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ABSTRACT

The Optical Mapping System constructs ordered restriction maps spanning entire genomes
through the assembly and analysis of large datasets comprising individually analyzed ge-
nomic DNA molecules. Such restriction maps uniquely reveal mammalian genome structure
and variation, but also raise computational and statistical questions beyond those that have
been solved in the analysis of smaller, microbial genomes. We address the problem of how to
filter maps that align poorly to a reference genome. We obtain map-specific thresholds that
control errors and improve iterative assembly. We also show how an optimal self-alignment
score provides an accurate approximation to the probability of alignment, which is useful in
applications seeking to identify structural genomic abnormalities.
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1. INTRODUCTION

Agenome-wide restriction map identifies cognate sites (4–8 bp) at which restriction endonucleases

selectively recognize and cleave DNA. Consequently, comparison of a reference and a test genome

restriction map comprehensively reveals a rich compendium of genomic differences: single nucleotide

polymorphisms (SNPs) that simply create and remove restriction sites, and structural variants comprising

insertions, deletions, inversions, translocations, and gross rearrangements that alter the size, or order of

restriction fragments. Such analysis is now a proven means for discovering and characterizing the full range

of structural variation in human populations (Teague et al., 2010).

The advantages offered by restriction maps for genome analysis are realized by the Optical Mapping

System (OM) because it develops and analyzes datasets of individually mapped DNA molecules (Schwartz

et al., 1993; Dimalanta et al., 2004; Teague et al., 2010). (A restriction map constructed from a single DNA

molecule is called an ‘‘Rmap.’’) Briefly, large genomic DNA molecules (& 0.5 Mb) are restriction di-

gested after microfluidic deposition onto positively charged glass surfaces. The microfluidic device uses a

combination of fluid flow and interaction with a charged surface to unravel and straighten normally coiled

DNA molecules. Because deposited molecules are under tension, like a stretched rubber band, restriction

cleavage triggers newly formed molecule ends to relax, producing visible gaps and creating strings of
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discrete DNA fragments that are imaged by automated fluorescence microscopy after staining with a

fluorochrome dye. An Rmap acts like a barcode that assigns genomic location to the DNA molecule.

Responsive to the unique noise characteristics of OM measurements, computational analysis assembles

putative overlapping Rmaps from the many thousands of analyzed molecules into a genome-wide re-

striction map in ways that closely parallel assembly of shotgun sequence reads. Early in the development of

OM, microbial genomes were primarily analyzed as approachable model systems for learning more about

the challenges of dealing with larger, more complex genomes. Accordingly, advances in OM have enabled

insightful analysis of human (Teague et al., 2010; Kidd et al., 2008; Antonacci et al., 2010) and plant

genomes (Zhou et al., 2007; Schnable et al., 2009; Zhou et al., 2009).

Whether or not, and where a given Rmap overlaps another restriction map presents a fundamental

inference problem in OM. We are interested in the centrally important question of how to align an Rmap to

the genome-wide map created in silico by cleaving a reference genome. In the current state of the art, each

possible alignment is scored in a way that rewards matches and penalizes discrepancies, and dynamic

programming identifies the optimal alignment (Huang and Waterman, 1992; Valouev et al., 2006). Rmaps

having relatively low scores do not align with sufficient fidelity to be useful in subsequent computations,

and these must be carefully filtered in a way that recognizes the pattern of variation in the optimal scores.

Simple thresholding schemes are inefficient because statistical properties of the optimal score depend on

characteristics of the Rmaps being aligned. We investigate this phenomenon and develop computationally

efficient Rmap-specific thresholds for identifying non-spurious alignments. We show how properties of

genomic assemblies are improved when Rmaps are filtered via Rmap-specific thresholds as opposed to

other available methods.

Assembly is the computational process in which the Rmaps become positioned relative to each other,

organized at the genomic scale, and summarized by a consensus map. For relatively small genomes, the

Gentig algorithm produces de novo assemblies without requiring an initial estimate of the genome-wide

restriction map (Anantharaman et al., 1999). This direct approach is not computationally feasible for large

(e.g., mammalian-sized) genomes, although de novo genome assembly was accomplished indirectly using a

divide an conquer scheme (Zhou et al., 2007, 2009). Alternatively, assemblies are guided by an in silico

derived reference map, wherein Gentig is applied locally to relatively small Rmap sets aligning in small

regions, and then the local assemblies are stitched together. In iterative assembly, the resulting consensus

map is used to guide a subsequent round of alignment, local assembly, and global assembly, and then the

whole exercise is repeated until convergence (see Appendix 5.2) (Teague et al., 2010). The decision of

whether or not an Rmap aligns to the current consensus map is a key computational element that is called

many thousands of times during iterative assembly. The precise rule for declaring alignment significance

has an effect on genome assembly and any derived inferences about polymorphism or structural variation.

