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ABSTRACT

In modern systems biology the modeling of longitudinal data, such as changes in mRNA
concentrations, is often of interest. Fully parametric, ordinary differential equations (ODE)-
based models are typically developed for the purpose, but their lack of fit in some examples
indicates that more flexible Bayesian models may be beneficial, particularly when there are
relatively few data points available. However, under such sparse data scenarios it is often
difficult to identify the most suitable model. The process of falsifying inappropriate candidate
models is called model discrimination. We propose here a formal method of discrimination
between competing Bayesian mixture-type longitudinal models that is both sensitive and
sufficiently flexible to account for the complex variability of the longitudinal molecular data.
The ideas from the field of Bayesian analysis of computer model validation are applied, along
with modern Markov Chain Monte Carlo (MCMC) algorithms, in order to derive an ap-
propriate Bayes discriminant rule. We restrict attention to the two-model comparison problem
and present the application of the proposed rule to the mRNA data in the de-differentiation
network of three mRNA concentrations in mammalian salivary glands as well as to a large
synthetic dataset derived from the model used in the recent DREAM6 competition.
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1. INTRODUCTION

The process of falsifying inappropriate candidate models in order to find the best-suited model

among different hypotheses is called model discrimination and is often based on discriminant analysis—

a statistical technique going back to Fisher (1936) and applied in the fields of statistics, pattern recognition,

and machine learning for the purpose of objects classification. The application of discriminant-like methods

to modern biological data seems also useful in the current era of systems biology. Indeed, in most modern

approaches to modeling biological phenomena via systems methods, one faces the challenge of evaluating

multiple competing mathematical models of complicated reaction networks describing interactions among

the biochemical species, such as various RNA molecules, proteins, enzymes, metabolites, and so on (see, e.g.,

Liao et al., 2005, or Carrillo et al., 2010, for specific examples in enzyme dynamics). Typically, before the
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correct model of a biochemical system is found, different hypothetical models might be reasonable and

consistent with previous knowledge and available data. Whereas the full validation and fine-tuning of such

models may require single cell-level data obtainable only through complex experiments, the initial model

discrimination may sometimes be achieved by the analysis of aggregated data obtained from multiple cells (see,

e.g., Hecker et al., 2009, for a recent review). Such data is often much more easily obtained with standard (hence

cheaper) experimental methods, such as reverse transcriptase–polymerase chain reaction (RT-PCR). The dy-

namics of such aggregated data models are often amenable to analysis via a system of ordinary differential

equations (ODEs) approximating the average stochastic effects of the cellular-level behavior (see, e.g., El Samad

et al., 2005). Under the assumption that such a representation is meaningful, that is, the aggregated system indeed

averages out the stochastic fluctuations around a single cellular-level steady state, the mathematical models are

deterministic in nature and their sole sources of uncertainty come from the biased representation of reality and the

data collection methodology (e.g., measurement bias and errors). This in turn allows one to invoke the general

statistical methodology of (posterior) likelihood-based model discrimination, reminiscent of the classical linear

and quadratic discriminant methods (LDA and QDA) (see, e.g., Hastie et al., 2001, Chapter 4), as well as the

general methodology of the statistical validation of kinetic models (see, e.g., Zhan et al., 2011).

In a related problem of validating a given ODE model of a biological system with the aggregated time-

course RT-PCR data, Rempala et al. (2007) proposed a likelihood-based procedure applicable to simple

kinetic models, like, for instance, a simple transcription network (e.g., L1-gene retrotransposition). The

procedure described in Rempala et al. (2007) was based on the ideas of Bayarri et al. (2007) on statistical

validation in computer models, and was seen to work well for simple biological networks but not neces-

sarily for more complicated ones such as complex signaling pathways. For these more complicated settings,

a more comprehensive approach seems to be required, involving both the model validation and selection

(see, e.g., Neff et al., 2011; Morton et al., 2010; Steimer et al., 2010, for applications to various molecular

systems). For the latter, the ability to perform a discriminant-like analysis between competing models based

on available time-course data is essential.

The aim of the current work is to propose a relatively general procedure for discriminating between

different ODE-based kinetic models of a biological phenomenon under the assumption that the time-course

data from the trajectory is available and that basic sources of both experimental and instrumental uncer-

tainty and bias are accounted for. The proposed procedure extends Rempala et al.’s (2007) approach to

multivariate time-course data and nonlinear interactions and is illustrated with two examples of data from

time-course measurements. The first one is based on examining mRNA expression in acinar cells, obtained

by RT-PCR with the purpose of analyzing transcription factor (TF) regulation of genes, which are indi-

cators of differentiation. This was the original biological problem that motivated the methodological study.

