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Abstract

This paper is concerned with the evolution of haploid organisms that reproduce asexually. In a sem-
inal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand
such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strate-
gies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it
assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper
we consider a population genetics-based model aimed at understanding the evolution of such organisms
with finite population sizes and present a rigorous study of the convergence and computational issues
that arise therein. Our first result is structural and shows that, at any time during the evolution, as the
population size tends to infinity, the distribution of genomes predicted by our model converges to that
predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive
guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due
to the explosion of the state space in our model, exact computations are prohibitive. Our second set
of results are computational in nature and address this issue. We derive conditions on the parameters
of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fit-
ness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our
model. These computational tools are expected to serve as a framework for the modeling of strategies
for the deployment of mutagenic drugs.

Topics: Molecular Evolution, Quasispecies Theory.
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1 Introduction

The rapid genomic evolution of viruses such as HIV has made the design of drugs and vaccines with lasting
activity one of the most difficult challenges of our time. A novel intervention strategy which potentially
outplays viruses in this evolutionary game was suggested by the pioneering work of Eigen and coworkers
[Eig71, EMS89]. Eigen and coworkers considered the asexual evolution of a haploid organism and found
that when the mutation (or evolutionary) rate was small, the organism survived as a collection of closely
related yet distinct genomes together termed the quasispecies. Viral populations in infected individuals are
known to exist as such quasispecies [LA10]. Remarkably, this quasispecies model predicted that when the
mutation rate increased beyond a critical value, called the error threshold, the collection of genomes in the
quasispecies ceased to be closely related; in fact, a completely random collection of genomic sequences
was predicted to emerge. This transition with increasing mutation rate thus induced a severe loss of genetic
information in the quasispecies and has been referred to as an error catastrophe. The generic antiviral drug
ribavirin has been shown to act as a mutagen–an agent that induces mutations–against poliovirus and trigger
a severe loss of viral infectivity in culture [CCA01]. This strategy of enhancing the viral mutation rate thus
appears promising and particularly advantageous because it is unlikely to be susceptible to failure through
viral evolution-driven development of drug resistance. Mutagenic drugs that attempt to induce an error
catastrophe are thus being explored as a potential antiviral strategy [CCA01, GPLL+05, ADL04], and one
such drug for HIV is currently under clinical trials [MHH+11].

The success of mutagenic strategies relies on accurate estimates of the error threshold of the pathogens
under consideration. Notwithstanding the tremendous insights into viral evolution the quasispecies model
provides, important gaps remain between the quasispecies model and the realistic evolution of viruses and
other haploid asexual organisms. First, whereas the model assumes an infinite population size and, hence,
adopts a deterministic approach, real populations are often small enough to lend themselves to substantial
stochastic effects. For instance, the effective population size of HIV-1 in infected individuals is about 103−
106 [KAB06, BSSD11], which is thought to underlie the strongly stochastic nature of HIV-1 evolution.
Second, the model assumes a single-peak fitness landscape, where one genomic sequence is assumed to
be the fittest and all other genomes are equally less fit. Realistic fitness landscapes are far more complex
[HMC+11]. There have been significant efforts in the last 30 years to close these gaps [Wil05]. While
more general landscapes have been successfully considered in the quasispecies case [SH06], a rigorous
treatment of the finite population case has remained elusive (see Section 4). Importantly, it still remains to
be established whether the insights gained from the quasispecies model, such as the occurrence of an error
catastrophe, translate to the more realistic, finite population case.

Here, we consider a finite population model of the asexual evolution of a haploid organism. Following
standard population genetics-based descriptions [HC06], the model considers evolution in discrete, non-
overlapping generations. Within each generation, genomes undergo reproduction (R), selection (S), and
mutation (M), yielding progeny genomes for the next generation. We analyze this RSM model formally and
establish the following key results. We show that in the infinite population limit, the expected structure of
the quasispecies predicted by the RSM model converges to that of the quasispecies model. Thus, insights
from the quasispecies model may be translated to the finite population scenario. Indeed, we show further
that the error threshold predicted by the RSM model also converges in the infinite population limit to that
of the quasispecies model. Finite population models, such as the RSM model, appropriately tuned to mimic
specific details, such as the fitness landscape, of the pathogens under consideration may thus be employed
to obtain realistic estimates of the error threshold.

Unlike the quasispecies model, where the quasispecies is identified readily using black-box eigenvector
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determination algorithms, identifying the expected quasispecies of the RSM model is computationally pro-
hibitive even for the smallest realistic genome and population sizes. Monte Carlo sampling techniques are
therefore often resorted to [Wil05, AB05, BKP+11, GD10, TBVD12]. Here, going beyond the ideas of the
quasispecies model, we examine the mixing properties of the RSM model. We establish constraints on the
model parameters under which the RSM model exhibits rapid mixing and therefore allows fast estimation
of the expected quasispecies structure. Finally, we suggest an algorithm that uses the Markov Chain Monte
Carlo paradigm to estimate the error threshold in the RSM model. Our study thus serves as a framework for
elucidating quantitative guidelines for the modeling of intervention strategies that employ mutagenic drugs.

The paper is organized as follows. In Section 2 we briefly describe the quasispecies model and the notion
of the error threshold. In Section 3 we setup the finite population RSM model, present our main results and
outline the techniques employed. In Section 4 we discuss our results in the context of previous studies and
highlight open problems arising from work. Formal statements of our results are presented in Section 5.
Detailed proofs are contained in the Appendix.

2 Preliminaries and Definitions

2.1 Preliminaries

We consider the evolution of a population of haploid organisms that reproduce asexually. In this evolution-
ary process the genome of each individual is modeled as a string of nucleotides. During reproduction, the
genome is copied with possible mutations, which can be insertions, deletions, or substitutions. In appli-
cations, such as the modeling of viral evolution, it is often convenient to neglect insertions, deletions, and
substitutions other than transitions (A to G or C to T , and vice versa). Under this assumption, a genome
may, without loss of generality, be represented as a binary string. We thus represent a genome as an L-bit
string σ = (σ1,σ2, . . . ,σL), where σi ∈ {0,1}.