The optical mapping system was designed and developed to comprehensively reveal human and cancer

structural variation: structural variation describes those genomic polymorphisms and mutations ‡ 1 kb

(Scherer et al., 2007). The main strategy for such identification is to assemble the Rmaps and then to detect

aberrations by a screen of the assembly against the reference genome (Teague et al., 2010). The detection

of copy number variants is a special case that is possible without assembly and thus has some advantages

(Sarkar, 2006). Briefly, a copy number gain is indicated if an abnormally large number of Rmaps align at a

given locus, while a loss is indicated when too few Rmaps align. Because very long Rmaps (& 0.5 Mb) are

tallied in place of probes or short sequence reads, findings are complementary to traditional copy number

variant (CNV) analysis (Sebat et al., 2004). There is a statistical bottleneck created by this assembly-free

strategy, however, because even in the absence of copy number variation there is variation across the

genome in the probability of alignment. As a result, the successfully aligned Rmaps represent a non-

uniform thinning of the originals, and a baseline against which copy number variants may be measured is

similarly non-uniform. A solution is possible via normalization if we can compute the probability of

alignment for each Rmap. We show how a certain self-alignment score provides a fast approximation to the

probability of alignment, thus facilitating a normalization of optical map coverage.

Our methods are developed and tested on Rmaps from GM07535, a normal human lymphoblastoid cell

line, one of the first applications of OM to the human genome (Lim, 2004). The dataset consists of 206,796

Rmaps, the subset exceeding 0.3 Mb from a larger panel. The Rmaps were aligned against an in silico

reference map derived from NCBI Build 35 of the human genome sequence, with sequence gaps replaced

by their estimated lengths, and utilizing ungapped global alignment. For validation, we use an independent

dataset of 416, 284 Rmaps obtained from a complete hydatidiform mole (CHM), artificially created to be
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homozygous (Teague et al., 2010). Additionally, we evaluate methods using 50,000 Rmaps simulated from

the human reference (Appendix 5.3 gives details of the generative model).

2. METHODS

2.1. Map significance

Denote an Rmap by M and the in silico reference map by G. These record sites of enzyme recognition in

the single molecule and the reference genome, respectively. Among all possible alignments of M to G,

allow that an optimal one has maximal score S = S(M,G). We view M as arising from G by some

stochastic mechanism that depends on technical aspects of OM and also biological differences between the

sampled genome and the reference. If the signal is sufficiently degraded, then even the optimal alignment is

probably incorrect, and using it in assembly, for example, would unduly inflate errors. The problem is to

decide whether or not the optimal alignment score S is statistically significant in some sense. This requires a

reference distribution for S under a suitable null hypothesis.

Our approach avoids specifying a probability model for the generation of Rmaps. An accurate model

might need to be overly complex, while misspecifying the model could lead to additional errors. Instead,

we calibrate S(M,G) by fixing the Rmap through conditioning and by exploiting statistical features of the

genome. Formally, we treat both M and G as realizations of random objects M and G, and the null

hypothesis H0 on test is thatM and G are independent. Independence means that knowing one object is of

no use in predicting the other. This holds whenM does not originate from G, but also effectively reflects

the situation where noise in generatingM has fully degraded any attributes of G. Under H0, any alignment

of M to G is spurious, and so we call S(M,G) (or a realization thereof) a best spurious score.

We make the nonparametric assumption on G that it is the concatenation of a set F(G) of fragments, with

fragment sizes that are independent and identically distributed (i.i.d.) random variables. This is weaker, for

example, than assuming fragment sizes are i.i.d. exponentially distributed variables, as would be the case in

a homogeneous Poisson-process model for G (Valouev et al., 2006). A look at empirical fragment sizes in

the build 35 G supports this treatment (Fig. 1). Rather than adopt a specific fragment model, we instead

condition on the set of observed fragment sizes F(G) in calibrating an alignment. We say that the optimal

alignment of M to G is statistically significant at level a if the optimal score S(M,G) exceeds the threshold

ca defined so that the conditional probability

PfS(M‚G) > cajH0‚M = M‚ F(G) = F(G)g = a:

The assumptions taken are precisely those justifying permutation analysis to calibrate S (Cox and Hinkley,

1979). Indeed, permutation is often used in related areas of sequence alignment (Mitrophanov and

FIG. 1. Lack of auto-correlation

in in silico fragment lengths in-

duced by the SwaI enzyme in build

35 of the human reference genome

(chromosome 1). Fragments are

ranked by size and then successive

pairs of ranks are plotted (left). The

uniform scatter is consistent with

lack of first-order autocorrelation

of fragment sizes. Lack of structure

in the spectral density of the ranks

is another view consistent with the

independence assumption (right).