However, since the resulting network of the first example is relatively simple due to limited data avail-

ability, we have also considered another example in which two much larger synthetic models are compared.

The second example is based on the ODE models considered in the recent Dialogue for Reverse En-

gineering Assessments and Methods (DREAM6) competition.

In order to motivate our biological example, we briefly recall some basic facts of the salivary glands

biology relevant to our modeling efforts discussed below. (For a more general introduction to the topic, see,

for instance, Harunaga et al., 2011 and Gorr et al., 2005.) Salivary glands are important for maintaining a

healthy oral cavity in most mammals by production of saliva, which is necessary for lubrication and

digestion initiation and which also contains proteins with antibacterial and antifungal properties. However,

in humans salivary glands are often damaged or destroyed by radiation therapy, surgery for head and neck

cancers, or by advanced Sjögren’s syndrome. Secretion from salivary glands originates in clusters of acinar

cells, which are classified as either serous (protein-secreting) or mucous (mucin-secreting). The parotid is

the largest salivary gland, composed of serous acinar cells, and therefore is responsible for the secretion of

the majority of salivary proteins. The most abundant proteins in parotid saliva are amylase and parotid

secretory protein (PSP). The serous acinar cell is the salivary cell type that is most sensitive to radiation

(Grundmann et al., 2009), and understanding its differentiation process is a necessary step in enabling the

restoration or regeneration of diseased or destroyed parotid salivary tissue. Unfortunately, unlike in some

differentiated tissues, the molecular mechanisms that drive differentiation of parotid acinar cells are not well

characterized. Deciphering how the genes are transcriptionally regulated during de-differentiation is

therefore important, as it might provide molecular insights into the reverse process of differentiation. Acinar

cells, as with certain other cell types, lose their specialized characteristics rapidly when they are removed

from the animal and placed in cell culture (Gorr et al., 2005). The synthesis and secretion of amylase and PSP
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are markers of terminal differentiation, which are rapidly lost under the conditions of culture (Venkatesh

et al., 2012), providing for an excellent experimental system to study the loss of differentiation.

As the first step in analyzing the de-differentiation process, one would attempt to relate the mRNA levels

of the terminal markers of differentiation (amylase and PSP) with that of exocrine-specific transcription

factors such as Mist1, which is known to contribute to differentiation of pancreatic and salivary acinar cells

(Luo et al., 2005). In Figure 1, we present a portion of a hypothesized parotid molecular differentiation

model, expressing the idea that Mist1 mRNA generates Mist1 protein, which acts as a dimer at both the PSP

gene and the amylase gene to stimulate the expression of both PSP and amylase mRNAs. On the basis of

the hypothesized structure summarized in Figure 1, in order to help develop formal ODE-based models of

their interactions, the longitudinal mRNA expression levels (measured via RT-PCR) were collected for the

three genes. Similar ODE models have recently been used to characterize cell differentiation during

hematopoiesis (Wang 2007; Soneji et al., 2007), but have been used to model differentiation of few if any

other cell types. Nonetheless, they have been used successfully in other systems. For example, Gin et al.

(2007) developed an ODE model to study the fluid secretion from adult parotid acinar cells. In addition,

ODE modeling has been used extensively to study critical aspects of the cell cycle (Sveiczer et al., 2000;

Tyson et al., 2001; Novak and Tyson, 2004) and the molecular interactions that cause circadian rhythms

(Brown et al., 2000; Baker et al., 2011; Jolma et al., 2010).

2. METHODS AND RESULTS

We start by providing some further description of the time-course mRNA expression data and the RT-

PCR procedure in Section 2.1 below. In the following Section 2.2, two possible ODE models for the given

data are proposed; the procedures for validation and selection between them are presented in Section 2.3,

with the results discussed in Section 2.4. The additional results from synthetic large-scale DREAM6 model

comparisons are summarized in Section 2.5.