The fitness of a genome is then modeled in terms of its propensity to produce copies of itself. Specif-
ically, the fitness of the genome σ is defined by the number of copies aσ of itself that it produces in one
round of replication (also called one generation). However, during replication, each bit of each of the aσ

offsprings is copied incorrectly with probability µ (called the error or mutation rate), thus potentially giving
rise to an L-bit string different from σ . The fittest genome, also termed the master sequence, is without loss
of generality assumed to be 0 = (0, . . . ,0) so that a0 > aσ for all σ 6= 0.

The primary cause of the complexity and diversity in the evolution of such organisms is the variety
of possible fitness landscapes, which a priori can be arbitrary functions from {0,1}L to the set of non-
negative integers. Several special classes of fitness landscapes have been employed in the literature and
we list the important ones below. We will assume that aσ ≥ 1. The case aσ = 0 for some σ ’s has been
used [WK93, TH07, GD10], and will be discussed in Section 4.

1. (General) Here the only condition is that aσ ≥ 1.

2. (Class Invariant [SH06, TH07, PMnD10, BSSD11]) In a class invariant landscape aσ depends only
on the Hamming weight of σ .

3. (Single Peak [Eig71, NS89, PMnD10]) Here, we have a0 > 1 and aσ = 1 for all σ 6= 0.

4. (Multiplicative [TH07, WH96]) These are parametrized by a1, . . . ,aL ≥ 1 so that for a given σ , aσ

def
=

∏
L
i=1,σi=0 ai.
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Other landscapes such as the simpler additive or linear landscapes and more complex correlated landscapes
have also been employed in the literature [BS93, Wie97, vNCM99].

2.2 The Quasispecies Model

Eigen and coworkers [Eig71, EMS89] gave the following differential equations for the time-evolution of the
fractional population of the genome σ at time t, denoted by xσ (t):

dxσ (t)
dt

= ∑
τ

xτ(t)aτQτσ − xσ (t)Ā(t) for all σ .

Here, Qστ

def
= µdH(σ ,τ)(1− µ)L−dH(σ ,τ) is the probability that σ mutates to τ and dH(σ ,τ) is the Hamming

distance between σ and τ. Ā(t) is the average fitness ∑σ aσ xσ (t) at time t. Defining Aστ

def
= aσ when σ = τ

and 0 otherwise, they showed that the vector of stationary frequencies, vσ
µ

def
= limt→∞ xσ (t), is the dominant

right eigenvector of the value matrix QA at mutation rate µ such that ‖vµ‖1
def
= ∑σ vσ

µ = 1.1 The collection of
genomes determined by this dominant eigenvector, which marks the culmination of the evolutionary process,
is called the quasispecies. It is important to note that the vector vµ is independent of the starting population
distribution.

We will mostly be concerned with the discrete time version of the quasispecies model. In the discrete
time case, t = {0,1, . . .}, denoting the fraction of genomes of type σ at time t by mσ

t , Eigen’s equations can
be written as:

mσ
t+1

def
=

∑τ mτ
t aτQτσ

∑τ mτ
t aτ

. (1)

In vector notation, given the fractional population mt at time t, the fractional population mt+1 at time t +1
is given by mt+1 = r(mt), where the σ co-ordinate rσ of the vector valued function r is defined as

rσ (x) def
=

∑τ aτQτσ xτ

∑τ aτxτ

=
(QAx)

σ

||Ax||1
and thus, r(x) =

QAx
||Ax||1

. (2)

Again, mt can be shown to converge to vµ irrespective of the starting population distribution as t goes to
infinity. However, at any finite t, mt depends on the initial state m0.

2.3 The Error Threshold

With the single peak landscape, Eigen et al. observed empirically that there is a critical value µc ≤ 0.5
for the mutation rate µ such that for µ � µc, the quasispecies is dominated by the master sequence, i.e.
v0

µ ≥ vσ
µ ∀σ , whereas when 0.5 ≥ µ > µc the quasispecies is dispersed approximately uniformly. The

critical mutation rate µc is called the error threshold because the uniform dispersal for µ > µc implies a
severe loss of representation in the quasispecies of the genetic information encoded by the master sequence.
Evidently, this dispersal also decreases the mean fitness, A def

= ∑σ aσ vσ
µ .

We note here that despite the notion of the error threshold being widely recognized, no consensus ex-
ists on its definition; see Wilke [Wil05]. Since, in most cases, vµ will never become exactly the uniform
distribution on {0,1}L, it is clear that the goal is to find the smallest µ such that vµ is close to the uniform
distribution on all genomes, i.e., the vector with every coordinate equal to 2−L, which we denote by U. To

1Throughout this paper, we will be dealing with vectors over {0,1}L. Vectors will be typeset in boldface. The components of a
vector x will be denoted either by xσ or by xσ for σ ∈ {0,1}L, based on convenience of notation in the context of use.
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define the error threshold we also need a function that measures closeness: e.g. ‖vµ −U‖1, ‖vµ −U‖∞ or
the difference in Shannon entropies of vµ and U, namely |H(vµ)−L|. Hence, for a given distance function
d which measures closeness of vµ and U, and a bound on closeness ε > 0, we define

µ
d
c (ε)

def
= min{µ ∈ (0,1) : d(vµ ,U)≤ ε}.

First note that at µ = 1/2, the steady state vector vµ is exactly U. Hence, µd
c (ε) ≤ 1/2 for all d,ε > 0.

Second, note that changing the distance function d will change the error threshold quantitatively. Eigen
and coworkers presented a heuristic argument that the error threshold should scale as 1/L for the single-peak
model without any rigorous proofs of its existence and without mentioning any closeness function.

3 A Finite Population Model and Our Main Results

In this section, we describe at an informal level the salient features of our work, which comprises a finite
population model to capture molecular evolution, and our theoretical and computational results associated
with it. We give a high-level technical overview of the methods used to prove our results in Section 3.3,
while precise definitions and formal statements of our results appear in Section 5. Proofs have been moved
to the Appendix due to considerations of space.

