
Polynomial-Time Algorithms for Building

a Consensus MUL-Tree

YUN CUI,1 JESPER JANSSON,2 and WING-KIN SUNG1,3

ABSTRACT

A multi-labeled phylogenetic tree, or MUL-tree, is a generalization of a phylogenetic tree
that allows each leaf label to be used many times. MUL-trees have applications in bioge-
ography, the study of host–parasite cospeciation, gene evolution studies, and computer
science. Here, we consider the problem of inferring a consensus MUL-tree that summarizes a
given set of conflicting MUL-trees, and present the first polynomial-time algorithms for
solving it. In particular, we give a straightforward, fast algorithm for building a strict
consensus MUL-tree for any input set of MUL-trees with identical leaf label multisets, as well
as a polynomial-time algorithm for building a majority rule consensus MUL-tree for the
special case where every leaf label occurs at most twice. We also show that, although it is
NP-hard to find a majority rule consensus MUL-tree in general, the variant that we call the
singular majority rule consensus MUL-tree can be constructed efficiently whenever it exists.

Key words: algorithm, cluster, computational complexity, consensus tree, multi-labeled phylo-

genetic tree multiset, MUL-tree.

1. INTRODUCTION

To describe treelike evolutionary history, scientists often use a data structure known as the

phylogenetic tree (Felsenstein, 2004; Sung, 2010). Over the years, many variants of phylogenetic trees

(e.g., rooted or unrooted, with or without edge weights, bounded or unbounded degrees, ordered or unor-

dered, etc.) have been introduced and successfully employed in various contexts. A consensus tree is a

phylogenetic tree that summarizes the branching structure contained in a given set of (conflicting) phylo-

genetic trees. Different types of consensus trees, along with fast algorithms for constructing them, have been

developed since the 1970s and are widely used by biologists today (see, for example, the surveys in Bryant,

2003; Felsenstein, 2004; and Sung, 2010).

In traditional applications, phylogenetic trees have usually been distinctly leaf labeled, and, in fact, the

computational efficiency of most existing methods for constructing and comparing phylogenetic trees

Parts of this article appeared in preliminary form in Proceedings of the 22ndInternational Symposium on Algorithms
and Computation (ISAAC 2011), volume 7074 of Lecture Notes in Computer Science, pages 744–753, Springer-Verlag,
Berlin, 2011.

1School of Computing, National University of Singapore, Singapore.
2Laboratory of Mathematical Bioinformatics, Kyoto University, Gokasho, Uji, Kyoto, Japan.
3Genome Institute of Singapore, Genome, Singapore.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 19, Number 9, 2012

Mary Ann Liebert, Inc.

Pp. 1073–1088

DOI: 10.1089/cmb.2012.0008

1073

implicitly depends on this uniqueness property. The multi-labeled phylogenetic tree, or MUL-tree for short,

is a natural generalization of the standard phylogenetic tree model that allows the same leaf label to be used

more than once in a single tree structure. For some examples, see Figures 2, 3, 4, 5, 6, and 8. MUL-trees

have a number of applications in different research fields, such as biogeography (see, e.g., Ganapathy et al.,

2006; Minaka, 1990; and Chapter 6 of Nelson and Platnick, 1981); the study of host–parasite cospeciation

(Page, 1993); gene evolution studies (Fellows et al., 2003; Lott et al., 2009b; Page, 1994; Scornavacca

et al., 2011), and computer science (see the references in Huber et al., 2011).

Combining the concepts of a consensus tree and a MUL-tree leads to the computational problem of

building a consensus MUL-tree from an input set of MUL-trees. It was first addressed by Lott et al. (2009b).

Their motivation came from a more general problem related to reconstructing complex evolutionary

scenarios involving so-called polyploid species. Here, the input is a collection of gene trees where the same

species name can label more than one leaf (i.e., MUL-trees), and the output should be a leaf-labeled

directed acyclic graph called a phylogenetic network, in which each species name appears once only. Lott

et al. (2009a) suggested that rather than inferring a phylogenetic network directly, it may be easier to first

reconcile the input into a single MUL-tree and then apply an algorithm from Huber et al. (2006) that is

guaranteed to output a network with the minimum number of non tree nodes. For this purpose, Lott et al.

(2009b) presented a method for constructing a greedy kind of consensus MUL-tree that uses the same basic

strategy as the well-known greedy consensus tree method (Bryant, 2003; Sung, 2010) for single-labeled

phylogenetic trees. A serious disadvantage of their method is that its running time is exponential in the size

of the input, and indeed, according to the discussion in Lott et al. (2009a), the method probably needs to be

improved to deal with datasets from new sequencing technologies in the near future. A recent article (Huber

et al., 2012) incorporates a fixed-parameter algorithm from Section 5 of Huber et al. (2008) to obtain a

faster and more practical method for building a greedy consensus MUL-tree, but its worst-case running

time remains exponential.

It is an important open problem to identify alternative types of (informative) consensus MUL-trees that

can be computed more efficiently than Huber et al. (2012) and Lott et al. (2009b). In this article, we

investigate the computational complexity of inferring three types of consensus MUL-trees, which we call the

strict consensus MUL-tree, the majority rule consensus MUL-tree, and the singular majority rule consensus

MUL-tree, and derive a number of positive and negative results. To our knowledge, the new algorithms

developed here are the first ever polynomial-time algorithms for building a consensus MUL-tree of any kind.

1.1. Organization of the article

This article is organized as follows. Section 2 provides the formal definitions and terminology used

throughout the text, and Section 3 highlights some key properties of strict majority rule and singular

majority rule consensus MUL-trees. Next, we explain how to construct a strict consensus MUL-tree in

polynomial time in Section 4. Then, Section 5 proves that constructing a majority rule consensus MUL-tree

is NP-hard, even if restricted to instances with three input MUL-trees in which every leaf label occurs at

most three times. On the positive side, Section 6 gives a polynomial-time algorithm for constructing a

majority rule consensus MUL-tree for the special case where every leaf label occurs at most twice.

Although constructing a majority rule consensus MUL-tree is NP-hard in general, the variant, which we

call the singular majority rule consensus MUL-tree, admits a polynomial-time algorithm, described in

Section 7. Finally, open problems and possible extensions are discussed in Section 8.

From here on, T is assumed to be an input set of MUL-trees such that every Ti 2 T has the same leaf

label multiset L. We define k = jT j and n = jLj. Also, we let q equal the number of distinct elements in L. In

other words, q £ n. Furthermore, we define m = max‘2L multL(‘), where multL(‘) is the number of occur-

rences of ‘ in the multiset L, and call m the multiplicity of L. Our new results for consensus MUL-trees,

along with previously known results for single-labeled phylogenetic trees (corresponding to the case

m = 1), are summarized in Figure 1.