2.1. Time-course mRNA data

The procedure of collecting the data may be described as follows. For each experiment, parotid glands

from 3–5 rats were collected and pooled, and the acinar cells isolated (see Venkatesh et al., 2012, for a

detailed description of the experiment). This single pool of acinar cells was then split into eight cultures (in

6-well plates) and incubated for 0, 1, 6, or 24 hours. At each time point, the cells in two different wells were

separately used to make RNA samples, therefore creating technical replicates at each time point. The

FIG. 1. Hypothesized interactions

driving differentiation. A minimal

hypothesized network consisting of

the Mist1 transcription factor driving

expression of both the parotid secre-

tory protein (PSP) gene and the am-

ylase gene. During differentiation of

the cell, Mist1 would increase the

amount of PSP mRNA and amylase

mRNA. During the loss of differen-

tiation in vitro, the decrease of Mist1

would lead to a decrease of PSP and

amylase mRNAs.
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expression of amylase, Mist1, and PSP mRNAs were measured by TaqMan RT-PCR assays and normalized

to glyceraldehydes 3-phosphate dehydrogenase (GAPDH) mRNA, which served as the internal experi-

mental control. For each timepoint expression measured, the corresponding values of the two technical

replicates were averaged and expressed relative to their initial value at the experiment inception (0-hour

timepoint). The measurements from distinct wells were treated as independent. Mist1 and either PSP or

amylase (due to limiting amounts of RNA) was measured in a total of seven independent experiments, as

shown in Table 1.

The average mRNA expression data for each gene are plotted in Figure 2. For better visualization, in this

as well as in all subsequent time-course plots presented in this article, we follow the convention of

Table 1. Time-Course mRNA Data for Amylase, Mist1, and PSP

Amylase Mist1

Time (ti) A1 A2 A3 M1 M2 M3 M4

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.7020 2.1320 0.8440 0.7385 0.6083 0.7135 0.6322

6 0.0540 0.2420 0.2055 0.0565 0.2176 0.2400 0.3197

24 0.0060 0.0875 0.0375 0.0035 0.0202 0.1005 0.0444

Mist1 PSP

Time (ti) M5 M6 M7 P1 P2 P3 P4

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.8840 0.7435 0.7110 0.6310 1.0170 1.0745 1.0435

6 0.2645 0.1160 0.0640 0.0520 0.0825 0.1000 0.0995

24 0.0225 0.0105 0.0030 0.0040 0.0260 0.0095 0.0220

FIG. 2. mRNA expression time-course data. Colored solid lines are linearly interpolated average values for the three

genes across time points. Each interval for each gene and time point shows the minimum and maximum mRNA

expression obtained from the RT-PCR experiment.
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extending all graphs beyond the observation time points via the linear interpolation. As seen from the plot

in Figure 2, mRNA expression of amylase and PSP reach a saturation point at approximately 1 hour and

then exponentially decrease. In contrast, Mist1 expression does not seem to have a saturation point and is

seen to rapidly decrease in acinar cell cultures. As expected, the variations for each species also decrease

with the time of culture.

2.2. ODE models

Based on the data presented in Figure 2, we may derive the following qualitative chemical ‘‘mass

transfer’’ model (see, e.g., Chang et al., 2011; Likhoshvai and Ratushny, 2007) represented, in our case, by

the coupled biochemical reactions

Mist1 (M) �! PSP (P)‚

Mist1 (M) �! amylase (A):
(1)

While this is a very simple network, it represents a realistic, testable example, as it is well documented that

Mist1 transcription factor helps drive terminal differentiation of acinar cells, and expression of both PSP

and amylase are markers of acinar differentiation. To quantify the model above, it was hypothesized that

the action of Mist1 was carried out by the dimerization of Mist1 molecules and that the saturation of PSP

and amylase levels were attained while Mist1 was abundant. Two ODE representations of these interactions

were considered. The first one (denoted hereM1) employed the standard Hill-function ODE mass transfer

model (see, e.g., Likhoshvai and Ratushny, 2007) as follows

dA(t)

dt
=

v1M(t)2

v2
2 + M(t)2

- v3A(t)

dM(t)

dt
= - v4M(t)

dP(t)

dt
=

v5M(t)2

v2
6 + M(t)2

- v7P(t): (2)

Here A(t), M(t), P(t) are mRNA expressions of amylase, Mist1, and PSP, respectively, at time t, with

A(0) = 1, M(0) = 1, and P(0) = 1, and v1‚ . . . ‚ v7 are nonnegative coefficients parametrizing M1. In par-

ticular, v3, v4, and v7 are seen as the respective degradation rates, v1 and v5 as the maximum reaction rates,

and v2 and v6 as the half-saturation points.