3.1 A Finite Population (RSM) Model

We consider the following stochastic discrete time finite population model of evolution which we call the
RSM model. The parameters are the same as in the quasispecies model: the genome length L, the sequence
space {0,1}L, a per bit mutation rate µ and the fitness landscape {aσ}σ∈{0,1}L with all aσ ≥ 1 and integers.
At any time t, let Nσ

t be the number of genomes (a random variable) of type σ , and fix the total population
∑σ Nσ

t to be N. This fixing of the population size to N at each step is the key distinction from the quasispecies
model and is a new parameter. In each time step, the ensuing evolution is then described in terms of the
following three steps.

1. (Reproduction) First, in the reproduction step, each genome σ produces aσ copies of itself, giving
rise to an intermediate population It

def
= ∑σ∈{0,1}L Iσ

t , where Iσ
t

def
= aσ Nσ

t .

2. (Selection) Second, in the selection step, N genomes are chosen at random without replacement from
this intermediate population of size It , resulting in the selection of Sσ

t genomes of type σ where
Sσ

t ∈ {0,1, . . . , Iσ
t } and ∑σ∈{0,1}L Sσ

t = N ≤ It .

3. (Mutation) Third, in the mutation step, each selected genome is mutated with probability µ per bit,
giving rise to the next generation of Nσ

t+1 genomes of type σ , such that ∑σ∈{0,1}L Nσ
t+1 = N.

The starting state is denoted by N0 which is typically ggiven by N0
0 = N and Nσ

0 = 0 for all σ 6= 0, but we
will often not use this assumption. This RSM model is best viewed as a Markov chain where the state space
is the set of functions f : {0,1}2L 7→ {0,1, . . . ,N} such that ∑σ f (σ) = N. Thus, the number of states of this
Markov chain is

(N+2L−1
N

)
which is roughly N2L

. It can be shown (see Fact 5.1) that for any 0 < µ < 1 the
transition matrix of this Markov chain has a unique stationary vector, denoted by π. π is indexed by all f
satisfying the property above and ∑ f π( f ) = 1, i.e., π is a probability distribution over the state space of the
RSM Markov chain.
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Let Dt
def
= (Nσ

t /N)σ∈{0,1}L denote the random vector which captures the fractional population at time t.
It can also be shown that limt→∞E [Dt |D0] exists and is independent of D0. We denote this limit as E [D∞]
and it can be computed from the stationary vector π as follows:

E [Dσ
∞] =

N

∑
i=0

∑
f : f (σ)=i

i
N
·π( f ).

Finally, we will subscript Dt with parameters such as µ,N when we want to highlight dependence on them,
e.g. Dt,µ,N . The key questions of interest, especially given the fact that computing π would be prohibitive
even for small values of L and N, are:

1. For a fixed t, what does E [Dt |D0] converge to as N increases?

2. Is there a notion of error threshold in the RSM model?

3. How to obtain an estimate of E [D∞] efficiently?

We present theoretical results that address all of the above questions. Note that if the answer to the first
question is that E [Dt |D0] converges to the prediction of the quasispecies model mt with the same starting
states (m0 = D0), then it is important as we can leverage the significant understanding obtained from the
study of the quasispecies model while incorporating stochastic effects with finite populations. For the second
question, we need to first define a notion of the error threshold in the RSM model. We do so formally, given
a distance function d.

Definition 3.1. Let ε ≥ 0.

µ
d
c (ε,N)

def
= min

{
µ ∈ (0,1) : d(E

[
D∞,µ,N

]
,U)≤ ε

}
,

where U is the uniform distribution over all genomes of length L.

What we want to understand is limN→∞ µd
c (ε,N). Again, if we can show that the answer here is µc(ε), then

we can translate the insights from the quasispecies model to the RSM model.
For the third question, first note that if we want to estimate the error threshold, we need to be able

to compute E [D∞] . Secondly, we consider the standard notion of efficiency: the algorithm to estimate
E [D∞] should be polynomial in the input size. As we noted, the state space of the RSM Markov chain is
prohibitively large and computing the stationary state is prohibitive. We employ the Markov Chain Monte
Carlo method and run the RSM process for some time τ such that it is guaranteed that distribution from
which Dτ is drawn comes statistically close to the distribution from which D∞ is drawn, irrespective of
D0. Simulating each step of the random walk can be done efficiently. Hence, we are led to the question of
bounding the mixing time of the RSM Markov chain: the smallest time the finite time distribution needs to
come close to the steady state distribution for all starting configurations.

The issue of how the input is presented is also important and we briefly discuss it here. In one model,
one can be given all aσ which would require bit length about ∑σ logaσ and can, in principle, be as large
or even larger than 2L. Often, this is not the case and either the values aσ are given by a simple equation,
or only some fixed number, say k� 2L of the values aσ are strictly bigger than 1. In the latter case the
input has bit length roughly O(k logmaxσ aσ + logL+ log 1/µ). Another case for the input is when aσ are
class invariant. In this case the input is of length roughly O(L logmaxσ aσ + log 1/µ). We now proceed to
summarize our results.
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3.2 Our Results

We now give informal statements of our main results, before describing the mathematical techniques em-
ployed in the proofs of these results. The formal statements of the theorems described here appear in Section
5, after a discussion in Section 4, while the formal proofs are deferred to the Appendix.

3.2.1 Convergence of the Quasispecies and the RSM Model

Theorem 3.2 (Convergence of the RSM and Quasispecies Models). Fix a fitness landscape A with positive
entries and a mutation transition matrix Q. Consider the RSM process started with the initial state D0 and
consider the evolution of the quasispecies model started with the initial state m0 = D0. Then for any fixed
time t,

lim
N→∞

E [Dt |D0] = mt , (3)

where mt is the fractional population vector at time t starting from m0 predicted by the quasispecies model.