Results from other chromosomes

are similar and not shown. The

absence of substantial dependence

justifies calibration by fragment

permutation.
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Borodovsky, 2006). In the absence of computational restrictions, significance could be assessed by gen-

erating genomes G1‚G2‚ . . . via random shuffling of fragments, with S(M‚Gi) computed in each case. The

(1-a) quantile of the resulting empirical distribution approximates ca, which is both Rmap-M specific and

dependent on general features of the genome through F(G). The permutation strategy preserves charac-

teristics of the reference that affect the spurious score distribution, namely the number and lengths of

fragments. Permuting the order of fragments is also reasonable given the additive nature of score functions,

which reward matches in order. A small adjustment to the strategy is suggested by the finding that

fragment-size distributions fluctuate among chromosomes; thus the shuffling can be restricted to re-arrange

fragments separately on different chromosomes. A larger problem, however, is computational. The strategy

seems to require that every Rmap have its optimal alignment score computed on a large number of

randomized genomes, which would be prohibitive in routine applications of OM. We introduce two

standardized optimal alignment scores that avoid this requirement.

Our computational experiments utilize two scoring functions: a custom score implemented in the SOMA

software package (Kohn, 2003), and a likelihood-ratio (LR) score (see Appendix 5.1) (Valouev et al.,

2006). Figure 2 exposes the strong dependence of the best spurious SOMA score on M (a similar pattern is

seen in Fig. 3 with the LR score). Two random permutations of the build 35 G were used to produce two

optimal scores for each M. The correlation between the scores is strong and suggests a decomposition
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FIG. 2. Dependence of spurious scores on

Rmap. For each Rmap, the optimal scores for

ungapped global alignment against two inde-

pendent permutations of the reference are plotted

against each other. The scores are highly corre-

lated, indicating a significant Rmap-specific

component in the distribution of the best spurious

score. The two-dimensional (2-D) histogram uses

hexagonal binning (Carr et al., 1987).
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FIG. 3. Likelihood ratio (LR) scores for un-

gapped global alignment (Valouev et al., 2006).
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silico reference are plotted against each other.
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S(M‚G) = l(M) + r(M) �(M‚G) (1)

under H0, where l(M) and r(M) are the Rmap-specific mean and standard deviation, and 2 (M‚G) is a

mean zero, unit variance deviation. Our approach is to standardize S(M‚G) by subtracting an estimated

mean and scaling by an estimated standard deviation, in order to approximate �(M‚G). One difficulty is in

deriving computationally efficient estimates, in place of the obvious estimates obtained by many permu-

tations and re-alignments. For both standardized statistics we treat r(M) as a linear function of l(M),
namely, r(M) = s(d - l(M)). This is justified both from Figure 2 and additional numerical experiments (Fig.

4), and allows estimation by fitting a generalized least squares model.

Direct approach: Using a relatively small number of permuted reference genomes G1‚G2‚ . . . ‚Gn‚

align M to each and construct

l̂dir(M) =
1

n

Xn

i = 1

S(M‚Gi):

Then estimate the scale parameter d̂dir using alignments of all Rmaps against an additional genomic

permutation Gn + 1, and form the standardized statistic (ignoring the constant s)

Tdir(M‚ G) =
S(M‚ G) - l̂dir(M)

d̂dir - l̂dir(M)

Regression approach: Approximate l(M) by a linear function l̂reg of the number of fragments and the

base-pair length, with coefficients estimated in a genome-wide multiple linear regression ofl̂reg(M) on the

two size predictors (Fig. 5). The model directly incorporates the variance structure, and is estimated using

generalized least squares, yielding the standardized statistic
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FIG. 4. Variance of errors. The x-axis encodes

the expected best spurious score, l(M), as esti-
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four permutations of G. On the y-axis are abso-
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FIG. 5. Parametric models for

l(M), the expected best spurious

score. The average of four best

spurious scores for each Rmap is

plotted against the number of

fragments N, the length L, and the

fitted values from a linear model

with terms N, L, and their product

NL. The multiple regression model

explains more of the variability and

also suggests a more symmetric

distribution of the errors.
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Treg(M‚ G) =
S(M‚ G) - l̂reg(M)

d̂reg - l̂reg(M)
:

A further difficulty is in finding a suitable reference distribution for either standardized optimal align-

ment score. Since standardization has removed the dominant Rmap effects, we can use the empirical

distribution of standardized scores computed across all Rmaps on a single genome shuffling. (This step

makes the inclusion of s in the standardized statistics redundant.)

A modified-constant filtering procedure has been useful in lab work. It requires at least n aligned

fragments and that the SOMA score S > s. This addresses the need to retain only highly scoring Rmaps, and

to accommodate Rmap length characteristics, but it is difficult to tune (no error rates are targeted) and it

entails dependence on the alignment itself rather than the Rmap. We compare our proposed thresholding

schemes to this modified-constant method for (s = 4.5,n = 10) and (s = 2.75,n = 10).

