structure predictions (Ding et al., 2005), and structural alignments of RNA sequences (Harmanci et al., 2009).

In methods described in the next section, one of the above techniques is employed to compute a final

prediction; see the ‘‘Comp’’ column in Table 1 below.

3. CLASSIFICATION OF VARIOUS ESTIMATORS IN BIOINFORMATICS
FROM THE VIEWPOINT OF MEA

In this section, we classify various estimators appearing in bioinformatics from the viewpoint of MEA.

The classification considers the type of predictive space, the gain function, and the optimization method.

For a summary of the classification, see Table 1.
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3.1. Feature predictions in biological sequence

3.1.1. Transmembrane topology prediction and signal peptide prediction. For the prediction of

sequence features like transmembrane topology, signal peptides, coil-coil structures, and protein secondary

structures (which are formulated as Problem 1; for example, see Example 1), the ‘‘Optimal accuracy

decoding’’ method used in Kall et al. (2005) can be considered as the MEA estimator of the gain function

G(label) (Eq. (2)). Also, in transmembrane topology prediction and signal peptide prediction, the authors

showed that this estimator achieved superior performance to the ML estimator and a (heuristic) posterior

decoding method (cf. Section 4.2) proposed by Fariselli et al. (2005).

Moreover, the authors proposed an improved method for the problem which incorporated homologous

sequence information (given by sequences aligned to the target sequence). This method can be considered

as a representative MEA estimator (Section 2.4.1; Example 13) of the gain function G(label). In their article,

the authors showed that prediction accuracy was substantially improved by employing homologous se-

quence information.

3.1.2. Gene prediction. Gene prediction is formulated as Problem 1 with Y =G(x). Gross et al.

(2007a) proposed the ‘‘maximum expected boundary accuracy’’ estimators for predicting genes in genomic

sequences (the distribution p(hrx) on G(x) is based on a conditional random field [CRF] model in their

study). It is easily seen that this is equivalent to the MEA estimator of the gain function G(boundary)
c in Eq. (3)

(see Example 6). In their evaluation study, ‘‘Gene Sensitivity(Sn)/Specificity(Sp)’’ (gene level accuracy),

‘‘Exon Sn/Sp’’ (exon level accuracy), and ‘‘Nucleotide Sn/Sp’’ (nucleotide level accuracy) were used as

accuracy measures. For Gene/Exon Sn/Sp, accurate prediction of the boundaries of genes and exons is

important, because, for example, exon predictions were counted as correct only if they matched the

boundaries of the reference (correct) exon exactly. The MEA estimator of G(boundary)
c is, therefore, suited to

those accuracy measures. Although the authors did not compare this estimator with the ML estimator or

other decoding methods, they showed that it outperformed other state-of-the-art gene predictors.

3.1.3. HIV recombination detection. For the problem of detecting recombination in the genome of

the human immunodeficiency virus (HIV) with jumping hidden Markov models (HMMs) (Schultz et al.,

2006), Nánási et al. (2010) proposed using the highest expected reward decoding (HERD) for the HMMs.

This is a kind of MEA estimator with a special gain function that is an extension of G(boundary)
c Eq. (3)).

(Their gain function characterizes the similarity between any two annotations including boundaries.) They

showed that their estimator is superior to both the ML estimator and the maximizing expected boundary

accuracy estimator (see Section 3.1.2) for this problem.

3.2. Pairwise/multiple/local alignment of biological sequences

3.2.1. Pairwise alignment. For the problem of (pairwise) alignment of two sequences x and x0

(Problem 1 with Y =A(x‚ x0)), a posterior probability distribution of alignments of the given sequences

p(hrx, x0) (for h 2 A(x‚ x0)) can be obtained by the Miyazawa model (Miyazawa, 1995), a pair HMM

(Durbin et al., 1998), and the CONTRAlign model (Do et al., 2006b), which are utilized in the following

MEA estimators.

Miyazawa (1995) proposed an estimator for pairwise alignments, which constructs alignments by using

all the aligned bases whose posterior probabilities are larger than 0.5. Interestingly, a set of aligned bases

whose probability is larger than 0.5 always produces a consistent alignment (Miyazawa, 1995; Carvalho

and Lawrence, 2008) (i.e., one contained in A(x‚ x0)). It is easily seen that this estimator is equivalent to the

MEG estimator of G
(centroid)
1 (i.e., the centroid alignment) with the Miyazawa model. Miyazawa (1995) also

showed that the centroid estimator is superior to the conventional maximum score estimator in compu-

tational experiments.