2. DEFINITIONS

2.1. MUL-trees

A MUL-tree is a rooted, unordered, leaf-labeled tree in which every internal node has at least two

children. Importantly, in a MUL-tree the same label may be used for more than one leaf. Figure 2 shows an

1074 CUI ET AL.

example. The multiset of all leaf labels that occur in a MUL-tree T is denoted by K(T). For any multiset X

and element x, the multiplicity of x in X is the number of occurrences of x in X and is denoted by multX(x).

Below, the multiset union operation is expressed by the symbol m.

Let L be a multiset and let T be a MUL-tree with K(T) = L. If multL(‘) = 1 for all ‘ 2 L, then T is a single-

labeled phylogenetic tree. Next, any submultiset C of L is called a cluster of L, and if jCj = 1 then C is

called trivial. Let V(T) be the set of all nodes in T. For any u 2 V(T), the subtree of T rooted at u is written

as T[u], and K(T[u]) is referred to as the cluster associated with u. The cluster collection of T is defined as

the multi-set C(T) =
U

u2V(T)fL(T[u])g. When a cluster C belongs to C(T), we say that T contains C or that C

FIG. 1. Summary of the computational complexity of building a strict consensus, a majority rule consensus, and a

singular majority rule consensus, multi-labeled phylogenetic tree (MUL-tree) of T . For k = 2, a strict consensus MUL-

tree and a majority rule consensus MUL-tree are equivalent according to Lemma 2 in Section 3. For m = 1, a majority

rule consensus MUL-tree and a singular majority rule consensus MUL-tree are equivalent because every cluster is

singular.

a d

a b

b c

FIG. 2. A MUL-tree T with leaf label multisetL(T) = {a, a, b, b, c, d} = L and cluster

collection C(T) = ffag‚ fag‚ fbg‚ fbg‚ fcg‚ fdg‚ fa‚ bg‚ fa‚ b‚ cg‚ fa‚ b‚ dg‚ Lg:

POLYNOMIAL-TIME ALGORITHMS FOR BUILDING A CONSENSUS MUL-TREE 1075

occurs in T. Using the notation above, the multiplicity of a cluster C in a cluster collection C(T) is written as

multC(T)(C). Thus, when a cluster C does not occur in a MUL-tree T, we have multC(T)(C) = 0.

2.2. Three types of consensus MUL-trees

Let T = fT1‚ T2‚ . . . ‚ Tkg be a given set of MUL-trees satisfying L(T1) =L(T2) = . . . =L(Tk) = L. Two

popular types of consensus trees for single-labeled phylogenetic trees are the strict consensus tree (Sokal

and Rohlf, 1981) and the majority rule consensus tree (Margush and McMorris, 1981). We extend their

definitions to MUL-trees as follows:

� A strict consensus MUL-tree of T is a MUL-tree T such that K(T) = L and C(T) = \k
i = 1 C(Ti), where X

is the intersection of multisets. Formally, for every C 2 C(T)‚ multC(T)(C) = min1pipk multC(Ti)(C). (In

other words, the number of times that a particular cluster C occurs in T equals the minimum number of

times that C occurs in each of T1‚ T2‚ . . . ‚ Tk.)
� A cluster that occurs in more than k/2 of the MUL-trees in T is called a majority cluster. A majority

rule consensus MUL-tree of T is a MUL-tree T such that K(T) = L and C(T) consists of all majority

clusters, and for any C 2 C(T)‚ multC(T)(C) equals the largest integer j such that the following con-

dition holds: jfTi : multC(Ti)(C)qjgj > k=2.

Next, we introduce a new kind of consensus tree. For any MUL-tree T, a cluster C in C(T) is called singular

if C] C 6� L(T). Note that if C 2 C(T) is singular then multC(T)(C) = 1 (but not the other way around; e.g., if

multC(T)(fa‚ bg) = 1 and L(T) = fa‚ a‚ b‚ b‚ . . .g then {a, b} is not singular).

� A singular majority rule consensus MUL-tree of T is a MUL-tree T such that K(T) = L and C(T)
consists of: (1) every trivial cluster that occurs in all of T1‚ T2‚ . . . ‚ Tk; and (2) every singular cluster

that occurs in more than k/2 of the MUL-trees in T .

2.3. The delete operation

Define the delete operation on any nonroot, internal node u in a MUL-tree T as letting all children of u

become children of the parent of u, and then removing u and the edge between u and its parent (Figure 3).

Note that any delete operation on a node u in T removes one occurrence of a cluster from the cluster

collection C(T), namely K(T[u]), without affecting the other clusters.

3. PRELIMINARIES

It is possible for two non-isomorphic MUL-trees to have identical cluster collections. See T1 and T2 in

Figure 4 for an example. This property was first observed by Ganapathy et al. (2006) for unrooted MUL-

trees, and their example was later simplified by Huber et al. (2008). (The example given here is the same as

Fig. 1b,c in Huber et al., 2008, adapted to rooted MUL-trees.)

We immediately have:

Lemma 1. Let T = fT1‚ T2‚ . . . ‚ Tkg be a set of MUL-trees with L(T1) =L(T2) = . . . =L(Tk) = L. A

strict consensus MUL-tree of T always exists but might not be unique.

a b c ba dd

a b

a b c

u

FIG. 3. Let T be the MUL-tree on the

left and let u be the marked node in T. In

this example, K(T[u]) = {a, b} and ap-

plying the delete operation on node u re-

moves the only occurrence of the cluster

{a, b} from C(T).

1076 CUI ET AL.

Proof. To prove the existence, let Z =
Tk

i = 1 C(Ti) (using the intersection of multisets), and construct a

MUL-tree T with K(T) = L and C(T) = Z as follows. Set T equal to T1. Since Z � C(T), we have

multZ(C)pmultC(T)(C) for every C 2 C(T). For each C 2 C(T), arbitrarily select (multC(T)(C) - multZ(C))
nodes u in T with K(T[u]) = C and perform the delete operation (see Section 2.3) on them. This yields a

MUL-tree T with multZ(C) = multC(T)(C) for every C � L and K(T) = L, so T is a strict consensus MUL-tree

of T .

To prove the nonuniqueness, consider T = fT1‚ T2g in Figure 4. Each of T1 and T2 is a strict consensus

MUL-tree of the set T = fT1‚ T2g. -

Next, we consider majority rule consensus MUL-trees.

Lemma 2. Let T = fT1‚ T2‚ . . . ‚ Tkg be a set of MUL-trees with L(T1) =L(T2) = . . . =L(Tk) = L.

� If k = 2, then a majority rule consensus MUL-tree of T always exists but might not be unique.
� If k ‡ 3, then a majority rule consensus MUL-tree of T might not exist and might not be unique.

Proof. For the case k = 2, a cluster occurs in more than k/2 of the MUL-trees in T if and only if it

occurs in both MUL-trees in T . Hence, for k = 2, a majority rule consensus MUL-tree of T is equivalent to

a strict consensus MUL-tree of T , and the result follows from Lemma 1.