The particular form of the ODE model M1 is based on some earlier work (see, e.g., Venkatesh et al.,

2012, and references therein) stipulating the presence of the trajectories extrema for all three species

(maxima for amylase and PSP and a minimum for Mist1) at some t0 > 0. The reason for the Hill-function

form ofM1 is the consideration of the saturation effect of the molecules of Mist1. However, the Hill–type

growth does not take directly into account the ‘‘mass transfer’’ aspect of the reactions (1), which require

that M(t) / 0 as t/N. The simplified version of the model M1 (denoted M2) may be obtained by

employing the Taylor series approximation x2/(a + x2)& x2 valid for small x, where ‘‘small’’ may be

defined more precisely by considering non-zero intersection points of both curves and depends on the value

of a > 0 (cf., also Sorribas et al., 2007). The new model is

dA(t)

dt
= v1M(t)2 - v2A(t)

dM(t)

dt
= - v3M(t)

dP(t)

dt
= v4M(t)2 - v5P(t)‚ (3)

where A(0) = 1, M(0) = 1, and P(0) = 1 and v1‚ . . . ‚ v5 are, as before, assumed to be nonnegative system

parameters. The main difference betweenM1 andM2 is the lack of the denominator terms inM2, which

allows it to be parametrized by two less coefficients v. The additional advantage of this simplified ODE

model is that (3) follows the so-called law of mass-action, a popular general empirical law of molecular

dynamics (Hornos et al., 2005).
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Given the two models M1 and M2, a natural question arises as to whether either one of them may

meaningfully describe the data in Table 1. In order to answer it, we need the assessment of the accuracy of

the model predictions associated with M1 and M2, which we discuss next.

2.3. Model validation and discrimination

To describe the relationship between the solution of ODE models (2) and (3), and the actual mRNA

expressions for the genes of interest summarized in Table 1, we follow Rempala et al. (2007) and employ

the additive data model as follows.

Denote the time-course vectors of mRNA expression for each of the TFs by yL
ij(t)‚ i = fA‚ M‚ Pg‚

j = 1‚ . . . ‚ ri, with t = (t1‚ . . . ‚ tK)0. Here K = 3 with the time-points (in hourly units) t1 = 1, t2 = 6, t3 = 24;

A, M, and P stand for amylase, Mist1, and PSP respectively, with the corresponding number of experiments

(see Table 1), rA = 3, rM = 7, and rP = 4. Let vi, i = {A, M, P} be the vector of parameters of the ODE

models for each gene (i.e., forM1, vA = (v1, v2, v3)0, vM = v4, and vP = (v5, v6, v7)0 and forM2, vA = (v1,

v2)0, vM = v3, and vP = (v4, v5)0). If yM
i (tjvi) is the solution of the ODE model (either under M1 or M2)

corresponding to the i-th TF, then yL
ij(t) is assumed to be related to yM

i (tjvi) as follows

yL
ij(t) = yM

i (tjvi) + bi(t) + �ij(t)‚ i = fA‚ M‚ Pg‚ j = 1‚ . . . ‚ ri‚ (4)

where bi(t) (h bi) is the vector of parameters accounting for the model bias, and �ij(t) is the vector of

random errors. Since, after the initial measurement, we have three time points for each mRNA, both models

M1 andM2 have the same number of nine bias parameters. SinceM1 andM2 are parametrized by seven

and five ODE coefficients respectively, forM1 the model (4) has a total of 16 parameters while forM2 it

has 14.

For the purpose of model validation, we need to provide the credibility bounds in (4) and this can be

done, for instance, by considering the joint posterior distribution of the model parameters. The Bayesian

framework is particularly appropriate in our case due to the limited number of observations available and

hence potential problems with the identifiability of the standard maximum likelihood estimators (see, e.g.,

Wilkinson, 2009). As in Rempala et al. (2007) and Bayarri et al. (2007), we assume the form of the

likelihood function for yL
ij(t) as follows:

p(yL
ij(t)jvi‚ bi) ~ MVN(li‚ diag(di))‚ i = fA‚ M‚ Pg‚ j = 1‚ . . . ‚ ri‚ (5)

where MVN(li, diag(d)) is a multivariate normal distribution with a mean vector li = (yM
i (t1jvi) +

bi(t1)‚ . . . ‚ yM
i (tK jvi) + bi(tK))0, and the variance–covariance matrix with diagonal elements di, where

di = [expf- tk=5g]k‚ k = 1‚ . . . ‚ K(K = 3), and off-diagonal elements zero due to the assumed independence

of each culture well (see Section 2.1). The variance terms for the longitudinal levels of mRNA are taken as

decreasing exponentially with time—the assumption that seems consistent with the data pattern observed in

Figure 2. The form of the likelihood (5) may be justified by the fact that in many kinetic biochemical

systems (including those considered here) the fluctuations around ODE models are approximately Gaussian

(see, e.g., Ge and Qian, 2009; Andersson and Britton, 2000, Chapter 5).