The theorem shows that in the infinite population limit, the stochastic fluctuations of the RSM process
disappear, and the model converges to the quasispecies model. Informally, the main technical difficulty in
proving the above theorem is to establish a result of the form limN→∞E[Dt |Dt−1] = limN→∞E [Dt |D0] with
probability 1, which would establish convergence to the quasispecies model. The full proof is deferred
to the Appendix. This convergence result allows us to show that for any distance function d, a finitary
version of the error threshold, µd

c (ε,N) as defined above, converges to the error threshold µd
c (ε) of the

quasispecies model, as the population size goes to infinity. These two results provide validation for the finite
population RSM model by establishing that in the infinite population limit, the predictions from the RSM
model converge to those of the quasispecies model. We now move on to problems concerning the mixing
time and other computational issues of the RSM model.

3.2.2 Computational Results in the RSM Model

As noted before, a primary computational question in both the quasispecies model and the RSM model is
the determination of the quasispecies, or the expected population profile at stationarity in the RSM model,
which can then be used to estimate error thresholds (see Section 3.3 for an overview and Sections 5.3.2
and 5.3.3 for details). For the quasispecies model, a satisfactory solution to this problem is obtained via
the observation that the quasispecies is the leading right eigenvector of the QA matrix. The QA matrix is of
dimension 2L×2L, and the above observation can thus be used to obtain efficient algorithms using black-box
eigenvector finding algorithms for moderate values of L. In the case of class-invariant fitness landscapes, it
is known [SS82] that one only needs to find the leading eigenvector of an (L+1)× (L+1) matrix.

However, similar approaches are not as effective for the RSM model. In this case, the stationary dis-
tribution is the leading eigenvector of the transition matrix M of the RSM process which is of dimension
roughly N2L

. Using ideas similar to those referred to above, one can reduce the running time for computing
the stationary distribution to NO(L2).

Theorem 3.3 (Computation of Steady State in the Class Invariant Case). For any class invariant fitness
landscape A, there is an algorithm running in time T = O(NO(L2)) which computes the steady state of the
RSM process with population size N and the genome length L.
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However, as mentioned before, in many applications, as in the case of HIV, for instance, where N ∼
103− 106 and L ∼ 104, the problem is still computationally prohibitive. In these cases, one typically re-
sorts to Monte Carlo simulations of the RSM process for estimating the population profile at stationar-
ity [TBVD12], and thus we are led to considering the mixing time of the RSM process. The following
theorem derives conditions on the parameters of evolution under which the RSM model mixes rapidly.

Theorem 3.4 (Mixing Time of the RSM Process). Given a fitness landscape A, mutation rate µ , the RSM
process exhibits fast mixing if (1−2µ)maxτ aτ

minτ aτ
L+ 1

N < 1.

Having stated our results, we now highlight the techniques employed in the proofs.

3.3 Overview of Our Technical Contributions

As before, we will denote by Dt the random variable of fractional populations after t steps of the RSM
process, and by St the random variable of the populations of genomes after the replication and selection
steps of the (t +1)-the step of the RSM process.

Our convergence result (Theorem 3.2). The starting point of the proof of our convergence result is to
observe that E [Dt+1|Dt ] has the same functional form r (as a function of Dt) as the evolution equation of
the discrete time quasispecies model, with r as defined in Equation (2): E [Dt+1|Dt ] = r(Dt). Our high
level approach is to first show that Dt+1 is actually concentrated around E [Dt+1|Dt ] . Using the Lipschitz
continuity of the evolution function r, we can then chain these concentration results inductively to show
that the evolution of Dt is tightly concentrated around the evolution of the discrete time quasispecies model,
which allows us to show that E [Dt ] converges to the quasispecies as N→∞. To illustrate the ideas involved,
we consider the case L = 1. Here the two genomes are {0,1}. After the replication phase in the t-th step,
there are a0D0

t N copies of 0. For the i-th copy, let Ri denote the indicator variable for this copy being selected

in the selection phase, so that S0
t = ∑

a0D0
t N

i=1 Ri. Since the Ri’s are not independent, we cannot directly apply
a Chernoff bound. However, since they are negatively correlated, one expects concentration to hold, and
this can indeed be shown using the so-called method of bounded differences. The same reasoning works
for S1

t , and thus we get that given Dt , the intermediate population St after the replication and selection steps
is concentrated around its expectation with high probability. We now look at the mutation step. Let Mi be
the indicator variable for the ith genome being 0 after the mutation step. We then have ND0

t+1 = ∑
N
i=1 Mi.

Since the Mi’s are independent random variables, it can be shown using a Chernoff bound that given St ,
D0

t+1 is concentrated around E
[
D0

t+1|St
]
= 1/N(µS0

t +(1−µ)S1
t ). The two steps can then can be combined

to show that given Dt , D0
t+1 is concentrated around E

[
E
[
D0

t+1|St
]
|Dt
]
= 1/NE

[
µS0

t +(1−µ)S1
t |Dt

]
=

(1−µ)a0D0
t +µD1

t
a0D0

t +D1
t

. The same reasoning works for D1
t+1.

With some more work, this argument can be generalized to work for arbitrary L. The concentration
guarantee we obtain is of the following form: there are quantities εt and pt which are both oN(1) such that
given Dt , |Dt+1−E [Dt+1|Dt ]| ≤ εt with probability at least 1− pt . In the next step, we chain these step-
wise bounds inductively in order to remove the conditioning and show that for all t ≤ t0, Dt is concentrated
around mt . An important component of the induction is the observation that r is Lipschitz continuous,
which allows us to control the propagation of the errors ε ′t in each step. By the induction hypothesis, we
have that |Dt −mt | ≤ ε ′t with probability at least 1− p′t , where ε ′t and p′t are both oN(1). Assuming the
Lipschitz constant of r to be K, this implies that E [Dt+1|Dt ] = r(Dt) is within distance Kε ′t of mt+1 = r(mt)
with probability at least 1− p′t . Applying the convergence result from the first step, we then have that with
probability at least 1− p′t+1 = 1− p′t− pt , |Dt+1−mt+1| ≤ ε ′t+1 = Kε ′t +εt of mt+1. The quantities p′t ,ε

′
t for
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t ≤ t0 can be chosen to be oN(1), which is sufficient to show the required convergence. The details appear
in Appendix B.2. We now give an overview of the proofs of our computational results.