For k ‡ 3, the nonuniqueness follows from the example in Figure 4, where each of T1 and T2 is a majority

rule consensus MUL-tree of {T1, T2, T3}. The nonexistence follows from the set {T4, T5, T6} in Figure 5. -

T :

a d

a b

b c

1
T :2

T :3

d ca b

a b

aa dcbb

FIG. 4. Let T1, T2, T3 be the three MUL-trees shown above with L(T1) = L(T2) = L(T3) = {a, a, b, b, c, d} = L. Then

T1 6¼ T2 although C(T1) = C(T2) = ffag‚ fag‚ fbg‚ fbg‚ fcg‚ fdg‚ fa‚ bg‚ fa‚ b‚ cg‚ fa‚ b‚ dg‚ Lg. Each of T1 and T2 is a

strict consensus MUL-tree of {T1, T2}, and also a majority rule consensus MUL-tree of {T1, T2, T3}. (However, neither T1

nor T2 is a singular majority rule consensus MUL-tree of {T1, T2} or {T1, T2, T3} since the cluster {a, b} is not singular.)

T :

a b

dc a

4 T :

a

ba

5

c

d

T :

a

a

d

b c

6

FIG. 5. Here, T = fT4‚ T5‚ T6g, L(T4) = L(T5) = L(T6) = {a, a, b, c, d} = L. The nontrivial majority clusters are {{a,

b}, {a, c}, {a, d}, {a, a, b, c, d}}. For any MUL-tree T that contains all these clusters, multL(T) (a) ‡ 3 while

multL(a) = 2, i.e., L(T) 6¼ L. Thus, a majority rule consensus MUL-tree of T does not exist. Also, all the nontrivial

majority clusters are singular, so no singular majority rule consensus MUL-tree exists.

POLYNOMIAL-TIME ALGORITHMS FOR BUILDING A CONSENSUS MUL-TREE 1077

Finally, we consider singular majority rule consensus MUL-trees. Let S be the set of all singular,

nontrivial clusters that occur in at least k/2 of the MUL-trees in T . By definition, for any cluster C 2 S and

any singular majority rule consensus MUL-tree T of T , we have multC(T)(C) = 1. Thus, for every C 2 S,

there is a unique node tC in T such that C = K(T[tC]). For any two clusters C‚ C0 2 S, we say that C is an

ancestor (the parent) cluster of C0 in T if the node tC is an ancestor (the parent) of the node tC0.

Lemma 3. Let T = fT1‚ T2‚ . . . ‚ Tkg be a set of MUL-trees with L(T1) =L(T2) = . . . =L(Tk) = L.

� If k = 2, then a singular majority rule consensus MUL-tree of T always exists and is always unique.
� If k ‡ 3, then a singular majority rule consensus MUL-tree of T might not exist, but if it does, it is

unique.

Proof. First consider the case k = 2. Let X be the multiset of all trivial clusters of L and all singular

clusters that occur in more than k/2 of the MUL-trees in T , i.e., in both T1 and T2. Let T be a strict

consensus MUL-tree of T and note that X � C(T). All nonsingular clusters in T can be removed as follows:

For each C 2 C(T)yX, perform a delete operation on any node u in T satisfying K(T[u]) = C. This yields a

MUL-tree T0 with C(T 0) = X. Thus, a singular majority rule consensus MUL-tree always exists when k = 2.

For k ‡ 3, the nonexistence follows from the example in Figure 5.

Lastly, we prove the uniqueness. For the sake of obtaining a contradiction, suppose there exists two

different singular majority rule consensus MUL-trees A, B of T . Since A s B although C(A) = C(B), there

are two clusters C‚ C0 2 S such that C0 is the parent cluster of C in A while C0 is not the parent cluster of C

in B. It follows from the definition of a singular cluster that C0 must be an ancestor cluster of C in B. Thus,

there exists another cluster C† such that C0 is an ancestor cluster of C†, and C† is the parent cluster of C in

B. This means that C C† C0, so C† cannot be an ancestor cluster of C0 in A. Hence, C† is not an ancestor

cluster of C in A, and so A must contain at least two copies of all elements in C. But then C] C � L,

contradicting the definition of a singular cluster. -

Observe that the nonexistence and nonuniqueness results in Lemmas 1, 2, and 3 hold even when

restricted to instances with m = 2, i.e., when multL(x) £ 2 for all x 2 L.

4. BUILDING A STRICT CONSENSUS MUL-TREE

Recall from Lemma 1 that for any given set T of MUL-trees with identical leaf label multisets, a strict

consensus MUL-tree always exists. This section describes a simple algorithm for constructing such a

consensus MUL-tree. Intuitively, this problem is easier than constructing a MUL-tree consisting of all the

clusters in a given multiset (see, e.g., Huber et al., 2008), because all the branching information that must

appear in the final output is already contained in any one of the input MUL-trees, say T1, and we just need

to determine what parts of T1 to ignore.

Our algorithm, named Strict_consensus, is essentially an implementation of the existence proof

for Lemma 1. The basic strategy is to remove clusters from the cluster collection C(T1) by performing

delete operations on suitable internal nodes from T1 until a strict consensus MUL-tree is obtained. To

identify which clusters to remove, the algorithm uses vectors of integers to represent clusters in T and

stores these vectors in tries, as explained next.

A leaf label numbering function is a bijection from the set of q distinct leaf labels in L to the set

f1‚ 2‚ . . . ‚ qg. We fix an arbitrary leaf label numbering function f. For every Ti 2 T and node u 2 V(Ti),
define a vector Du

i of length q in which for every j 2 f1‚ 2‚ . . . ‚ qg, the jth element equals multK(Ti[u])

(f - 1(j)) (Figure 6). In other words, each element of the vector Du
i counts how many times the corresponding

leaf label occurs in the subtree rooted at node u in Ti. Clearly, D‘
i contains exactly one 1 for any leaf ‘ of Ti,

and Du
i for any internal node u equals the sum of its children’s Di-vectors.

The pseudocode of Algorithm Strict_consensus is given in Figure 7. Step 1 considers each MUL-tree Ti

in T separately. It first computes the Du
i -vectors for all nodes in Ti by one bottom-up traversal of Ti. Then it

initializes a trie Ai and stores the cluster collection C(Ti) in Ai by taking the q elements of each Du
i -vector,

concatenating them into a string of length q, and inserting the string into Ai. To keep track of multiple

occurrences of strings in Ai, every created leaf ‘ in Ai is augmented with a variable counti(‘) that stores the

number of times that its string has been inserted. Next, in Step 2, for each distinct cluster in T1 (i.e., for each

1078 CUI ET AL.

leaf ‘ in the trie A1), the algorithm calculates how many occurrences need to be removed from T1 to obtain a

strict consensus MUL-tree by subtracting its minimum number of occurrences among T2‚ . . . ‚ Tk from the

number of occurrences in T1. The tries A1‚ A2‚ . . . ‚ Ak and the variables counti(‘) are used to retrieve these

numbers efficiently, and the result is denoted by excess(‘). Finally, Steps 3 and 4 perform the necessary

node deletions in top-down order, and Step 5 outputs the answer.