Miyazawa’s approach (Miyazawa, 1995) typically gives rise to an incomplete alignment that contains a

number of unaligned residues (because all the paired residues whose posterior probability is less than 0.5

are unaligned). As an alternative, Holmes and Durbin (1998) proposed an estimator that maximizes the sum

of posterior probabilities of aligned bases. This estimator is equivalent to the MEG estimator of G(centroid)
c

with a infinite c, and is suited to the sensitivity of the aligned residues (but not to PPV).

Recently, Frith et al. (2010) employed the MEG estimator of the gain function G(centroid)
c (i.e., the c-

centroid alignment; see Example 8), in a generalization of Miyazawa (1995) and Holmes and Durbin
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(1998). The c-centroid alignment is suited to accuracy measures based on (un)aligned bases. By using the

parameter c, the balance between the sensitivity and PPV with respect to (un)aligned bases is adjustable.

On the other hand, the alignment method proposed in Schwartz et al. (2005) and Schwartz, (2007) is

equivalent to the MEA estimator of the gain function G(2dim)
c (see Example 11). In their article, they showed

that the estimator maximizes the expected alignment metric accuracy (AMA), where the AMA is derived

from a metric or distance between two pairwise alignments.

It should be emphasized that each of the above estimators can be efficiently computed by a Needleman-

Wunsch-style DP algorithm in O(rxrrx0r) time. The recursive equation of the DP is written as

Mi‚ k = maxfMi - 1‚ k - 1 + Xik‚ Mi - 1‚ k‚ Mi‚ k - 1g‚ (8)

where Mi,k stores the optimal value of the alignment between two sub-sequences x1‚ ...‚ i and x01‚ ...‚ k, and Xik

is defined as follows.

For the alignment method proposed by Holmes and Durbin (1998), Xik is set to be pik, the marginal

probability that xi and xk
i align with each other; for the MEG estimator of the gain function G(centroid)

c (c-

centroid alignment) (Frith et al., 2010), Xik is set to be (c + 1)pik - 1; for the MEA estimator of the gain

function G(2dim)
c (AMA alignment) (Schwartz et al., 2005), Xik is set to be 2cpik - qi - q0k where qi (resp. q0k)

are the marginal probabilities that xi (resp. x0k) aligns with a gap.

3.2.2. Multiple alignment of DNA/protein sequences. In most multiple alignment algorithms,

pairwise alignments (according to a guide tree) are first made in order to obtain a final multiple alignment

of a set of sequences S. In this step, pairwise alignment between x and x0 in S can be estimated by using the

homologous sequence information of the other sequences, H = S y{x, x0} (cf. Example 17). An approx-

imated MEA estimator of the gain function G(centroid)
c with c / N (see Section 2.4.2) is employed in several

multiple alignment problems (Hamada et al., 2011a). Interestingly, this approximated MEA estimator is

equivalent to alignment methods that use a probability consistency transformation (PCT) (Do et al., 2005).

The PCT was also used in ProbAlign (Roshan and Livesay, 2006) and PicXAA (Sahraeian and Yoon,

2010).

In the (progressive) alignment procedure, pairwise alignment between two multiple alignments (Example

15) is employed. A representative MEA estimator has been utilized in several multiple alignment algo-

rithms, including ProbCons (Do et al., 2005). Note that the final multiple alignment of these algorithms is

obtained by using a DP algorithm.

On the other hand, the estimator used in AMAP (Schwartz and Pachter, 2007) is equivalent to the MEA

estimator of the gain function G(2dim)
c for constructing multiple alignments. The optimal alignment is

computed through the stochastic approach of sequence annealing (SA).

3.2.3. Local alignment of DNA/protein sequences. Frith et al. (2010) employed the MEA esti-

mator of the gain function G(centroid)
c (c-centroid alignment; see also Section 3.2.1). It should be emphasized

that the c parameter is more important for local alignment than for global alignment, because it is used to

adjust between sensitivity and PPV with respect to aligned columns in the local alignment. In fact, the

authors showed that the c-centroid alignment with an appropriate c value greatly reduces the number of

false-positive aligned bases in genome alignments compared to the conventional maximum likelihood/

score alignment computed by the Viterbi algorithm.