Computing the stationary distribution in the class invariant case (Theorem 3.3). Recall that the state
space of the RSM Markov chain is roughly N2L

. However, if the fitness function is class invariant, we can
show that the number of distinct coordinates in the state space is about NL. To see this, first we define an
equivalence relation on the states of the RSM Markov chain. We say that f ,g, which are functions from
{0,1}L to {0,1, . . . ,N} satisfying ∑σ f (σ) = N and ∑σ g(σ) = N, are equivalent (denoted f ≡ g) if they
have the same statistics for every Hamming class, i.e., for every 0≤ i≤ N,

∑
{σ∈{0,1}L|wH(σ)=i}

f (σ) = ∑
{σ∈{0,1}L|wH(σ)=i}

g(σ).

Thus, the state space of the RSM Markov chain gets partitioned into about (N + 1)L+1 different classes.
Then, due to the fact that the fitness function is class invariant, it can be shown that the transition probability
of f to any other equivalence class is the same as that of g to the same class. Hence, one only needs
to compute the transition probability from one equivalence class to another. This probability is a large
binomial sum and one has to be careful in its computation and keep track of the number of bits required to
represent each entry of this Markov chain over the equivalence classes. Once we have the transition matrix
of this Markov chain, one can compute its largest eigenvector which corresponds to the stationary state. We
show that, if one does this carefully, one can compute the eigenvector in time roughly NO(L2). The details
appear in Section B.5.

Algorithm to compute the error threshold. Once we have the ability to either compute the stationary
state of the RSM process or derive independent samples from its stationary state (which allows us to estimate
the relative frequencies of the genomes at stationarity with a good precision by taking an average of the
sampled states), the algorithm to estimate the error threshold is simple. The idea is to start with a small value
(� 1/L) of µ, and to estimate/compute the stationary distribution of the RSM process for the current value of
µ. The algorithm then checks if the estimate of the stationary distribution is close to the uniform distribution
on the genomes in the measure of closeness of one’s choice. If so, it stops and outputs the current value of
µ as an estimate of the error threshold. Else, it increases µ by a very small amount and repeats the above
steps. In case direct computation of the stationary state of the RSM process is computationally prohibitive,
independent samples from the stationary distribution of the RSM process are derived by simulating the RSM
process up to its mixing time. The number of samples required can be estimated from a simple application
of Chernoff bound on the random variable corresponding to the stationary state distribution of the RSM
process. Hence, to establish bonds on the running time of the error threshold estimating algorithm, it is
important to be able to bound the time it takes for the RSM process so that Dt comes close to the stationary
state, D∞. Our next result is towards this.

Mixing time result (Theorem 3.4). Since the stationary distribution of the RSM chain is not very well
understood, it is not clear how to apply conductance-based geometric tools or the canonical paths method
(see, for example, [JS88]) in order to prove the mixing time result. We are thus led to more combinatorial
coupling based methods. Here one starts with an integer valued metric d on the state space of the Markov
chain, and then one runs two copies Xt and Yt of the chain. To show fast mixing, it is then sufficient to prove
that Xt and Yt can be coupled so that E [d(Xt+1,Yt+1)|(Xt ,Yt)] ≤ α < 1. In general, defining a coupling can
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be tricky because one needs to carefully argue that the marginals of the coupling agree with the original
Markov chain.

We define the coupling in two phases: the first phase includes the replication and selection steps and
the second phase includes only the mutation step. We begin with the easier mutation step. Let It and Jt

denote the state of the two RSM chains after the replication and selection steps. For most natural choices
of the distance metric d, it is possible to couple the mutation step using the standard coupling for the
random walk on the hypercube so that E [d(Xt+1,Yt+1)|(It ,Jt)] ≤ (1− 2µ)d(It ,Jt). The challenge however
lies in controlling E [d(It ,Jt)|(Xt ,Yt)] while coupling the replication and selection steps, since because of
the global nature of the replication and selection steps, E [d(It ,Jt)|(Xt ,Yt)] can become quite large. We
control this increase by a careful choice of the metric d, and by appealing to the path coupling methods
of Bubley and Dyer [BD97]. The path coupling theorem says that for integer valued d, it is sufficient to
ensure E [d(Xt+1,Yt+1)|(Xt ,Yt)]≤ α ≤ 1 only for states Xt and Yt satisfying d(Xt ,Yt) = 1 in order to establish
fast mixing. Our coupling is then defined as follows. Fix a permutation of the N genomes in the chain
Xt : d(Xt ,Yt) is then the minimum over all possible permutations of the N genomes in Yt of the sum of the
Hamming distances between the genomes at the same positions in the two permutations. The main technical
step is to show that for this d, the replication and selection steps can be coupled in such a way that starting
from Xt and Yt satisfying d(Xt ,Yt) = 1, E [d(It ,Jt)|(Xt ,Yt)] after these steps is at most N

N−1
maxσ aσ

minτ aτ
L. It is in

this step that we use the form of the distance metric d crucially; the details of the coupling are somewhat
technical and involve arguing carefully that the coupling is valid, and are given in Appendix B.4. We then
combine this with the coupling for the mutation step described above to show contraction in the expected
distance under the condition (1−2µ) N

N−1
maxσ aσ

minτ aτ
L < 1.

4 Discussion and Future Perspectives

4.1 Previous Work

The notion of the quasispecies and the existence of an error threshold were recognized first by Eigen and his
coworkers in the 1970s and 1980s [Eig71, EMS89]. Translation of these ideas into intervention strategies
requires overcoming two key limitations of the quasispecies model. First, the model assumes an infinite
population size, whereas realistic population sizes can be quite small. With HIV, for instance, the effective
population size is estimated to be ∼ 103− 106 [KAB06, BSSD11]. Second, the theory assumes a single-
peak fitness landscape, whereas realistic landscapes can be far more complex [BCP+04, HMC+11]. Efforts
over the last several decades have attempted to overcome these limitations of the quasispecies model [NS89,
BS93, WH96, Wie97, AF98, SH06, TH07, PMnD10] (see Wilke [Wil05] for a recent review). The finite
population case, however, has remained difficult to solve in full generality. Most studies resort to simulations
or use approximate or heuristic approaches to describe the finite population case, and we discuss some of
these here.