Theorem 1. Let T = fT1‚ T2‚ . . . ‚ Tkg be a set of MUL-trees with L(T1) =L(T2) = . . . =L(Tk). Algo-

rithm Strict_consensus constructs a strict consensus MUL-tree of T in O(nqk) time.

Proof. The correctness of the algorithm follows from the proof of Lemma 1.

To analyze the time complexity, each of the k MUL-trees in T contains O(n) nodes, so O(nk) Di-vectors

need to be computed. Moreover, every Di-vector is of length q. Therefore, Step 1 takes O(nqk) time. Step 2

spends O(qk) time for each of the O(n) leaves in A1, i.e., O(nqk) time in total. Steps 3–5 require O(nq) time

T :

a d

a b

b c

i

1,0,0,0 0,0,1,00,1,0,0

1,1,0,1

1,1,0,0 0,0,0,1

1,0,0,0 0,1,0,0

1,1,1,0

2,2,1,1
iA :

20

0

0

1

1

1 0

00

2

1

1

1

1

1

0

0

0

0

0 0

(1) (1) (2) (1) (1) (1) (1)(2)

1

FIG. 6. A MUL-tree Ti, the Du
i -vectors for its nodes under the leaf label numbering function f (a) = 1, f (b) = 2, f (c) = 3,

f (d) = 4, and the trie Ai for storing C(Ti) are shown here. The value of counti(‘) for each leaf ‘ in Ai is written in parentheses.

FIG. 7. Algorithm Strict_consensus.

POLYNOMIAL-TIME ALGORITHMS FOR BUILDING A CONSENSUS MUL-TREE 1079

because: (1) Locating a leaf ‘ in A1 takes O(q) time and this is done O(n) times; and (2) in total, all delete

operations take O(n) time.

To prove (2), first observe that for any node u in V(T1) considered by the for-loop in Step 4, if u is

deleted then the children of u will become children of the parent of u instead; conveniently, these nodes will

never need to be moved again due to the top-down ordering used in the for-loop. Consequently, the delete

operation on a single node u in T always takes (at most) time proportional to the number of children of its

corresponding node in T1. Finally, the sum of the number of children of all nodes in T1 is O(n). -

5. BUILDING A MAJORITY RULE CONSENSUS MUL-TREE IS NP-HARD

Here, we show that the following decision problem is NP-hard:

To prove the result, we will reduce the 1-IN-3 3SAT problem to MCMT. 1-IN-3 3SAT is known to be

NP-hard (Garey and Johnson, 1979) and is defined as:

We first define an operation called non-mono-replace on any Boolean formula F in 3-CNF as:

� For every clause Cu in F that consists of three positive literals, arbitrarily select one of its three literals

xk and replace Cu = (xi _ xj _ xk) by two clauses (xi _ xj _ �yu) ^ (yu _ xk), where yu is a newly added

Boolean variable. Similarly, for every clause Cu in F that consists of three negative literals, arbitrarily

select one of its three literals �xk and replace Cu = (�xi _ �xj _ �xk) by two clauses (�xi _ �xj _ yu) ^ (�yu _ �xk),
where yu is a newly added Boolean variable.

Below, we will use the non-mono-replace operation to ensure that the Boolean formula we reduce from has

a special restricted structure. Denote the result of applying the non-mono-replace operation on F by F0. The

next lemma establishes the relationship between F and F0.

Lemma 4. Let F be a Boolean formula in 3-CNF and let F0 be the 3-CNF Boolean formula obtained by

applying the non-mono-replace operation on F. There exists a truth assignment for F such that every clause

contains exactly one true literal if and only if there exists a truth assignment for F0 such that every clause

contains exactly one true literal.

Proof. (/) Suppose F has a truth assignment r in which every clause contains exactly one true literal.

Let r0 be the following truth assignment for F0: For every variable xi that appears in both F and F0, set

r0(xi) = r(xi). For variables yu that only appear in F0, set r0(yu) 6¼ r(xk), where (yu _ xk) 2 F0.
To see that every clause in F0 contains exactly one true literal under r0, consider any clause Cu in F. By

the assumptions, Cu has exactly one true literal under r. There are three possibilities:

� If Cu contains both positive and negative literals, then Cu also belongs to F0 and has exactly one true

literal under r0.
� If Cu contains positive literals only, write Cu = (xi _ xj _ xk), where its two corresponding clauses in F0

are C0u = (xi _ xj _ �yu) ^ (yu _ xk). In case r0(xk) is false, then either r0(xi) or r0(xj) must be true and

r0(yu) is true. On the other hand, in case r0(xk) is true, then both r0(xi) and r0(xj) must be false and

r0(yu) is false. In both cases, C0u is true and each of its two clauses contains exactly one true literal.

Majority Rule Consensus MUL-Tree (MCMT):

Input: A set T = fT1‚ T2‚ . . . ‚ Tkg of MUL-trees and a multiset L of leaf labels such that L(Ti) = L for

every Ti 2 T .

Question: Is there a majority rule consensus MUL-tree of T ?

One-in-Three 3-Satisfiability (1-IN-3 3SAT):

Input: A Boolean formula F in conjunctive normal form where every clause contains at most 3

literals (3-CNF).

Question: Does there exist a truth assignment for F such that each clause contains exactly one true

literal?

1080 CUI ET AL.

� If Cu contains negative literals only, it can be verified in the same way that each of its two corre-

sponding clauses in F0 is true and contains exactly one true literal.

()) Suppose F0 has a truth assignment r0 in which every clause contains exactly one true literal. Then we

directly obtain a truth assignment r for F simply by setting r(xi) = r0(xi) for every variable xi in F.

Moreover, each clause Cu in F contains exactly one true literal under r, as shown next. If Cu 2 F0, then Cu

has exactly one true literal under r0 by the assumptions, and hence under r as well. On the other hand, if

Cu 62 F0, then Cu must consist of three positive literals or three negative literals. In the former case, write

Cu = (xi _ xj _ xk) with C0u = (xi _ xj _ �yu) ^ (yu _ xk) 2 F0. There are two subcases: (a) If r0(yu) is false, then

r(xk) is true while both r(xi) and r(xj) are false; thus, precisely one literal, namely xk, in Cu is true. (b) If

r0(yu) is true, then r(xk) is false while either r(xi) or r(xj) is true; thus, precisely one literal (either xi or xj) in

Cu is true. The final case where Cu consists of three negative literals is symmetric. -

We now describe the reduction from 1-IN-3 3SAT to MCMT. Let F be any given Boolean formula in 3-

CNF. As in the proof of Theorem 3.1 in Huber et al. (2008), assume without loss of generality that:

(i) No single clause in F contains a variable xi as well as its negation �xi as literals; and

(ii) For every variable xi in F, both xi and its negation �xi appear somewhere in F as literals.