To complete the statistical model setup, we need to define flexible prior distributions for the ODE

parameters v = (vA, vM, vP)0 as well as the bias terms b = (bA, bM, bP)0. Due to the parameter values

support and the covariance structure considerations, the convenience choices here are a multivariate log-

normal prior for v and a multivariate normal one for b. Whereas the appropriateness of these particular

distributions may be debated, their form does not seem to particularly effect the results of our analysis

presented below. Define

p(v) ~ Log - normal(�‚L)‚ (6)

where m is a mean vector and L is a variance–covariance matrix, empirically estimated from the data, as

well as

p(b) ~ MVN(0‚ D)‚ (7)

where the variance–covariance matrix D is a block diagonal matrix with the same diagonal blocks

C = [expf- (tm - tn)2g]mn‚ m‚ n = 1‚ . . . ‚ K. Thus, in our case (K = 3), D is a 9 · 9 matrix. The exponential,

block-diagonal form of D takes into account the possible dependancies among biases between and within
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the trajectory points of the three mRNAs. From the forms of the likelihood function of (5) and the priors (6)

and (7), we see that the posterior distribution is proportional to

p(v‚ bjyL
A(t)‚ yL

M(t)‚ yL
P(t)) /

Y
i = fA‚M‚Pg

Yri

j = 1

p(yL
ij(t)jvi‚ bi)

2
4

3
5p(v)p(b): (8)

To obtain this posterior distribution, the usual Markov Chain Monte Carlo (MCMC) method based on

the Gibbs sampler as in Bayarri et al. (2007) was used, but other alternatives could have been also

entertained (see, for instance, Zhan et al., 2011, or Jones, 2011). Regardless of the detail of the particular

MCMC technique, consider now vil and bil‚ i = fA‚ M‚ Pg‚ l = 1‚ . . . ‚ n as the collection of posterior samples

obtained from the converged chain. Using these posterior samples, we can approximate the posterior means

of the ODE parameter vi, i = {A, M, P}, (cf, Eq. (A.1) in Appendix A), which in turn allows us to

approximate the mean of the pure model prediction yM
i (tjv̂i) and the bias-corrected prediction (cf, Eq. (A.3)

in Appendix A) for the i-th mRNA (i = {A, M, P}). The model prediction (1 - a)% credibility bounds for

the i-th mRNA (i = {A, M, P}) may be obtained by calculating a/2 and (1 - a/2) quantiles of the empirical

distribution based on yM
i (tjvil) + bil‚ l = 1‚ . . . ‚ n. Further details and relevant formulas are provided in

Appendix A.

2.4. Results

The results of the analysis based on (8) are summarized in Table 2 and illustrated in Figure 3, which

shows, for each mRNA, the pure model and the bias-corrected predictions, credibility envelopes for both

M1 and M2 ODE models given by (2) and (3), as well as the actual data. From the plots in Figure 3, it

appears that both M1 and M2 have validity for the mRNA expression data from Table 1, as for all three

mRNAs in respective models, their 95% credibility envelopes include both the pure and the bias-corrected

model predictions (cf., Rempala et al., 2007; Bayarri et al., 2007). Moreover, the width of the credibility

envelopes in both models seems similar for each of the respective genes. However, when comparing the

differences between the pure and the bias-corrected model predictions, it is clear that those underM2 are

considerably smaller, especially for amylase and PSP mRNAs. This seems to indicate that, albeit the

uncertainties of the prediction in both models are similar (which is also seen more directly by comparing

the variances of the model predictions computed via the formula (A.5) in Appendix A), the simplified

modelM2, despite its sparser parametrization, has smaller bias thanM1. Plots in Figures 4 and 5 further

support this conclusion. In Figure 4, variances of each gene for both models across times are seen as not

very different. However, in Figure 5, M2 appears to have small biases relative to M1, with the similar

overall longitudinal bias pattern for both models.