Nowak and Schuster [NS89] used a birth-death process to model the underlying evolution in finite pop-
ulations and using simulations predicted that the error threshold scales as 1/

√
N. Their model, however,

does not converge to the quasispecies model as N goes to infinity. Alves and Fontanari [AF98] present a
model which employs a two-stage sampling with replacement in the selection process: first sampling uni-
formly from the population, and then sampling from the obtained sample with biases proportional to the
fitness. They note, however, that sampling with replacement destroys the negative correlation between the
selection of two individuals of the same species induced by the finite population constraint when selec-
tion is implemented using sampling without replacement. They find that the error threshold scales as 1/N.
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Further, they only analyze a heuristic deterministic approximation to their model, and do not consider rig-
orously the question of convergence of their original model to the quasispecies model. The closest to our
convergence result is that by van Nimwegen et al. [vNCM99] who show convergence to a deterministic
Eigen-like dynamics but again employ sampling with replacement and use special cases of additive fitness
landscapes. With finite populations, there can be a significant statistical difference between sampling with
and without replacement, the latter (which we employ) being more realistic. It is well known that as N→∞

the difference between sampling with and without replacement shrinks, but then as we prove, so does the
difference between our population genetics model and the quasispecies model. Their convergence proof has
a similar structure as ours but we are able to use Chernoff bound type inequalities which are much stronger
than the second moment inequalities used by them. Consequently, our convergence results are quantitatively
stronger. We additionally prove convergence of the error threshold and fast mixing, questions not considered
by [vNCM99]. More recently, Musso [Mus11] presented the transition matrix for sampling with replace-
ment in the case L = 1 and also claimed convergence to the quasispecies model in the deterministic limit.
No attempt, however, is made in [Mus11] to make this latter claim rigorous. Another class of studies relies
on approximations and heuristics inspired from physics, and in particular statistical mechanics, to render the
finite population case mathematically tractable (e.g., [BK98, SRA08, PMnD10]).

While previous studies have focused extensively on the fractional distribution of genomes at stationarity,
little is known of the time to reach the stationary state. Campos and Fontanari [CF99] show that in the
limit of infinitely large genome lengths (L→ ∞) and population sizes (N → ∞) and with the single peak
fitness landscape, the timescale associated with the decline of the master sequence is 1/ln(qa) where q is
the probability that a genome is replicated without error, and a is the relative fitness of the master sequence.
Further, they show that with finite populations, this timescale is proportional to

√
N. The mixing time when L

and N are both finite and when the fitness landscape is more general than the single peak remains unknown.
The latter mixing time has practical significance in the modeling of the action of mutagenic drugs, as it
respresents the duration of therapy required to ensure completion of the transition to the error catastrophe.
Our study presents conditions when the mixing is rapid and hence the transition to error catastrophe occurs
quickly. Further, for computational studies that attempt to realize this transition in silico, our study presents
an algorithm that allows efficient Monte Carlo sampling-based estimation of the error threshold.

4.2 Applications of the RSM Model

The motivation behind the RSM model and the algorithms discussed here is to get a basic framework for
understanding the evolution of viruses of current interest such as HIV. Making concrete predictions relevant
to the clinical setting requires super-imposing the specifics of the viruses of concern on the present frame-
work. This often involves subtle modifications of the RSM process along with validation against data. For
example, in related recent work, two of the authors and their co-workers applied the RSM model to mimic
the within-host genomic evolution of HIV-1 [TBVD12]. It has been shown before [BSSD11] that these
simulations quantitatively capture data of the evolution of viral genomic diversity in patients over extended
durations (∼ 10 years) following infection and the approach is extended in [TBVD12] to estimate the error
threshold of HIV-1. We envision that similar adaptation of our model will prove useful in elucidating the
evolution and treatment guidelines for other asexual haploid organisms of interest.

4.3 Critique of the RSM Model

We note that our structural and computational results are independent of the nature of the fitness landscape
so long as there are no lethal mutations (aσ 6= 0 for any σ ). Our model, however, does not consider lethal
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mutations. While letting some aσ be 0 does not affect the quasispecies model due to the constant rescal-
ing involved, it introduces an absorbing state in the RSM Markov chain, thus making it non-ergodic, and
causing the population to eventually decrease to zero. While Wilke and others [Wil05, WK93, TH07] have
commented on the role of lethal mutations in extreme cases, establishing their full implications lies beyond
the scope of the present paper. Although lethal mutations do occur, it turns out that in many important
scenarios such as the evolution of HIV-1, a Hamming class invariant landscape without lethal mutations ap-
pears to capture key features of the underlying fitness interactions [BCP+04], rendering our RSM framework
applicable.

Finally, we note that our assumption of a fixed population size, N, is consistent with the widely accepted
population genetics-based models of evolution, where a constant effective population size is employed to
quantify the strength of stochastic effects [HC06]. Note that allowing N to vary with time (generations),
does not increase the complexity in our model. The distinction between an infinite population model and
a finite population model arises from the culling of the population in the latter model in order to maintain
a finite population size. A fixed N or varying N will only result in different extents of culling in different
generations, but will not change the overall structure of the model. The advantage in keeping N constant for
our present study is that it allows easier examination of the convergence to the quasispecies model.

4.4 Open Problems

Our study of the quasispecies and RSM models has revealed several interesting and important problems. We
list the main ones here.