2.2. Alignment probability

Even for Rmaps derived from a normal genome, significant alignments are not distributed uniformly

along the genome, owing to fluctuations in the local characteristics of the normal restriction map. Figure 6

illustrates the non-uniform alignment process. Knowing the null probability that an Rmap will align is

necessary to normalize coverage in order to call significant copy number variants in a test genome. To

address this problem we consider the logistic approximation

FIG. 6. Schematic representation

of ‘‘thinning’’ in Rmap alignments.

The horizontal axis represents the

underlying genome, with vertical

lines indicating restriction sites.

(Left) Rmaps are represented as

intervals. (Right) They are viewed

as point events represented by

the midpoint of the Rmaps. (Top)

The top panel in both plots repre-

sent the true shotgun random sam-

ple of Rmaps that originated from

this region. Actual Rmaps obtained

by image processing will have

noise, including sizing errors,

missing cuts and false cuts, so not

all these Rmaps will be success-

fully aligned. Further, the chance

of being aligned may depend on the

location of the Rmap; for example,

Rmaps with fewer fragments (from

regions with fewer recognition

sites) may be less likely to align

than Rmaps of similar length with

more fragments. (Bottom) In the

bottom panels, which represent the

results of alignment, unaligned

Rmaps are indicated in gray. Since

the probability of being success-

fully aligned depends on the origin,

the locations of aligned Rmaps,

which is what we actually observe,

are no longer uniformly distributed.
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P(alignedjM) =
ea + b log w(M)

1 + ea + b log w(M)
(2)

where a and b are fitted parameters and w(M) = S(M‚ M) is the optimal alignment score obtained in

aligning an Rmap to itself.

Being the perfect match score, the self-alignment score w(M) is a natural measure of information

contained in the Rmap. Not only is it higher for Rmaps with more fragments, but it is also affected by the

lengths of the component fragments (score functions reward matches involving longer fragments because

they are rarer). We expect Rmaps with lower information content to be less likely to align, and we see later

that the logistic model above is indeed useful in predicting alignment probability. The self-alignment score

for each Rmap is a useful summary statistic by itself, with uses beyond that of approximating the alignment

probability.

3. RESULTS

3.1. Map significance

Direct and regression approaches provide similar results in standardizing optimal alignment

scores: The mean spurious scores l(M) for each of the 206,796 GM07535 Rmaps were estimated using

n = 4 permutations of the reference. A fifth permutation was used for parameter estimation and a sixth for

obtaining 99% and 99.9% significance thresholds. Table 1 summarizes alignment frequencies from both

approaches. The approaches largely agree, indicating that the linear approximation of l(M) is accurate. For

aligning a new Rmap, the regression method is of more practical value, as it requires a single alignment to

G, whereas the direct method also requires additional alignments to several permuted references to estimate

l(M).
Regression standardization and the modified-constant threshold have comparable alignment error

rates: The regression approach was applied to 50,000 simulated Rmaps derived from the human reference

via a generative OM model (see Appendix 5.3). Optimal SOMA alignment scores were computed for each

Rmap against the reference. An Rmap does not align if its optimal score is below the Rmap-specific

threshold. All alignments with score exceeding the threshold are declared significant.

At the nominal specificity 99.9% (i.e., significance level 0.1%), 73.42% of the Rmaps had their correct

alignment declared as significant. Of these, 0.53% (0.39% of all Rmaps) had at least one spurious alignment

declared to be significant in addition to the correct one. 0.27% of the Rmaps had only spurious significant

alignments. The remaining (26.31%) did not align. The rate of false positives is somewhat larger than the

nominal rate, but this is not surprising given the presence of large segmental duplications in the genome and

the homology between the X and Y chromosomes.

On the 50,000 simulated Rmap set, the modified-constant procedure (s = 4.5,n = 10) has 68.79% of

correct alignments declared as significant, of which 0.40% (0.28% of all Rmaps) had spurious significant

alignments as well. 0.15% of the Rmaps had only spurious alignments. 31.06% had no alignments.

The regression approach and the modified-constant approach give comparable yields of aligned Rmaps,

with the regression approach having the additional advantage of allowing calibration of error rates. A more

difficult issue has to do with the quality of the aligned Rmaps. This comes to our central finding about how

the regression approach improves characteristics of Rmap assemblies.

Table 1. Percentage of GM07535 Rmaps (Out of 206,796) Declared Significant

or Not by the Two Standardization Approaches and Using Two Significance Levels

Nominal specificity: 99.0% (99.9%)

Regression

Direct Not significant Significant

Not significant 63.3 (72.9) 2.3 (1.1)

Significant 2.9 (2.8) 31.6 (23.2)

There is no gold-standard available for comparison, but the two approaches provide similar filters on the

GM07535 Rmap collection.
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Standardized alignment scores improve assemblies: Fig. 7 summarizes the effect on iterative as-

sembly of four filtering strategies: two regression cutoffs with different nominal specificities (99.9% and

99.0%), and two variants of the modified-constant approach previously used. (The modified-constant cutoff

[s = 2.75, n = 10] allows roughly the same number of Rmaps in the first step as the 99.0% regression

cutoff.) The results represent assemblies of chromosome 2 using the CHM dataset (which is independent of

the dataset used to estimate parameters of the regression cutoff). To allow partial alignments at the

boundary of the reference, ‘‘aligned length’’ and ‘‘count’’ are used as surrogates for length and number of

fragments, which effectively make the regression cutoffs more conservative than their nominal specificities

would suggest.