Denote for brevity the observed data by y = (yL
A(t)‚ yL

M(t)‚ yL
P(t)) and let hi be the parameter vector (v,b)i

for the model Mi (i = 1,2), with the respective prior p(hijMi). In order to quantitatively discriminate

between the two models, we again utilize the results of the MCMC analysis based on Equation (8), in the

spirit of the Fisher discriminant principle alluded to in the introduction. To this end, we consider the Bayes

factor (BF) criterion (see, e.g., Hastie et al., 2001, Chapter 7; for a possible alternative based on Bayesian

information (see, e.g., Jones, 2011, and Skanda and Lebiedz, 2010)

BF =
p(yjM1)

p(yjM2)
=
R

p(yjh1‚M1)p(h1jM1)dh1R
p(yjh2‚M2)p(h2jM2)dh2

(9)

where both the numerator and the denominator integrals are now approximated by the numerically aver-

aging p(yjhi‚Mi)p(hijMi) across the posterior sample obtained from the MCMC algorithm under re-

spective models. The numerical value BF& 0.0001 indicates that under the equal prior preference for both

M1 andM2 the posterior probability ofM2 is considerably larger (10,000-fold) than that ofM1 and thus

the simplified, mass action-based ODE system (2) is strongly preferred over the originally proposed Hill-

function-based ODE system (3).

2.5. Additional results with synthetic data

In order to assess the scalability of the method to more realistic biological networks, in addition to (2)

and (3), a larger synthetic system was also considered in the model discrimination analysis. This synthetic
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FIG. 3. The 95% posterior credibility bounds forM1 andM2. Actual data (circle) versus the pure model prediction yM
i (t‚ v̂i)

(red line) and the bias-corrected model prediction ŷL
i (t) (black line) along with the 95% credibility bounds (blue dotted line): (a)

amylase forM1; (b) Mist1 forM1; (c) PSP forM1; (d) amylase forM2; (e) Mist1 forM2; and (f) PSP forM2.
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system model is described by an ODE set with 12 species and 24 parameters (see Appendix B) and comes

from the simplified version of the ‘‘Model1’’ of the most recent DREAM6 Estimation of Model Parameters

Challenge. The synthetic data was generated from this ODE model under the assumptions (4). Both the

correct (M1) and slightly altered (M2) ODE systems were compared as above, in an effort to discriminate

between the two alternatives. The complete descriptions ofM1 andM2 are provided in (B.1) and (B.2), in

Appendix B. Both sets of ODE are seen to have the same number of parameters, with the difference

introduced in the growth models of the species Y9 and Y11 in both sets. The details on data generation are

provided in Appendix B. The generated data and fitted models are presented in Figure 6, which shows little

difference in terms of the model fit. In order to analyze the fit in more detail, the same MCMC method was

applied to obtain 95% credibility bounds for modelsM1 andM2. The results are plotted in Figures 7 and 8

and include both the pure and the bias-corrected model predictions. From the plots it appears that both

models have similar patterns of predictions for all species, with no obvious differences between the pure

and the bias-correct versions. Some prediction bias is visible in both, for instance, at time-point 1 for

species Y12 inM1 and for species Y9, Y10, and Y11 inM2. Overall, it seems hard to discriminate between

two models on the basis of Figures 7 and 8 alone, and the BF criterion has to be invoked. The large BF

value in (9) (BF = 2348.4) allows us to identify the model M1 as having considerably larger posterior

FIG. 4. Variance of the model prediction for mRNA data: (a) M1 and (b) M2.

FIG. 5. Bias of the model prediction for mRNA data: (a) M1 (b) M2.
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probability of being correct than the partially altered model 2 of (B.2) and, consequently, to select the

correct one.

3. DISCUSSION

Selecting the model that best describes a given biological system is increasingly relevant in the modern

era of systems biology and ever-improving molecular data collection methods. In the context of dis-

criminating between competing kinetic ODE-based models of interactions among several biomolecular

species, we presented here a possible solution to the problem with a new, conceptually simple and flexibly

applicable data-based discrimination rule. The rule is based on analyzing the appropriate Bayes factor and

draws from the fields of Bayesian analysis, computer model validation, and modern MCMC analysis.