3.3. Sequence analyses of RNAs

This field is one of the most successful applications of MEA estimation. The importance of sequence

analysis of RNAs has increased due to the recent discovery of (functional) non-coding RNAs (Carninci and

Hayashizaki, 2007; Mattick, 2005).

3.3.1. RNA secondary structure prediction. RNA secondary structure prediction (i.e., Problem 1

with Y =S(x) for an RNA sequence x) is a fundamental and classical problem in RNA information analysis.

There exist several state-of-the-art probabilistic models for secondary structures of a given RNA se-

quence: (a) the McCaskill model (McCaskill, 1990) with experimentally determined energy parameters

(Mathews et al., 1999), (b) the McCaskill model with Boltzmann likelihood (BL) parameters (determined
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by a machine learning method) (Andronescu et al., 2010, 2007), (c) the CONTRAfold model (Do et al.,

2006a) based on the conditional random field (CRF) model, and (d) the stochastic context free grammar

(SCFG) model (Dowell and Eddy, 2004). Those models can be utilized as the probability distribution on the

predictive space Y =S(x).
The estimator used in Sfold (Ding et al., 2005) can be considered as the MEG estimator of the gain function

G
(centroid)
1 (i.e., the centroid estimator) with the McCaskill model. In Sfold, the (optimal) secondary structure is

computed by using a stochastic sampling technique instead of a DP algorithm. The authors showed that

predictions using the centroid estimator contain fewer errors than conventional MFE predictions.

CONTRAfold (Do et al., 2006a) utilized the MEA estimator of the gain function G(2dim)
c (Example 10)

with the CONTRAfold model. This estimator is a pioneering work on MEA estimation in RNA secondary

structure predictions and has been applied in a number of other studies of RNA sequence analysis (Lu et al.,

2009; Lorenz and Clote, 2011). Computational experiments in Do et al. (2006a) showed that the MEA

estimator of the gain function G(2dim)
c is superior to the ML estimator. More recent software, MaxExpect (Lu

et al., 2009) and RNAlocopt (Lorenz and Clote, 2011), also utilized the MEA estimator of G(2dim)
c .

On the other hand, Hamada et al. (2009a) proved that the MEA estimator of the gain function G(2dim)
c is

not optimal for sensitivity, PPV, and MCC with respect to base pairs, which are the commonly used

accuracy measures of secondary structure prediction. CentroidFold (Hamada et al., 2009a), therefore,

utilized the MEA estimator of the gain function G(centroid)
c with various probabilistic models of secondary

structures. Several computational experiments supported the theoretical result that the MEA estimator of

the gain function G(centroid)
c is better than both the MEA estimator of the gain function G(2dim)

c and ML

estimators, when the probabilistic model of secondary structures is fixed.

If we have the homologous sequences of the target RNA sequence (Example 16), the probability

distribution of secondary structures of the target RNA sequence should be provided by the marginalized

probability distribution of structural alignments between the target sequence and homologous sequences.

An approximated MEA estimator with this probabilistic distribution has also been proposed (Hamada et al.,

2009c). (The software implementing this approach is called CentroidHomfold.) In Hamada et al. (2009c,

2011c), the authors showed that the accuracy of secondary structure prediction was greatly improved by

employing homologous sequence information.

The computation of most of the estimators described above is conducted by using a Nussinov-type DP

algorithm (Nussinov et al., 1978) in O(rxr3) time:

Mi‚ j = max
n

Mi + 1‚ j‚ Mi‚ j - 1‚ Mi + 1‚ j - 1 + Xij‚ max
k

[Mi‚ k + Mk + 1‚ j]
o

‚ (9)

where Mi,j stores the best score of the sub-sequence xixi + 1 . . . xj and Xij is one of the following options.

Xij = (c + 1)pij - 1 for the MEA estimator of the gain function G(centroid)
c , and Xij = 2cpij - qi - qj for the

MEA estimator of the gain function G(2dim)
c where qi is equal to loop probability of the position i. (Note that

Xij = 1 when (xi, xj) form a base pair [e.g., Watson-Crick and Wobble base pairs] for Nussinov algorithm

[Nussinov et al., 1978].)

Although no efficient method has been reported to maximize expected Acc, where Acc is equal to MCC

or F-score (i.e., the MEG estimator with the gain function G(Acc) [Eq. (5)]), Hamada et al. (2010) have

recently proposed an approximate method that uses a pseudo expected MCC or F-score that is a quite good

approximation to the expected MCC or F-score, respectively.