Structure of the Quasispecies. Perhaps the most attractive feature of finite population models as opposed
to the quasispecies model is that they can be used to study the effect of random genetic drift on inter-patient
variations. Inter-patient variations in disease progression and response to treatments are known to be signifi-
cant with HIV infection [NBS+98, GKB+05]. The collection of viral particles in an infected individual may
be thought of as one realization of the random viral evolutionary process, and limt→∞ Var [Dσ

t ] then pro-
vides an estimate of inter-patient variations in viral evolution due to the effect of the finite population size.
Thus, in addition to the structure of the quasispecies in the finite population case, defined by the expected
frequencies limt→∞E [Dt ] when N < ∞, the variance of the frequencies limt→∞ Var [Dσ

t ] as a function of the
population size N is also an important quantity to be studied.

Error Threshold. In the quasispecies model with the single-peak fitness landscape, µc has been found,
without a rigorous proof, to be O(1/L), so that an error catastrophe occurs for µ� 0.5 (e.g., see [EMS89]).
Further, the transition is sharp, so that a small increase in µ from below to above µc induces a dramatic
change in the quasispecies structure. With other fitness landscapes, such as the multiplicative landscape,
however, the quasispecies approaches the uniform distribution gradually as µ approaches 0.5 [WH96]. Fur-
ther, lethal mutations, where aσ = 0 for some σ ’s, appear to show the existence of an error threshold only
if multiple mutations in a single replication are allowed [WK93, TH07, Wil05]. Thus, the conditions under
which a sharp transition leading to an error catastrophe at µc� 0.5 would occur remain to be established.
Second, the dependence of µc on N remains to be identified. While some simulations suggest a 1/

√
N de-

pendence [NS89, BS93], others find the dependence to go as 1/N [AF98]. As pointed out before, knowledge
of µc for finite N is important in the modeling of antiviral strategies based on mutagenic drugs.
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Mixing Time. The main outstanding question here is to get a tight bound on the mixing time of the RSM
Markov chain for a full range of evolutionary parameters. We notice that our result shows a good mixing
time bound only under certain conditions on the parameters. Though we conjecture that the chain is rapidly
mixing for other values of the parameters too, we believe that novel methods would be needed to extend
our results in this direction. Apart from being useful in determining the time required for simulations to
produce samples from the stationary distribution, the mixing time bounds also have biological significance.
For example, when modeling the effect of a mutagenic drug under the RSM model, the convergence rate
would models the minimum required duration of treatment before the error catastrophe occurs.

5 Formal Statements of Main Results

5.1 Preliminaries and Definitions

In this section we present rigorous statements of our results. Several definitions may be found repeated here
in the interest of the readability of this section. We recall that genomes of length L are denoted by L-bit 0-1
strings. We will denote the Hamming distance between genomes σ and τ by dH (σ ,τ), and the Hamming
weight of a genome σ by wH (σ). A population is defined as a multiset of genomes of the same length.
While discussing the RSM model, we will fix the size of the population to be N.

The Markov Chain for the RSM Model. We will denote the evolution of the RSM process using a time-
indexed sequence of vector valued random variables (Nt)

∞

t=0. The entries of Nt are indexed by genomes σ ,
and the entry Nσ

t denotes the number of genomes of type σ at time t. At every time t, ∑
σ∈{0,1}L Nσ

t = N.

The random variables Dσ
t

def
= Nσ

t /N denote the fractional population of the genome σ at time t.

Reproduction Step and the Fitness Landscape In the reproduction step, each genome σ produces aσ

copies of itself, so that the number of genomes of type σ after this step is Iσ
t

def
= aσ Nσ

t , and the

total number of genomes is It
def
= ∑σ aσ Nσ

t . The matrix A defined by Aσσ

def
= aσ and Aστ

def
= 0 for σ 6= τ

is called the fitness landscape. The fitness landscape is said to be class-invariant if aσ depends only
on the Hamming weight of σ . By a slight abuse of notation, we will denote by ai the fitness of all
genomes with Hamming weight i in the class invariant case.

Selection and Mutation Steps and the Mutation Rate In the selection step, N genomes are sampled with-
out replacement from the genomes obtained after the reproduction step. In the mutation step, each bit
of each of the N genomes obtained after the selection step is flipped with a probability µ , called the
mutation rate. The mutation transition matrix Q defined by Qστ

def
= µdH(σ ,τ)(1−µ)L−dH(σ ,τ) gives the

probability that a genome of type σ mutates to one of type τ in the mutation step.

The RSM process as described above is a Markov chain on the state space of functions f : {0,1}L −→ N,
satisfying ∑

σ∈{0,1}L f (σ) = N. The transition matrix M of this chain is described in Section A.

Fact 5.1. When the mutation rate µ ∈ (0,1) and aσ > 0 for all σ , the Markov chain M corresponding to
the RSM process is ergodic, and hence has a unique stationary distribution.

This is a simple consequence of the fact that µ and A are positive. See Section B.1 for a proof.
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Important Statistics of the RSM Process and the Projected RSM Process. The transition matrix M

of the RSM Markov chain is of dimension
(N+2L−1

N

)
×
(N+2L−1

N

)
. When the fitness landscape A is class

invariant, one can get a projected Markov chain with a significantly smaller state space which can still be
used to compute the average fitness and the average population of each fitness class at stationarity. Consider
equivalence classes indexed by functions h : [0,L] −→ N with ∑

L
i=0 h(i) = N, such that a function f in the

state space of M is in the equivalence class [h] if and only if for every i ∈ [0,L], ∑{σ∈{0,1}L|wH(σ)=i} f (σ) =

h(i). We then have the following lemma the proof of which is in Section B.1.

Lemma 5.2. Let f ,g belong to the same equivalence class h as defined above, and let [h′] be another
equivalence class. We then have M ( f , [h′]) = M (g, [h′]).

Thus, we can consider the projected Markov chain Mw with state space

Ωw =

{
[h]

∣∣∣∣∣ L

∑
i=0

h(i) = N

}
.

Notice that |Ωw|=
(N+L

L

)
. Also, if πw is the stationary distribution of Mw, then by the projection property

πw([h]) = ∑
f∈[h]

π( f ).

This property implies that the expected populations for every Hamming class of genomes and, hence, the
expected average fitness at stationarity, are the same for Mw and M .