Then, apply the non-mono-replace operation on F to obtain a Boolean formula F0 with s variables and t

clauses, for some positive integers s and t [this does not affect properties (i) and (ii) above]. Lastly,

construct three MUL-trees T1, T2, T3 based on F0 as follows. Let X = fx1‚ . . . ‚ xsg and Z = fz1‚ . . . ‚ ztg be

two sets in one-to-one correspondence with the variables and clauses of F0, respectively. Say that xi is

positive (negative) in zj if xi corresponds to a variable in F0 that occurs positively (negatively) in the jth

clause. Define the leaf label multiset L for T1, T2, T3 as L = fx‚ x : x 2 Xg [fz‚ z‚ z : z 2 Zg. (Observe that L

contains two copies of every element in X and three copies of every element in Z.) Next, for each x 2 X,

define two subsets Zx‚ ~Zx of Z by Zx = fz 2 Z : x is positive in zg and ~Zx = fz 2 Z : x is negative in zg. Let

W = fZx [fxg : x 2 Xg and eW = f~Zx [fxg : x 2 Xg. FromW and eW, construct three MUL-trees T1, T2, T3

with L(T1) = L(T2) = L(T3) = L, whose sets of nontrivial clusters are: W [eW‚W [fX [Zg, andeW [fX [Zg, respectively. Then, the set of nontrivial majority clusters for {T1, T2, T3} is:

W [eW [fX [Zg. The next lemma shows that each of T1, T2, T3 is indeed a valid MUL-tree.

Lemma 5. The MUL-trees T1, T2, and T3 defined above always exist.

Proof. By definition, each x 2 X occurs exactly once in W and exactly once in eW. Moreover, every

clause in F0 contains at most three literals, so every z 2 Z occurs at most three times in W [eW. Hence,U
S2W[eW S is a submultiset of L and there exists a tree with a root whose children are associated with the

clusters in W [eW. Thus, T1 always exists.

Because of the non-mono-replace operation, every clause in F0 contains at most two positive (and at most

two negative) literals. This means that every z 2 Z occurs at most two times inW (and at most two times ineW). Hence,
U

S2W[fX[Zg S is a submultiset of L, and T2 always exists. Similarly,
U

S2 eW[fX[Zg
S is a

submultiset of L, so T3 always exists. -

An example of how the three MUL-trees T1, T2, T3 are constructed from a given Boolean formula F is

shown in Figure 8.

The reduction’s correctness is guaranteed by:

Lemma 6. A majority rule consensus MUL-tree for T1, T2, T3 exists if and only if there exists a truth

assignment for F0 such that every clause contains exactly one true literal.

Proof. (/) Suppose there exists a majority rule consensus MUL-tree T123 for {T1, T2, T3}. By

definition, its set of nontrivial clusters is W [eW [fX [Zg.
Consider any two sets S1 and S2 inW [eW that contain a common element from X, i.e., S1 = Zx [fxg and

S2 = ~Zx [fxg for the same x 2 X. According to assumption (ii) above, both Zx and ~Zx are nonempty, so each

of S1 and S2 contains one or more elements from Z. Furthermore, according to assumption (i) above, every

z 2 Z may appear in at most one of Zx and ~Zx. Thus, by (i) and (ii), the following crucial observation holds:

POLYNOMIAL-TIME ALGORITHMS FOR BUILDING A CONSENSUS MUL-TREE 1081

� For any two sets S1‚ S2 2 W [eW, S1 and S2 are not subsets of each other.

Let u be the internal node in T123 to which the cluster X W Z is associated. Note that u must be a child of

the root r of T123. Also note that since
U

S2W[eW S contains both copies of every x 2 X from L, there are no

copies of x left to create any trivial clusters consisting of elements from X directly attached to r or u. This

means that for every child v of u, the cluster associated with v must be a cluster from W [eW or a trivial

cluster {z} where z 2 Z. In addition, the clusters associated with the children of u form a partition of X W Z,

so for each x 2 X, exactly one of Zx W {x} and ~Zx [fxg is associated to a descendant of u; from the crucial

observation above it follows that this descendant must, in fact, be a child of u.

Now, we obtain a truth assignment for F0: For each x 2 X, in case Zx W {x} is associated with a child of

u, then let x be true; otherwise (i.e., ~Zx [fxg is associated with a child of u), let x be false. Since

fZx [fxg : x is true in F0g [f~Zx [fxg : x is false in F0g : x is false in F0} forms a partition of X W Z, it is

easy to check that fZx : x is true in F0g [f~Zx : x is false in F0g equals Z. Therefore, with this truth as-

signment, every clause in F0 has exactly one true literal.

FIG. 8. An illustration of the reduction in Section 5. In this example, F = (x1 _ �x2 _ x3) ^ (x1 _ x2 _ x4)^
(�x1 _ x3 _ �x4) ^ (x2 _ �x3 _ �x4) ^ (�x2 _ x3 _ �x4) and F0 = (x1 _ �x2 _ x3) ^ (x1 _ x2 _ �y1) ^ (�x1 _ x3 _ �x4) ^ (x2 _ �x3 _ �x4)^
(�x2 _ x3 _ �x4) ^ (y1 _ x4). According to the definitions, Zx1

= fz1‚ z2g and ~Zx1
= fz3g, etc., so thatW = ffx1‚ z1‚ z2g‚ . . .g

and eW = ffx1‚ z3g‚ . . .g, yielding three MUL-trees T1, T2, T3. Here, T1, T2, T3 have a majority rule consensus MUL-tree

T123. As explained in the proof of Lemma 6, the non leaf children of the root of T123 are: (1) the roots of the trees in a set

Gf; and (2) an internal node whose children are the roots of the trees in a set Gt that encode, for each variable xi, which

of the clauses are satisfied by xi. The corresponding truth assignment for F and F0 in this example is: x1 = false,

x2 = false, x3 = false, x4 = true, y1 = false.

1082 CUI ET AL.

()) Suppose F0 has a truth assignment r0 in which every clause contains exactly one true literal. We show

how to build a number of small trees and connect them to obtain a MUL-tree T123 with L(T123) = L such

that the set of all nontrivial clusters in the cluster collection of T123 equals W [eW [fX [Zg. Then, by

definition, T123 is a majority rule consensus MUL-tree of {T1, T2, T3}.

First, for each x 2 X, let Rx be a tree consisting of a root node attached to leaves labeled by Zx W {x}.