Specifically, the proposed rule is based on the pairwise comparisons of the model-specific posterior dis-

tributions induced by the data against those predicted by the corresponding ODE models and is similar in

spirit to a longitudinal version of the celebrated Fisher’s discriminant analysis. Due to its fully Bayesian

implementation (as opposed to an approximation, like, e.g., the Bayesian information criterion), the method

FIG. 6. Synthetic time-course data and fitted lines forM1 andM2. Circles are synthetic data points; a blue solid line

represents the correct model M1 fitted to the data using the least-square method, and a red dotted line represents the

fitted partially incorrect model M2.
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allows us to take properly into account the competing models’ complexity, and hence, automatically

penalizes models that attempt to over-fit the data. In two particular examples considered in this article—de-

differentiation process of a mammalian salivary gland and a large synthetic model of nonlinear dynamics

from the DREAM6 competition—the proposed method worked well, despite the small size of the longi-

tudinal data set, multiple noise sources, a relatively high experimental variation between technical repli-

cates, and parametric similarity of the competing ODE models. In spite of these challenges, the Bayesian

criterion in both examples clearly identified the models with less bias and with biochemically more realistic

dynamics as the more likely ones.

Whereas the immediate goal of the proposed method is to discriminate between the two competing,

predefined models, one could possibly envision the use of a similar criterion sequentially in order to build

up, in a stepwise process, the most likely posterior model among a set of dynamically proposed compet-

itors. The potential candidates for comparisons could be generated based on the current model and either

the available biological knowledge or a random walk across the model space. However, such model-

building considerations, being computationally challenging, would with no doubt require further refine-

ments of the currently proposed discrimination method.

FIG. 7. The 95% posterior credibility bounds for M1. Simulated data (circle) versus the pure model prediction

yM
i (t‚ v̂i) (red line) and the bias-corrected model prediction ŷL

i (t) (black line) along with the 95% credibility bounds

(blue dotted line).
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The empirically demonstrated relative robustness and sensitivity of the proposed selection criterion

indicates that it might be appropriate for use with other molecular models, particularly in sparse-data

scenarios. While in our example we used a specific parametric form of the likelihood function underlying

the data, both the parametric assumptions as well as the MCMC algorithms applied could be easily

modified to accommodate the specifics of other systems. In our settings, the Gaussian likelihood model

seemed justified by the approximation results from biochemical stochastic dynamics of aggregated cel-

lular systems. However, when considering, for instance, data from next-generation (high-throughput)

FIG. 8. The 95% posterior credibility bounds for M2. Simulated data (circle) versus the pure model prediction

yM
i (t‚ v̂i) (red line) and the bias-corrected model prediction ŷL

i (t) (black line) along with the 95% credibility bounds

(blue dotted line).

Table 2. Parameter Estimates (Posterior Means) and Their Standard Deviations Under M1 and M2

Model Mean & SD v1 v2 v3 v4 v5 v6 v7

M1 v̂i 21.4868 4.0750 1.6180 0.2990 20.2618 2.1828 4.5004

SD(v̂i) 16.0030 2.8402 1.5623 0.0557 16.6145 2.3336 2.1067

M2 v̂i 1.7622 0.9648 0.3237 1.4291 1.2157

SD(v̂i) 2.0204 0.7260 0.0526 1.4561 0.7214
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sequencing, the use of Poisson likelihood might be more appropriate. In general, with suitable adjustments

due to the nature of various experimental data, the methodology presented here should be broadly appli-

cable to a wide variety of biological settings and experimental designs.

4. APPENDIX A

Throughout this section, we use the terminology developed within the computer validation framework as

described, for instance, in Bayarri et al. (2007). For further discussions and other recent alternatives, see, e.g.,

Zhan et al. (2011). Let vil and bil‚ l = fA‚ M‚ Pg‚ l = 1‚ . . . ‚ n be n posterior samples obtained by the converged

MCMC algorithm as discussed in the article. The quantities of interest may be approximately estimated from

these samples as follows. The estimated posterior means for vi and bi may be approximated by, respectively,

v̂i =
1

n

Xn

l = 1

vil‚ i = fA‚ M‚ Pg‚ (A:1)

and

b̂i =
1

n

Xn

l = 1

bil‚ i = fA‚ M‚ Pg: (A:2)

Similarly, the bias-corrected model prediction for yL
i (t) may be approximated by

ŷL
i (t) =

1

n

Xn

l = 1

yM
i (t‚ vil) + bil

� �
‚ i = fA‚ M‚ Pg‚ (A:3)

where yM
i (t‚ vil) is the vector of mean pure model predictions. The bias of the pure model prediction may be

approximated by

b̂v̂i

i = ŷL
i (t) - yM

i (t‚ v̂i)‚ i = fA‚ M‚ Pg: (A:4)

Finally, the variance of the bias-corrected predictor (A.3) may be approximately calculated as