3.3.2. Common secondary structure prediction of multiple alignment of RNAs. The problem is

to predict a secondary structure whose length is equal to the length of an alignment. This is often called a

common or consensus secondary structure (Example 12). The RNAalifold model (Bernhart et al., 2008;

Hofacker et al., 2002) and the Pfold model (Knudsen and Hein, 1999, 2003) directly provide a probability

distribution p(hrD) for the common secondary structures of a given alignment D. Those probabilistic

models are then used in the following MEA estimators.

The estimator used in the latest version of Pfold (Knudsen and Hein, 2003) is the MEA estimator of the

gain function G(2dim)
c with the Pfold model. (The initial version of Pfold [Knudsen and Hein, 1999] utilized

the ML-estimator with the Pfold model.)

RNAalifold (Bernhart et al., 2008) employs the centroid estimator (the MEA estimator of the gain

function G
(centroid)
1 ) with the RNAalifold model as an option. (RNAalifold adopts the ML estimator with the

RNAalifold model as the default.)
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McCaskill-MEA (Kiryu et al., 2007b) is deemed to be a representative MEA estimator (Section 2.4.1) of

the gain function G(centroid)
c with the McCaskill model (McCaskill, 1990). The authors showed experi-

mentally that McCaskill-MEA was more robust to input alignment errors than RNAalifold and Pfold.

The estimator used in PETfold (Seemann et al., 2008) can be considered as a representative MEA

estimator of the gain function G(2dim)
c with a mixture of the distributions of the Pfold and McCaskill models.

Using the mixed distribution enables us to consider both phylogenetic and free energy information.

Recently, Hamada et al. (2011b, 2009a) also utilized a representative MEA estimator (Section 2.4.1) of

the gain function G(centroid)
c . They theoretically and experimentally showed that the estimator is superior to

McCaskill-MEA, PETfold, RNAalifold, and Pfold with respect to commonly used evaluation methods of

common secondary structure prediction. (The evaluation of a predicted common secondary structure is

usually conducted by comparing every mapped secondary structure of the common secondary structure to

the reference structure.) See Hamada et al. (2011b) for a classification of algorithms for common secondary

structure prediction from the viewpoint of MEA.

All the estimators described above can be computed by a DP algorithm similar to Eq. (9) (Hamada et al.,

2011b).

3.3.3. Multiple alignment of RNAs. Because secondary structures are closely related to the func-

tions of (functional) non-coding RNAs, the standard multiple alignment method (Section 3.2.2) is generally

insufficient for aligning RNA sequences. Instead, structural alignment is appropriate where both consensus

secondary structure and alignment are simultaneously estimated and optimized. However, it is known that

the computational cost of structural alignment is high (Sankoff, 1985).

In Hamada et al. (2009b), the authors proposed a fast and accurate method for aligning multiple RNA

sequences (CentroidAlign). Their estimator is equivalent to an approximate MEA estimator, which is an

approximation of the MEA estimator of the gain function G(centroid)
c with a probability distribution on usual

alignments given by marginalizing the Sankoff model (cf. Example 18). Moreover, in CentroidAlign, a

representative MEA estimator was also utilized when a progressive alignment is carried out. The authors

showed that CentroidAlign is fast enough to deal with long RNA sequences and that it achieved favorable

accuracy when compared to other algorithms.

3.3.4. Local alignment of RNAs. Tabei and Asai (2009) proposed a method (SCARNA-LM) for

computing local alignment of RNAs. They utilized the MEA estimator with the gain function G(centroid)
c for

local alignment of RNA sequences. The probabilistic model for local alignments was based on the ProDA

model (Phuong et al., 2006) (the authors incorporated secondary structure information into the model).

They showed that their (MEA) estimator was better than the posterior decoding method used in ProDA

(Phuong et al., 2006).

3.3.5. RNA-RNA interaction prediction. RactIP (Kato et al., 2010) estimates RNA-RNA interac-

tions, that is, joint secondary structures of two interacting RNA sequences. The method used in RactIP can

be seen as an approximated MEA-based estimator with the gain function G(centroid)
c . An approximated

probability distribution of joint secondary structures of two sequences (the product of a probability dis-

tribution for secondary structures of the RNA sequence and that of the interactions between two RNA

sequences) was utilized. In RactIP, the optimal prediction is solved by IP (Nemhauser and Wolsey, 1988).