Similarly, for each x 2 X, let Rx be a tree consisting of a root node attached to leaves labeled by ~Zx [fxg.
Note that each Rx-tree contains the leaf labels from one element in W, and each Rx-tree contains the leaf

labels from one element in eW. Partition the Rx- and Rx-trees into two sets Gt and Gf:

� Gt = fRx : r0(x) = true‚ x 2 Xg [fRx : r0(x) = false‚ x 2 Xg
� Gf = fRx : r0(x) = false‚ x 2 Xg [fRx : r0(x) = true‚ x 2 Xg

Build a MUL-tree T123 with a root node whose children are: (1) the roots of the trees in Gf; (2) an internal

node u whose children are the roots of the trees in Gt; and (3) leaves labeled by Ly(
S

R2Gf[Gt
L(R)) (Figure

8). By the construction, every cluster in W [eW occurs somewhere in T123. Also, the cluster X W Z

occurs in T123 because it is associated with the internal node u in (2) above; to see this, note that every

clause in F0 contains exactly one true literal in the truth assignment r0, so each x 2 X and each z 2 Z

occurs exactly once as leaf labels in the trees in Gt. Hence, T123 is a majority rule consensus MUL-tree for

{T1, T2, T3}. -

In summary, the reduction above, together with Lemmas 4 and 6, yields the main theorem of this section:

Theorem 2. The MCMT problem is NP-hard, even if restricted to inputs where k = 3 and m = 3, where

m is the multiplicity of the leaf label multiset.

Remark: In a related problem studied in Huber et al. (2008), named Multiset Split Compatibility

(MSC), the input is a multiset S of bipartitions (so-called splits) of a multiset L of leaf labels, and the

objective is to decide if there exists an unrooted MUL-tree leaf labeled by L whose set of edges induces a

multiset of bipartitions of L that is equal to S. It is easy to reduce MCMT to MSC: Given an instance of

MCMT, count the occurrences of all clusters in T to identify the majority clusters and their multiplicities,

and let S be the multiset of bipartitions corresponding to those clusters, in which an additional leaf

label is used to represent the root node. Since MCMT is a special case of MSC, Theorem 2 above can

be viewed as a technical strengthening of Theorem 3.1 in Huber et al. (2008), which states that MSC is

NP-hard.

6. BUILDING A MAJORITY RULE CONSENSUS MUL-TREE WHEN M = 2

Section 5 above proves that, in general, constructing a majority rule consensus MUL-tree is a compu-

tationally hard problem. However, when the parameter m (the multiplicity of the leaf label multiset L) is

restricted to be at most two, the problem can be solved in polynomial time, as demonstrated in this section.

At the end of Section 1 in Huber et al. (2008), briefly mentioned that for the special case where every leaf

label has exactly two occurrences in L (i.e., when multL(‘) = 2 for every ‘ 2 L), the problem of checking if

there exists a MUL-tree that is compatible with a given set S of bipartitions on L can be reduced to a

problem known as the Perfect Phylogeny Haplotyping problem (PPH) (Gusfield, 2002). Here, we work out

the missing technical details to obtain an O(n2k + nk2)-time algorithm for constructing a majority rule

consensus MUL-tree when multL(‘) £ 2 for every ‘ 2 L.

The Perfect Phylogeny Haplotyping problem (PPH) was introduced by Gusfield (2002) for the purpose of

inferring haplotypes that resolve a given set of genotypes under the coalescent model of haplotype evo-

lution (see Gusfield, 2002 for the biological motivation behind this problem). PPH is defined as follows.

Given an (n · t)-matrix M where each entry belongs to {0, 1, 2}, output a (2n · t)-matrix M0 such that: (1)

Every entry of M0 belongs to {0, 1}; (2) if M[i‚ j] 2 f0‚ 1g, then M0[2i - 1, j] = M0[2i, j] = M[i, j]; (3) if

M[i, j] = 2, then {M0[2i - 1, j], M0[2i, j]} = {0, 1}; and (4) M0 admits a perfect phylogeny (i.e., the columns

in M0 are pairwise compatible (see, e.g., Section 17.3.3 in Gusfield, 1997). PPH has been well studied, and

the fastest algorithm for solving it runs in O(nt) time (Ding et al., 2006).

POLYNOMIAL-TIME ALGORITHMS FOR BUILDING A CONSENSUS MUL-TREE 1083

Now, we describe the method for building a majority rule consensus MUL-tree. It consists of three steps:

In Step 1, we compute all majority clusters in T = fT1‚ T2‚ . . . ‚ Tkg and the number of times each cluster

must occur in a solution (recall that, according to the definition of a majority rule consensus MUL-tree T of

T , for any C 2 C(T), multC(T)(C) equals the largest integer j such that jfTi : multC(Ti)(C)qjgj > k=2). Let S

be the resulting multiset and denote S = fs1‚ s2‚ . . . ‚ sjSjg.
In Step 2, construct a (q · jSj)-matrix M, where q is the number of distinct elements in L and jSj is the

total number of occurrences of all majority clusters found in Step 1. Each element M[i‚ j] 2 f0‚ 1‚ 2g
specifies the relationship between the leaf label i and the cluster sj. To be precise, for every 1 £ i £ q and

1 £ j £ jSj, let:

M[i‚ j] =

0‚ if leaf label i does not occur in cluster sj

2‚ if leaf label i occurs once in cluster sj and multL(i) = 2

1‚ if leaf label i occurs once in cluster sj and multL(i) = 1

1‚ if leaf label i occurs twice in cluster sj

8><
>:

Apply the algorithm of Ding et al. (2006) to M and let M0 be the output (2q · jSj)-matrix.

In Step 3, if PPH does not admit a solution for M, we return FAIL. Otherwise, we use M0 to recover a

majority rule consensus MUL-tree T for T . First construct a perfect phylogeny P for M0, and note that P has

the following property.

Lemma 7. For any leaf label i in L with multL(i) = 1, its two corresponding leaves ‘2i - 1 and ‘2i in P

have the same parent.

Proof. By definition, the (2i - 1)-th and (2i)-th rows of M0 are identical. Hence, in P, both leaves ‘2i - 1

and ‘2i are attached to the same internal node. -

Next, for every leaf label i in L with multL(i) = 2, we replace its two corresponding leaves l2i - 1 and l2i in

P by two i’s. For every leaf label i in L with multL(i) = 1, Lemma 7 states that its two corresponding leaves

l2i - 1 and l2i in P have the same parent; we simply replace these two leaves by a single leaf labeled by i. Let

T be the resulting MUL-tree. The next lemma shows that T contains all of the clusters in S.

Lemma 8. For every cluster sj 2 S‚ T contains sj.

Proof. By the properties of a perfect phylogeny P for M0, the cluster sj can be associated with exactly

one node P(j) in P so that for any row x of M0, it holds that M0[x, j] = 1 if and only if the leaf x is a

descendant of the node P(j). In the tree T, for any leaf label i with multL(i) = 1, it still holds that

L(T[P(j)]) = sj by Lemma 7 and the definition of T. On the other hand, for any leaf label i with multL(i) = 2,

there are two cases. Firstly, if sj contains two occurrences of i, then they will both be descendants of the

node P(j) in T. Secondly, if sj contains one occurrence of i, then exactly one of M0[2i - 1, j] and M0 [2i, j]

equals 1, and by the above construction, there will only be one occurrence of leaf label i in the subtree

T[P(j)]. This shows that there always exists a node u in T (namely u = P(j)) such that L(T[u]) = sj. -

Lemma 8 implies that T is a majority rule consensus MUL-tree of T . This gives:

Theorem 3. Let T = fT1‚ T2‚ . . . ‚ Tkg be a set of MUL-trees with L(T1) =L(T2) = . . . =L(Tk). If m = 2,

where m is the multiplicity of the leaf label multiset, then a majority rule consensus MUL-tree of T (if one

exists) can be constructed in O(n2k + nk2) time.