A simple measure of the success of an alignment strategy is the the proportion of Rmaps passing the

alignment step that are included in the ultimate assembly. The higher the better, as the set of aligned maps

exhibit a high level of internal consistency when successfuly assembled. By this retention ratio, the

regression cutoffs perform better than the modified-constant cutoffs with a comparable number of input

Rmaps (Fig. 7, upper panel). Other quality measures that consider bases covered by the assembly, gaps, and

unaligned Rmaps consistently favor alignment cutoffs by the regression approach rather than the modified-

constant approach (Fig. 7, lower panel).

3.2. Alignment probability

Even if all declared alignments are correct, the set of inferred locations is a subset of the true locations

because not all Rmaps successfully align. The probability that an Rmap successfully aligns depends in part

on the origin of the Rmap. Understanding this dependence is necessary to normalize observed coverage; for

example, increased coverage in a region could be due to increased copy number of the underlying genome,

but could also be due to increased alignment probability of Rmaps from that region.

The location-specific alignment rate can be estimated using Monte Carlo simulation of noisy Rmaps

from a normal reference map followed by alignment, thus replicating the pipeline actual Rmaps go through.

The most time consuming step in this process is alignment. As an alternative that bypasses alignment, we
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FIG. 7. Comparison of signifi-

cance strategies through the itera-

tive assembly procedure.

Chromosome 2 is assembled using

the CHM data and the SOMA

score. Two versions of the regres-

sion-based cutoff, with nominal

specificities of 99.9% and 99.0%,

are compared with the modified-

constant schemes. (Top) The top

row reports the number of Rmaps

that aligned and were consequently

fed into the assembly step, and the

number (and proportion) of these

Rmaps that were represented in the

assembly. (Bottom) In the bottom

row, we attempt to assess the

quality of the assembly by aligning

the consensus assembly to the

original in silico reference. The

first two panels graph the number

of bases in the reference covered

and the numbers of gaps; the third

panel shows a crude measure of the

false positive rate, namely, the

proportion of bases in the consen-

sus assembly that do not align to

the reference.

STATISTICAL SIGNIFICANCE OF OPTICAL MAP ALIGNMENTS 485



considered the logistic regression model (2), where the probability of an Rmap being aligned is modeled as

a function of the self-alignment score w(M). We estimated the parameters of this model using the 50,000

simulated Rmaps mentioned previously; the predictor is the self-alignment score, with the response indi-

cating whether the optimal score exceeded the regression cutoff with nominal specificity of 99.9%. The

fitted model was then used to estimate the alignment probability for a new set of Rmaps simulated from

chromosome 14, for which actual alignments were also obtained. Figure 8 compares the kernel density

estimate obtained from the aligned locations with the estimated density of the true locations of all simulated

Rmaps weighted by their estimated alignment probabilities. The densities estimated by the two methods are

close, suggesting that we can do away with the alignment step without substantial drawbacks.

The self-alignment score w(M) can also help filter Rmaps. Figure 9 plots optimal scores for the 50,000

simulated Rmaps when aligned to the real and a permuted reference map, against their self-alignment

scores. The two scatter clouds are distinctly different, overlapping only for low w(M). The logistic

FIG. 8. Comparison of empirical

and predicted alignment rates. The

probability that an Rmap will be

successfully aligned depends on the

origin of the Rmap. The (relative)

fluctuation in the alignment rate

as a function of location is an im-

portant quantity, but its estimation

requires alignment of many simu-

lated maps, which is computation-

ally expensive. Here we assess

the performance of an approximate

method. The data are roughly

10,000 simulated Rmaps from hu-

man chromosome 14. The first

curve is the kernel density estimate

of locations obtained from align-

ments declared significant; this

density can be used as a relative

alignment rate. The second curve is

the density of the true locations of

the same simulated Rmaps, but

with weights given by model (2).

The alignment-free method provi-

des an accurate approximation.

Location (Mb)

D
en

si
ty

0.000
0.005
0.010
0.015

20 25 30 35 40 45 50

0.000
0.005
0.010
0.015

50 55 60 65 70 75

0.000
0.005
0.010
0.015

75 80 85 90 95 100 105

Actual alignments Predicted by model

self−alignment score

O
pt

im
al

 s
co

re

−20

−10

0

10

20

10 20 30 40

Real

10 20 30 40

Permuted Counts

1
4
9
16
24
35
47
62
78
97

117
139
163
189
217
247
279

FIG. 9. Optimal scores with the

real and a permuted reference map

are plotted against w(M) for 50,000

simulated Rmaps. The solid diago-

nal line represents the ideal score

for an Rmap, had it been com-

pletely error free.