Although IP generally incurs a huge computational cost (NP-hard), RactIP runs very fast by using a (non-

heuristic) threshold cut method (in which the base pairs whose posterior probability is less than a threshold

computed from a given c do not form base pairs) by virtue of the c-centroid estimator. Note that a joint

structure can be computed by using a DP algorithm although it incurs a relatively high computational cost

(O(L5)*O(L6), where L is the length of the joint structure).

Seemann et al. (2011) proposed an algorithm (PETcofold) to predict an RNA-RNA interaction between

two multiple alignments of RNA sequences. The aim is to predict conserved interactions (and joint sec-

ondary structures) between the two multiple alignments, which is similar to the idea of predicting pairwise

alignments and common secondary structure from a given multiple alignment of RNA sequences. Their

algorithm can be seen as a representative MEA estimator with the gain function G(2dim)
c (Section 2.4.1).

Like PETfold (used for common secondary structure prediction), they used a mixed distribution from the

Pfold and McCaskill models in their estimator.
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3.4. Phylogenetic tree (topology) estimation

Phylogenetic tree (topology) estimation is a classic and important problem in sequence analysis (Durbin

et al., 1998). A phylogenetic tree for a given operational taxonomic unit (S) is represented as a binary vector

with 2n - 1 - n - 1 dimensions, where n is the number of units in S, based on partitions of S formed by cutting

every edge in the tree. The topological accuracy measure for estimated trees is often based on the partitions

(e.g., Robinson-Foulds [RF] measure [Robinson and Foulds, 1981]; Section 2.4 in Zhang et al. [2011]). A

sampling algorithm can be used to estimate the partitioning probabilities (Metropolis et al., 1953).

Felsenstein (1985) proposed the X%-consensus tree, and the 50% consensus tree is equivalent to the tree

of the centroid estimation (i.e., the centroid tree). Moreover, it is easily seen that the X%-consensus tree is

equivalent to the MEG estimator with the gain function G(centroid)
c (i.e., the c-centroid tree) with c = (100 -

X)/X. The centroid tree is known to be suited to the topological distance (Robinson and Foulds, 1981),

because it minimizes the expected topological distance. On the other hand, the c-centroid tree is appropriate

for sensitivity and PPV based on partitions of the tree (Dessimoz and Gil, 2010). However, although the c-

centroid tree with c < 1 can be computed by selecting all the partitions (of operational taxonomic unit)

whose probability is larger than 0.5 (Hamada et al., 2011a), no efficient method (such as a DP algorithm)

has been reported for computing the c-centroid tree for c > 1.

4. DISCUSSION

4.1. Avoiding point estimations

As described in Section 1, it is difficult to design reliable point estimators for Problem 1. Although point

estimation based on the viewpoint of MEA provides a promising approach to the problem, solutions still have

extremely low probability. It is, therefore, desirable to avoid point estimation if possible. When a pipeline is

developed by combining several estimation algorithms, point estimation should be avoided in the middle of

the pipeline even if the final prediction is a point estimation. For example, when a phylogenetic tree is

estimated from several unaligned sequences, one standard approach is to predict a multiple alignment of the

sequences and then estimate a phylogenetic tree from the predicted multiple alignment. This approach would

not be appropriate because point estimation of multiple alignments is uncertain (i.e., results have low

probability). Hence, if possible, a phylogenetic tree should be estimated considering all the possible multiple

alignments. Although, in general, the computational cost might be increased by considering all the possible

alignments, an approach similar to that in Section 2.4.2 is useful for reducing computational cost. It should be

noted that the credibility limit of a point estimation (Webb-Robertson et al., 2008; Newberg and Lawrence,

2009) is also useful, because it is considered as a global measure of the estimation.

Another possible approach for avoiding the unreliability of point estimation for Problem 1 is to predict

several suboptimal solutions (Steffen et al., 2006; Wuchty et al., 1999), giving up point estimations. It would

also be useful to cluster solutions in the predictive space and estimate a solution for every cluster (Ding et al.,

2004). Note that we can employ MEA-based estimators (e.g., with the gain function G(centroid)
c ) for every

cluster because a probability distribution on each cluster can be obtained by a stochastic sampling algorithm.