1. Identify all clusters that appear in a majority rule consensus MUL-tree of T .

2. Construct an input matrix M to the PPH problem, apply the algorithm of Ding et al. (2006) for PPH

to M, and let M0 be the output.

3. Based on M0, construct a majority rule consensus MUL-tree of T , if one exists; otherwise, FAIL.

1084 CUI ET AL.

Proof. Step 1 of the method can be carried out in O(n2k + nk2) time by first applying the technique

described in Section 4 to compute the Du
i -vectors for every node u in every MUL-tree Ti and concatenating

each such Du
i -vector to a string of length at most n over the alphabet {0, 1, 2}. Then, all the O(nk) strings

are inserted into a single trie A, while for each leaf ‘ of A, k variables count1(‘)‚ count2(‘)‚ . . . ‚ countk(‘)
store the number of occurrences of the cluster represented by ‘ in each MUL-tree Ti 2 T . Next, for each

leaf ‘ in A, compute the median of the values counti(‘) for all i 2 f1‚ 2‚ . . . ‚ kg in O(k) time to determine

whether the cluster represented by ‘ is a majority cluster and, if so, its correct multiplicity in the set S. In

total, Step 1 takes O(n2k + nk2) time.

In Step 2, applying the algorithm of Ding et al. (2006) to M takes O(q $ jSj) time. Each input MUL-tree Ti

contains O(n) nodes, so jSj = O(nk) and Step 2 therefore takes O(n2k) time.

In Step 3, constructing a perfect phylogeny P for M0 takes O(2q $ jSj) = O(n2k) time by the algorithm in

Section 17.3.4 in Gusfield (1997), and the modifications to obtain T from P do not affect the asymptotic

time complexity. -

7. BUILDING A SINGULAR MAJORITY RULE CONSENSUS MUL-TREE

In this section, we present a polynomial-time algorithm for building a singular majority rule consensus

MUL-tree or determining that such a tree does not exist. According to Lemma 3 in Section 3, when a

singular majority rule consensus MUL-tree of T exists, it is unique.

Our algorithm consists of two phases. Phase 1 constructs the set S of all singular, nontrivial clusters that

occur in at least k/2 of the MUL-trees in T . To implement Phase 1, first enumerate all nontrivial clusters that

occur in T and count their occurrences in the same way, as in the first part of the proof of Theorem 3 in Section

6. Then, let S be the set of those clusters that occur in more than k/2 of the MUL-trees in T and that are singular.

Phase 2 builds the singular majority rule consensus tree of T by calling a top-down, recursive procedure

Build_MUL-tree(L, S), listed in Figure 9, which returns the singular majority rule consensus MUL-tree

T for T , if it exists. The cluster associated with the root of T is L, and the clusters associated with the

children of the root of T belong to a set F � S of maximal elements in S. More precisely, we let

F = fC 2 S : C is not a submultiset of any cluster C0 2 Sg}. Lemma 10 below ensures that F defined in this

way equals the set of all clusters associated with children of the root of the (unique) singular majority rule

consensus MUL-tree of T , so that we may apply recursion to compute T.

Steps 1 and 2 of Build_MUL-tree compute F in a greedy fashion. After each update to F in Step 2,

if L is a proper submultiset of
U

C2F C, then no MUL-tree leaf-labeled by L containing all clusters in S

exists, and the algorithm reports FAIL. Step 3 builds a sub-MUL-tree TC for each cluster C in F by

recursively calling Build_MUL-tree(C, SjC), where SjC = fX 2 S : X Cg. The base case of the re-

cursion is given by the condition S = ;, as this implies that F = ;, and no further recursive calls will be

made. Then, in Step 4, the TC-trees and all ‘‘leftover leaves’’ not in
U

C2F C are assembled into the final

consensus MUL-tree T, which is returned in Step 5.

We now show the correctness of using the set F to build the MUL-tree T:

Lemma 9. Let T be the singular majority rule consensus MUL-tree of T . If C1 and C2 are two clusters

associated with two internal nodes u and v of T such that u is not an ancestor of v and v is not an ancestor

of u, then neither of C1 and C2 is a submultiset of the other.

Proof. If C1 � C2, then T contains at least two copies of all elements in C1, and thus C1] C1 � L. This

contradicts the fact that C1 is singular. The case C2 � C1 is symmetric. The lemma follows. -

Lemma 10. F = fC 2 S : C is not a submultiset of any cluster C0 2 Sg equals the set of all clusters

associated with children of the root of the unique singular majority rule consensus MUL-tree of T .

Proof. First, consider any cluster X 2 SyF . According to the definition of F , X must be a submultiset

of some cluster C 2 F . Let x and c be the two nodes in T to which X and C are associated, respectively. By

Lemma 9, node c is an ancestor of node x, so the subtree represented by X is contained in the subtree

represented by C.

POLYNOMIAL-TIME ALGORITHMS FOR BUILDING A CONSENSUS MUL-TREE 1085

Next, consider any cluster C 2 F . Let c be the node in T to which C is associated. Suppose the parent of

c is a node x and that x is not the root of T. But then C X, where X is the cluster associated to x, which

contradicts the maximality of the clusters in F . Therefore, c must be a child of the root of T, i.e., the subtree

represented by C is attached directly to the root of T. -

Theorem 4. Let T = fT1‚ T2‚ . . . ‚ Tkg be a set of MUL-trees with L(T1) =L(T2) = . . . =L(Tk). The

algorithm constructs the singular majority rule consensus MUL-tree of T (if it exists) in O(n3k + nk2) time.

Proof. As in the proof of Theorem 3, the time complexity of Phase 1 is O(n2k + nk2). Phase 2 calls

Build_MUL-tree(L, S), which constructs a MUL-tree with at most jLj internal nodes, i.e., O(jLj) clusters.