486 SARKAR ET AL.



regression model (2) serves to quantify this phenomenon; Rmaps in the overlapping area have low

alignment probability. To save computational resources, we might consider removing Rmaps with low

predicted alignment probability prior to alignment. More interestingly, the analogous plots for real Rmap

data, shown in Figure 10, exhibit different behavior: for many Rmaps with high w(M), the optimal score

with the real reference seems to follow the spurious score distribution. These could be low quality Rmaps,

but could also arise from regions not represented in the reference genome and thus contain novel infor-

mation about the sampled genome. The set of Rmaps that have high predicted alignment probability but do

not actually align are likely to be richer in such interesting Rmaps.

4. DISCUSSION

Alignment is a fundamental, but not fully solved problem in optical mapping. Prior work has focused

primarily on the score functions for use in dynamic programming algorithms. Here we have proposed a

framework to study the distribution of spurious optimal scores, from any given score function, in order to

reduce alignment errors and improve assembly of large genomes. We have also noted the utility of the self-

alignment score of an Rmap in providing an a priori estimate of alignment probability, which can be used

to normalize observed coverage and filter Rmaps.

The methods presented are not restricted to a specific score function. Figure 3 plots the best spurious

ungapped global alignment score against two permuted references using the likelihood ratio (LR) score

proposed by Valouev et al. (2006). The correlation is weaker than with the SOMA score, but an Rmap

specific cutoff is still more appropriate than a constant cutoff. We apply the direct approach as before with

n = 4 replications to estimate l(M). The results, shown in Table 2, indicate that at least for the particular

sets of parameters used, the SOMA score is more sensitive at a comparable specificity. This is somewhat

surprising, since the LR score is based on a formal likelihood ratio test whereas the SOMA score is largely

heuristic. Numerical experiments (not shown) suggest that this is due at least in part to the sizing model

used by Valouev et al. (2006), which does not consider scaling errors and consequently underestimates the

marginal sizing variance for large fragments.
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FIG. 10. Analogue of Figure 9 for
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differences are explored in the text.

Table 2. Percentage of GM07535 Rmaps (Out of 206,796) Declared

as Significant by the SOMA and LR Scores Using the Direct Approach

Nominal specificity

Score function 99.0% 99.9%

SOMA 34.47 26.01

LR 26.09 18.84
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Our choice of null hypothesis deserves comment. Formally, we test the hypothesis that the observed

Rmap is independent of the reference map. However, it is not unlikely for an Rmap, especially a short noisy

one, to originate from somewhere in the reference but have its optimal alignment somewhere else; the null

hypothesis of independence is not true in such a case, yet we would not want to declare the optimal

alignment significant. The hypothesis we really want to test is that the optimal alignment is a spurious

alignment. Unfortunately, there are problems with this approach. Even when the optimal alignment cor-

rectly identifies the origin of a Rmap, the alignment itself may not be completely correct; so, when is an

alignment sufficiently different from the true alignment to be considered spurious? Should alignments to

incorrect but homologous regions be considered spurious? These issues are avoided by formulating the

problem as a test of independence, as is common in alignment literature (Doolittle, 1981; Karlin and

Altschul, 1990; Mitrophanov and Borodovsky, 2006). The case of a short noisy Rmap described above is

not problematic in practice, as the optimal score (as well as the correct alignment score) will rarely exceed

the significance threshold obtained under the null hypothesis of independence, even though that null is not

strictly true.

Valouev et al. (2006) suggest a model-based approach to determine significance that is similar to ours.

They postulate that the fragment lengths in the reference genome G are i.i.d. exponential variates, and

describe a conditional model for Rmaps given the reference. These are then used to derive the marginal

distribution of Rmaps, which reduces to an i.i.d. exponential distribution for the Rmap fragment lengths,

but with a different rate. Cutoffs are obtained by simulating both reference and Rmaps under the null

hypothesis of independence. This is a valid approach, but it may be sensitive to parameter estimates as well

as model misspecification, which is a legitimate concern since the conditional model excludes certain

known sources of noise, namely desorption and scaling. Our conditional non-parametric approach bypasses

these concerns. On the other hand, our permutation strategy relies on fragment lengths being i.i.d. from

some distribution, not necessarily the exponential. While we expect some degree of among-fragment

dependence, the empirical findings indicate that this dependence is relatively weak (Fig. 1).