4.2. Posterior decoding methods (PDMs)

MEA/MEG estimators are considered as a special case of posterior decoding methods (PDM). In

posterior decoding methods, several marginal probabilities are (heuristically) employed in order to obtain

(decode) a final point estimation. Although it is often difficult to interpret PDMs from the viewpoint of

MEG/MEA, we now list posterior decoding methods appearing in bioinformatics.

For sequence feature prediction (Section 3.1), Fariselli et al. (2005) proposed a posterior decoding

method to predict the topology of all beta membranes proteins.

For pairwise/multiple alignment of biological sequences (Sections 3.2.1 and 3.2.2), ProDA (Phuong

et al., 2006) produces local multiple alignment of protein sequences, in which a posterior decoding method

with marginal probabilities for the unaligned (flanking) regions was employed. GRAPE (Lunter et al.,

2008) utilizes a posterior decoding method similar to the MEA estimator of G(2dim)
c (the AMA estimator;

Example 11). There are other posterior decoding methods for alignments: MORPH (Sinha and He, 2007),

MSAProbs (Liu et al., 2010), and others (Koike et al., 2007; Gonnet and Lisacek, 2002).

For RNA secondary structure prediction (Section 3.3.1), ProbKnot (Bellaousov and Mathews, 2010) uses

a kind of posterior decoding method to predict secondary structure with pseudo-knots. It seems difficult to
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consider their estimator from the viewpoint of MEA, although the authors call their method ‘‘maximum

expected accuracy.’’

For (structural) RNA alignments (Section 3.3.3), PARTS (Harmanci et al., 2008), RAF (Do et al., 2008),

and Murlet (Kiryu et al., 2007b) employ posterior decoding methods based on the Sankoff algorithm

(Sankoff, 1985). R-coffee (Wilm et al., 2008), PicXAA-R (Sahraeian and Yoon, 2011), and MAFFT (Katoh

and Toh, 2008) use a posterior decoding method similar to CentroidAlign (Hamada et al., 2009b) (Section

3.3.3) and do not produce structural alignment.

For (Bayesian) co-estimation of phylogeny and sequence alignment, Lunter et al. (2005) utilized a

posterior decoding method.

4.3. Training probabilistic models from the viewpoint of MEA (MEA training)

In this review, we assumed that a probability distribution p(yrD) on a predictive space Y is obtained

beforehand in Problem 1. It is, however, important to design the probability distribution p(yrD) itself.

Distributions given by a probabilistic model such as an HMM or CRF contain a number of parameters. It

would, therefore, be useful to train the parameters in the probability distribution with respect to the target

accuracy measures. This type of training is called ‘‘MEA training’’ in general, and there have been several

studies of MEA training in the field of machine learning: (Suzuki et al., 2006; Gross et al., 2007b; Jansche,

2007). There are, however, few studies applying MEA training to problems in bioinformatics (Gross et al.,

2007a), and further studies in that area would be enlightening.

5. CONCLUSION

In this review, we have briefly described the concepts of MEA estimators, which are an alternative approach

to conventional maximum likelihood or maximum score estimators. We then classified existing algorithms used

in bioinformatics from the viewpoint of MEA. We believe that this review will be useful not only for users of the

software mentioned in this review but also for developers wishing to design algorithms on the basis of MEA.

6. APPENDIX A

A.1. Accuracy measures based on TP, TN, FP, and FN

There are several measures for evaluating a prediction in estimation problems for which we have a

reference (correct) prediction (Problem 1). The sensitivity (SEN), positive predictive value (PPV), Mat-

thew’s correlation coefficient (MCC), and F-score for a prediction are defined as follows:

SEN =
TP

TP + FN
‚

PPV =
TP

TP + FP
‚

MMC =
TP · TN - FP · FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p ‚

F - score =
2 � TP

2 � TP + FP + FN

where TP, TN, FP, and FN are defined by

TP = TP(h‚ y) =
X

i

I(yi = 1)I(hi = 1)‚ (10)

TN = TN(h‚ y) =
X

i

I(yi = 0)I(hi = 0)‚ (11)

FP = FP(h‚ y) =
X

i

I(yi = 1)I(hi = 0)‚ (12)

FN = FN(h‚ y) =
X

i

I(yi = 0)I(hi = 1): (13)
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where h‚ y 2 Y � f0‚ 1gn
, h is the reference and y is a prediction. It should be noted that these measures

can be written as functions of TP, TN, FP, and FN. For other evaluation measures, see Baldi et al.

(2000).
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