For each such cluster, it may need to execute all the steps of the procedure, which takes O(jLjjSj) time because

j
U

C2F CjpjLj. Since jLj = n and jSj = O(nk), the total running time of Phase 2 is O(jLj2jSj) = O(n3k).-

8. CONCLUDING REMARKS

Ideally, one would like to generalize tools and concepts that have been demonstrated to be useful for

single-labeled phylogenetic trees to MUL-trees. Unfortunately, certain basic problems become NP-hard

when extended to MUL-trees. For example, the MSC problem mentioned at the end of Section 5 is NP-

hard, whereas the corresponding problem for single-labeled phylogenetic trees is solvable in polynomial

time Huber et al., (2008). As another example, given a set of rooted triplets (single-labeled binary phy-

logenetic trees with exactly three leaves each), a classical algorithm by Aho et al. (1981) can check if there

exists a single-labeled phylogenetic tree that is consistent with all of the rooted triplets in in polynomial

time; on the other hand, it is NP-hard to decide if there exists a MUL-tree consistent with having at most d

leaf duplications, even if restricted to d = 1 Guillemot et al., (2011). In short, MUL-trees pose new and

sometimes unexpected algorithmic challenges for researchers.

In this article, we have shown that the problem of building a consensus MUL-tree can be solved in

polynomial time for certain types of consensus MUL-trees, thus significantly improving on the previously

existing, exponential-time methods of Huber et al. (2012) and Lott et al. (2009b). We have also presented a

number of negative results regarding the existence, uniqueness, and time complexity of consensus MUL-

trees. The main open problem is to identify other variants than the ones studied here with even better

properties and to study their performance in practice. For example, is there some way to combine the

advantages of the strict consensus MUL-tree and the singular majority rule consensus MUL-tree?

FIG. 9. Algorithm Build_MUL-tree.

1086 CUI ET AL.

Our algorithm Strict_consensus in Section 4 runs in O(nqk) time according to Theorem 1. We

note that this is not optimal when applied to single-labeled phylogenetic trees, i.e., when q = n, because it

gives a time complexity of O(n2k) while Day’s algorithm (Day, 1985) solves the problem in O(nk) time.

However, it seems difficult to extend Day’s algorithm to MUL-trees directly since its efficiency relies on

the fact that, after relabeling the leaves by the positive integers f1‚ 2‚ . . . ‚ ng according to the order in

which they are visited by a depth-first traversal of T1, every cluster contained in T1 forms an interval. When

T1 is allowed to be a MUL-tree, such relabeling does not necessarily exist.

For inputs where a majority rule consensus MUL-tree does not exist, one might try to introduce addi-

tional occurrences of the leaf labels until it is possible to construct a MUL-tree that contains all majority

clusters. Here, minimizing the number of leaf duplications appears to be a hard problem, and the com-

putational complexity will probably not be polynomial. Another obvious disadvantage of this approach is

that the output MUL-tree will no longer have the same leaf label multiset as the input MUL-trees.

ACKNOWLEDGMENTS

Jesper Jansson was funded by The Hakubi Project at Kyoto University and KAKENHI grant number

23700011.

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Aho, A.V., Sagiv, Y., Szymanski, T.G., et al. 1981. Inferring a tree from lowest common ancestors with an application

to the optimization of relational expressions. SIAM Journal on Computing. 10, 405–421.

Bryant, D. 2003. A classification of consensus methods for phylogenetics, 163–184. In Janowitz, M.F., Lapointe, F.-J.,

McMorris, F.R., et al., eds. Bioconsensus, DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, Volume 61. American Mathematical Society, Providence, RI.

Day, W.H.E. 1985. Optimal algorithms for comparing trees with labeled leaves. Journal of Classification. 2, 7–28.

Ding, Z., Filkov, V., and Gusfield, D. 2006. A linear-time algorithm for the perfect phylogeny haplotyping (PPH)

problem. J. Comput. Biol. 13, 522–553.

Fellows, M., Hallett, M., and Stege, U. 2003. Analogs & duals of the MAST problem for sequences & trees. Journal

of Algorithms. 49, 192–216.

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts.

Ganapathy, G., Goodson, B., Jansen, R., et al. 2006. Pattern identification in biogeography. IEEE/ACM Trans. Comput.

Biol. Bioinform. 3, 334–346.

Garey, M., and Johnson, D. 1979. Computers and Intractability—A Guide to the Theory of NP-Completeness. W.H.

Freeman and Company, New York.

Guillemot, S., Jansson, J., and Sung, W.-K. 2011. Computing a smallest multilabeled phylogenetic tree from rooted

triplets. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 1141–1147.

Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York.

Gusfield, D. 2002. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. Proceedings of the

6thAnnual International Conference on Computational Biology (RECOMB 2002). 166–175.

Huber, K.T., Lott, M., Moulton, V., et al. 2008. The complexity of deriving multi-labeled trees from bipartitions.

J. Comput. Biol. 15, 639–651.

Huber, K.T., Moulton, V., Spillner, A. 2012. Computing a consensus of multilabeled trees. Proceedings of the 14th

Workshop on Algorithm Engineering and Experiments (ALENEX 2012). 84–92.

Huber, K.T., Oxelman, B., Lott, M., et al. 2006. Reconstructing the evolutionary history of polyploids from multi-

labeled trees. Mol. Biol. Evol. 23, 1784–1791.

Huber, K.T., Spillner, A., Suchecki, R., et al. 2011. Metrics on multilabeled trees: Interrelationships and diameter

bounds. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 1029–1040.

Lott, M., Spillner, A., Huber, K.T. 2009a. PADRE: a package for analyzing and displaying reticulate evolution.

Bioinformatics. 25, 1199–1200.

POLYNOMIAL-TIME ALGORITHMS FOR BUILDING A CONSENSUS MUL-TREE 1087

Lott, M., Spillner, A., Huber, K.T., et al. 2009b. Inferring polyploid phylogenies from multiply-labeled gene trees. BMC

Evol. Biol. 9, 216.

Margush, T., and McMorris, F.R. 1981. Consensus n-Trees. Bull. Math. Biol. 43, 239–244.

Minaka, N. 1990. Cladograms and reticulated graphs: A proposal for graphic representation of cladistic structures.

Bulletin of the Biogeographical Society of Japan. 45, 1–10.

Nelson, G., and Platnick, N. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University

Press, New York.

Page, R.D.M. 1993. Parasites, phylogeny and cospeciation. Int. J. Parasitol. 23, 499–506.

Page, R.D.M. 1994. Maps between trees and cladistic analysis of historical associations among genes, organisms, and

areas. Syst. Biol. 43, 58–77.

Scornavacca, C., Berry, V. and Ranwez, V., 2011. Building species trees from larger parts of phylogenomic databases.

Information and Computation. 209, 590–605.

Sokal, R.R., and Rohlf, F.J., 1981. Taxonomic congruence in the Leptopodomorpha re-examined. Systematic Zoology.

30, 309–325.

Sung, W.-K. 2010. Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC, Boca Raton, FL.

Wareham, H.T. 1985. An efficient algorithm for computing Ml consensus trees [B.Sc. Honours thesis]. Memorial

University of Newfoundland, Newfoundland and Labrador. Canada.

Address correspondence to:

Wing-Kin Sung

School of Computing

National University of Singapore

13 Computing Drive

Singapore 117417

Singapore

E-mail: ksung@comp.nus.edu.sg

1088 CUI ET AL.