Estimating the mean spurious score l(M) separately for each Rmap is usually feasible and more

powerful than regression. However, for alignments involving only part of an Rmap, a cutoff based on the

full map is not appropriate. This is a concern particularly for overlap matches, where alignments

Test statistics: Variability due to permutations

First set of permutations

S
ec

on
d 

se
t o

f p
er

m
ut

at
io

ns

0

10

20

0 10 20

Null / Regression Observed  / Regression

Null / Direct

0 10 20

0

10

20

Observed / Direct Counts

1

22

69

143

245

372

527

708

917

1151

1413

1702

2017

2359

2728

3124

3546
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overhanging at the boundary of the reference map are allowed. The regression approach can still be used in

such cases by considering only the aligned portion of the Rmap. The regression on N and L as used above is

of course not the only possible model, but Table 1 suggests that it explains most of the Rmap-specific

variation in the SOMA score. The direct non-parametric approach is an important exploratory tool (e.g.,

when comparing scores or deciding what parameters to use), but the regression approach is more practical

for regular use.

Our use of a limited number of permutations is essential but somewhat unusual, in the sense that the test

statistics include Monte Carlo variation. This raises the question: how many permutations are sufficient and

how do they affect the inference? In our examples, six permutations of the reference define the test: four to

estimate l(M) one to estimate model parameters, and another to obtain empirical cutoffs. Figure 11 shows

the effect of using two separate sets of these six permutations. In the direct approach, even with this small

number of permutations, the variability in the observed statistics is mild compared to the variability

inherent in the null distribution. This variability can be further reduced by using more permutations to

estimate the mean spurious scores. It is even less of a concern in the regression method, which is the

approach used in practical tasks.

In this article, we have addressed the question of significance of Rmap alignments to a reference map.

Significance of alignments are determined by their scores. Our primary goal was to obtain the null dis-

tribution, with as few assumptions as possible, of the optimal alignment score of an Rmap given any score

function. We achieved this using alignments to permutations of the reference map, and developed con-

ditional permutation tests for significance with control over error rates. This approach was further sim-

plified to obtain simple Rmap specific score cutoffs that have been validated using simulation and through

use in iterative assembly. We have outlined ways to use this approach to compare different score functions.

Our investigations have also provided new insight into the nature of optical map data and led to a Rmap-

specific summary score that may help simplify certain aspects of optical map analysis.

5. APPENDIX

5.1. Score functions for alignment

Let x = (x1‚ . . . ‚ xm) and y = (y1‚ . . . ‚ yn) denote two restriction Rmaps with m and n fragments respec-

tively. Let the corresponding representations in terms of cut sites be S(x) = fs0 < s1 < . . . < smg and

S(y) = ft0 < t1 < . . . < tng. An alignment between x and y can be represented by an ordered set of index

pairs

C =
i1

j1

� �
‚

i2

j2

� �
‚ . . . ‚

ik

jk

� �� �

indicating a correspondence between the cut sites Si‘ and tj‘ for ‘= 1‚ . . . ‚ k, where

0 < i1 < . . . < ik < m and 0 < j1 < . . . < jk < n. To align the two Rmaps, one defines an objec-

tive function that assigns a score to all possible alignments and then tries to find the alignments that

give the optimal or nearly optimal scores. For a certain class of score functions that satisfy the additive

property

s =
i1

j1

� �
‚

i2

j2

� �
‚ . . . ‚

ik

jk

� �� �� �
=
Xk

‘= 2

s
i‘ - 1

j‘ - 1

� �
‚

i‘

j‘

� �� �� �

this search can be performed efficiently using variants of the Needleman-Wunsch and Smith-Waterman

dynamic programming algorithms. Non-additive score functions may be appropriate in certain situations,

but have not been investigated.

The sensitivity with which alignments can detect locations of Rmaps depends primarily on the score

function used. Different scores are appropriate for different types of alignments. A natural approach to

derive score functions is to base it on model-based likelihood ratio tests (Altschul, 1991). Such scores have

most recently been derived by Valouev et al. (2006) for alignment of two Rmaps (both being subject to

noise), as well as for Rmaps against an noise-free reference map. The model they use is in essence similar

to the one described in Sarkar (2006), but excludes desorption and scale errors. We refer the reader to the

original article for details.
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Another score function for Rmap to reference map alignment has been developed as part of the SOMA

software suite (Kohn, 2003). Although this score is largely heuristic, it has been used quite extensively and

successfully. Since there is no published reference, we give some details here. The score of the full

alignment is determined by the score of each chunk i‘ - 1
j‘ - 1

� �
‚ i‘

j‘

� �� �
. Let m be the length of the reference map

in the chunk, and x be the corresponding Rmap length. Further, let m = i‘ - i‘-1 be the number of reference

map fragments combined to form length m, and n = j‘ - j‘-1 be the number of Rmap fragments combined to

form length x (thus, u = m - 1 is the number of missing cut sites and v = n - 1 the number of false cut

sites). Then, the contribution of this chunk to the final score is given by

s(�‚ x‚ m‚ n) = log 1 +
� + x

2k

� �
·

1 -
(x - �)2

C(�)
- uPm - vPf

� � (3)

where Pm is a missing cut penalty, Pf is a false cut penalty, C(m) is a sizing error cutoff (related to the

variance of the sizing errors) and k represents the mean reference fragment length. The log term is

intended to give higher weight to longer fragments. A critical component of the score is the choice of

C(m); empirically, a form piecewise linear in m2 has been found to be useful. This is consistent with the

marginal sizing variance derived in Sarkar (2006) and can be viewed as an approximation to the latter,

more recent, form. A further adjustment intended to correct for desorption is used as follows: instead of

counting each missing cut site as one to give a total of u = m - 1, each missing cut contributes the

quantity p(y), the probability of retaining a fragment of size y, where y is the distance from the missing

cut site to the nearest observed cut site. Unlike the likelihood ratio based scores, there is no natural

interpretation for the score of the complete alignment, which is simply the sum of the scores for

individual aligned chunks.