VfŷL
i (t)g =

1

n

Xn

l = 1

yM
i (t‚ vil) + bil - ŷL

i (t)
� �2

‚ i = fA‚ M‚ Pg: (A:5)

5. APPENDIX B

For the synthetic data analysis of Section 2.5, the correct ODE modelM1 is given by the following ODE

system (‘‘Model1’’ in DREAM6).

dY1(t)

dt
= v1 - v2Y1(t)‚

dY2(t)

dt
= v3Y1(t) - v4Y2(t)‚

dY3(t)

dt
= v5

Y2(t)

1 + Y2(t)

1

1 + Y12(t)
- v6Y3(t)‚

dY4(t)

dt
= v7Y3(t) - v8Y4(t)‚

dY5(t)

dt
= v9

Y2(t)

1 + Y2(t)

1

1 + Y4(t)
- v10Y5(t)‚

dY6(t)

dt
= v11Y5(t) - v12Y6(t)‚

dY7(t)

dt
= v13

Y2(t)

1 + Y2(t)

1

1 + Y10(t)
- v14Y7(t)‚

536 KIM ET AL.



dY8(t)

dt
= v15Y7(t) - v16Y8(t)‚

dY9(t)

dt
= v17

1

1 + Y8(t)
- v18Y9(t)‚

dY10(t)

dt
= v19Y9(t) - v20Y10(t)‚

dY11(t)

dt
= v21

1

1 + Y8(t)
- v22Y11(t)‚

dY12(t)

dt
= v23Y11(t) - v24Y12(t): (B:1)

A competing modelM2 is defined by the following set of partially altered ODE, where the alterations (in

the growth rates equations for Y9 and Y11) were made so as to preserve the overall model dynamics.

dY1(t)

dt
= v1 - v2Y1(t)‚

dY2(t)

dt
= v3Y1(t) - v4Y2(t)‚

dY3(t)

dt
= v5

Y2(t)

1 + Y2(t)

1

1 + Y12(t)
- v6Y3(t)‚

dY4(t)

dt
= v7Y3(t) - v8Y4(t)‚

dY5(t)

dt
= v9

Y2(t)

1 + Y2(t)

1

1 + Y4(t)
- v10Y5(t)‚

dY6(t)

dt
= v11Y5(t) - v12Y6(t)‚

dY7(t)

dt
= v13

Y2(t)

1 + Y2(t)

1

1 + Y10(t)
- v14Y7(t)‚

dY8(t)

dt
= v15Y7(t) - v16Y8(t)‚

dY9(t)

dt
= v17Y6(t) - v18Y9(t)‚

dY10(t)

dt
= v19Y9(t) - v20Y10(t)‚

dY11(t)

dt
= v21Y6(t) - v22Y11(t)‚

dY12(t)

dt
= v23Y11(t) - v24Y12(t): (B:2)

In order to generate a synthetic time-course dataset for 12 species (Y1(t)‚ . . . ‚ Y12(t)), we used the

correct set of ODE models of (B.1), which is a simplified version of the Model1 from DREAM6. The

parameters of both ODE models, as well as the initial conditions, followed the setting of Model1

(i.e., v = (v1‚ . . . ‚ v24)0 = (1‚ . . . ‚ 1)0 and Y1(0) = Y3(0) = Y5(0) = Y7(0) = Y9(0) = Y11(0) = 0 and Y2(0) =
2(0) = Y4(0) = Y6(0) = Y8(0) = Y10(0) = Y12(0) = 1). In the experiment described in the current article,

we considered 4 time-points and 10 experiments for each species (which is consistent with typical

DREAM6 scenarios). The time-course vector for each species is therefore yL
ij(t)‚ i = 1‚ . . . ‚ 12‚

j = 1‚ . . . ‚ 10, with t = (t1‚ . . . ‚ t4)0, where t1 = 1, t2 = 2, t3 = 4, and t4 = 9. The bias bi(t) was generated

from the multivariate normal distribution with the mean vector 0 and the variance–covariance

matrix C = [exp{ - ((tm - tn)/10)2}]mn, m‚ n = 1‚ . . . ‚ 4, and the random error eij (t) was randomly

sampled from the multivariate normal distribution with the mean vector 0 and the diagonal vari-

ance–covariance matrix with diagonal element di, where di = [exp{ - tk/3}]k, k = 1‚ . . . ‚ 4. The data

for 10 time-course experiments we generated from (B.1) and used in the analysis under the

parametric noise (4) model. Both the generated data and the least-squares fitted ODE model tra-

jectories are presented in Figure 6.
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