5.2. Iterative assembly

Gentig produces highly accurate assemblies of bacterial genomes. However, it does not scale to genomes

of mammalian size because the algorithm is quadratic and there is no obvious way to parallelize it. One

solution is a heuristic assembler which uses pairwise Smith-Waterman alignment (Kohn, 2003; Valouev

et al., 2006) to subdivide the assembly problem in many smaller problems and uses Gentig as the low-level

assembly engine (Mullikin and Ning, 2003). The computational work for both the alignment and assembly

steps is distributed over a large network of clustered workstations (Litzkow et al., 1988).

The algorithm is iterative, and the output of each step of the iteration is an approximate map of the

genome. In the subsequent step, this approximation is used as the reference map against which all the

Rmaps in the dataset are aligned. Then the Rmaps are clustered according to the location of their align-

ments to the reference, and each cluster is assembled locally. The consensus maps from these assemblies

give rise to the reference map for the next step.

The algorithm emerged from the following reasoning. Within species, we expect a high degree of

genomic conservation punctuated by structural variants that are commonly spanned by long Rmaps.

Consequently, in a region of the genome where the differences between the target genome and the reference

are minor, Rmaps tend to align (because the dynamic programming scoring function is designed to tolerate

optical mapping errors and minor differences are typically in the domain of that error model). The data,

then, can drive the approximation in the right direction within that region by assembling the Rmaps that

align there. In a non-conserved region of the genome, Rmaps tend not to align to the in silico map, and so a

gap can be opened in the first iteration. The subsequent steps allow the gap to be bridged by walking into it

from the conserved flanks.

The quality of an assembly is a function of the extent of the coverage of the genome by the consensus

maps and of the accuracy of the consensus maps. That accuracy, in turn, is a function of the depth of the

Rmap coverage within the contigs. To achieve a high quality assembly, we stringently control the input to

and output from the local assembly phase at each step in the iteration. The goal of these controls is to

correctly place Rmaps within the contigs, even at the expense of diminishing the depth or extent of

coverage because an incorrectly placed Rmap could introduce errors in the consensus. In subsequent steps

of the iteration, these errors could be reinforced and propagated.
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We implemented the controls as follows for the experiment described in Section 3.1:

� Input to local assembly

B Pairwise alignment threshold: We used two regression cutoffs with nominal specificities 99.9%

and 99.0%. An alignment was accepted if the score exceeded (9.711 - 0.216N - 0.014L -
0.0001546NL) + j(12.010742 - (9.711 - 0.216N - 0.014L - 0.0001546NL)), where j = 0.401 in

the first case, and 0.273 in the second case. These cutoffs are derived using the regression method as

discussed in the text.
� Output from local assembly

B Minimum number of Rmaps in a contig: Contigs must be supported by at least five Rmaps in order

to be propagated to the next iteration.

B Consensus map trimming: The ends of consensus maps were trimmed so that the first and last

fragments were supported by at least four Rmaps.

5.3. Simulation model

Rmaps were simulated from the in silico reference genome using the parametric generative model

described below. Sarkar (2006) discusses the model and parameter estimation in greater detail.

Origins were selected uniformly from the reference genome. The total length of the Rmaps followed a

left-truncated exponential distribution with a minimum size of 300 kb and average size of 440 kb. Small

fragments are rarer in Rmaps than in the reference. To model this, fragments less than 400 bp were merged

with neighboring fragments, and remaining fragments were dropped with probability 1 - e-al, where l is

the size of the fragment, and a was chosen so that a fragment of size 1.35 kb was dropped with probability

0.5. The reported size of a fragment of length l was computed as X = RZ, where

Z~N(l‚ lr2)‚ r = 0:4385

reflects the image processing error in measuring length and

R~N(1‚ s2)‚ s = 0:0397

is a Rmap-specific ‘‘rubber-banding’’ factor that reflects local uncertainty in the estimated scale factor.

Whether true cut sites are identified (success) or not (failure) is modeled as independent Bernoulli trials,

with probability p = 0.75 of success. False cuts, that is, apparent restriction sites that correspond to no

restriction site in the true Rmap, are modeled as a homogeneous Poisson process, with rate f = 0.002 per kb

of DNA.
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