Mixing Time. We will denote by π the stationary distribution of the RSM process, and let N∞ be a random
variable distributed according to π . We know that the distributions of the random variables Nt converge in
total variation distance (and hence in distribution) to π , due to the ergodicity of the RSM process. We fix
our notation for mixing times in this section.

Definition 5.3. The total variation distance between two probability distributions D1 and D2 on the sample
space Ω is defined by ‖D1−D2‖TV = maxA⊆Ω |D1(A)−D2(A)|.

Definition 5.4. Fix a Markov chain N on a state space S. We define

d(t) def
= max

α∈S
‖N t(α, ·)−π‖TV .

For 0≤ ε ≤ 1/2, the mixing time of N is defined by

τmix(ε)
def
= min{t : d(t)≤ ε}.

Notice that by the projection property, the mixing time of the projected RSM chain Mw is at most the mixing
time of the original RSM chain M .

Error Thresholds. In the following definition, we specifically emphasize the dependence of the random
variables Nt ,Dt on µ,N by denoting them as Nt,µ,N and Dt,µ,N . We denote by D∞,µ,N a version of Dt,µ,N

distributed according to the stationary distribution of the RSM process, and by U the uniform distribution
over genomes. Given a distance function d, one can define the error threshold with respect to d as follows.
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Definition 5.5 (Error Threshold for the RSM Model). Let ε ≥ 0.

µ
d
c (ε,N)

def
= min

{
µ ∈ (0,1) : d(E

[
D∞,µ,N

]
,U)≤ ε

}
,

where U is the uniform distribution over all genomes of length L.

Of particular interest is the function dh : for any two distributions D1 and D2 over genomes, dh(D1,D2)
denotes |∑σ w(σ)(D1(σ)−D2(σ))|. The corresponding µ will carry the superscript h.

5.2 Convergence to the Quasispecies Model

Our first main result is that the RSM model converges to the quasispecies model.

Theorem 5.6. Fix a fitness landscape A with positive entries and a mutation transition matrix Q. Consider
the RSM started with the initial state D0 and consider the evolution of the quasispecies model started with
the initial state m0 = D0. Then for any fixed time t0,

lim
N→∞

E [Dt0 |D0] = mt0 , (4)

where mt0 is the state of evolution of the quasispecies model at time t0 starting from m0.

The proof of the above theorem is relegated to Section B.2. As a corollary to the theorem above, one can
show that there is convergence of a finitary version of the error threshold µh

c (ε,N) to the error threshold
µh

c (ε) for the quasispecies model, as the population size goes to infinity. Formally, we have the following:

Corollary 5.7. Fix a mutation rate µ ≤ 1/2 and an error parameter ε . For every δ > 0, there exists a time
t0 > 0 such that for t > t0, one can find an Nδ ,t such that for N > Nδ ,t ,

dh (E[Dt,µ,N
]
,U
)
≥ ε−δ , when µ < µh

c (ε), and

dh (E[Dt,µ,N
]
,U
)
≤ ε +δ when µ = µh

c (ε),

Here we use the subscripts µ and N to emphasize the dependence of the distribution of Dt on µ and N.

Although we will prove our results for the error threshold in terms of the average Hamming distance, it is
easy to translate our results to other common dispersal measures as described in Section B.1.1. The proof
of the above Corollary follows easily from Theorem 5.6 and is given in Section B.3. We note here that
extending the above corollary to get convergence of finite population error thresholds depends upon proving
a strengthened version of our convergence result (Theorem 5.6), which we leave as an open problem. In
fact, on the basis of simulation results, we conjecture that for fixed ε , µh

c (ε,N) monotonically increases to
µh

c (ε).

5.3 Computational Results

5.3.1 Mixing Time Bounds on the RSM Process

We give a coupling argument in Section B.4 which allows us to prove the following theorem.

Theorem 5.8. Fix 0 < µ ≤ 1/2, and a fitness landscape A. Let

K(A,µ) def
= (1−2µ)

N
N−1

maxσ aσ

minτ aτ

L.

When K(A,µ)< 1, we have τmix(ε) = O
(

log(NL/ε)
log(1/K)

)
.
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5.3.2 Computing the Stationary Distribution in the Class Invariant Case

Theorem 5.9. For every A which is class invariant, and µ which can be represented using b bits, there is an
algorithm running in time T given by

T def
= Õ

(
bL3 +

(
(N +L)L

L!

)3

(NbL+L2 +N maxaσ )+NbL
(
(N +L)L

L!

)2(
e(1+

N
L(L+1)

)

)L(L+1)
)

which computes πw for the Markov chain Mw described above. For fixed L, T = O(NO(L2)).

The proof of the above theorem appears in Section B.5, and is based on the projected RSM process discussed
in Section 5.1. The above theorem immediately gives a grid-search based algorithm that given a grid resolu-
tion δ and ε > 0, outputs a approximation µ0 to the error threshold in time T · 1/2δ such that µ0 ≥ µh

c (ε,N)
and dh(D∞,µ0−δ ,U)> ε . We now consider Markov Chain Monte Carlo based grid-search methods.

5.3.3 Markov Chain Monte Carlo Methods

The general strategy for Monte Carlo based grid search methods for determining error thresholds is described
in the algorithm ERRORTHRESHOLD in Figure 1 in the Appendix. We will denote the mixing time τmix(ε)
for parameters L,N,A and µ as τ(L,N,A,µ,ε). We consider the projected chain Mw described above which
contains enough information to compute the average Hamming weight, and whose state can be maintained
as a tuple in {0,1, . . . ,N}L+1.

Theorem 5.10. Let A be class invariant, and consider the error threshold µh
c (ε,N). Suppose the algorithm

ERRORTHRESHOLD is run with input grid resolution δ , accuracy parameter δ1, and error probability δ2.
Let T be the maximum over k of the quantity τ(L,N,A,kδ ,δ1/(2L)) where k ≤ 1/(2δ ) is a positive integer.
The algorithm ERRORTHRESHOLD runs in time T · s · Õ(d1/(2δ )eNLmaxσ aσ ), where

s =
⌈

8L4

δ 2
1

log(2d1/(2δ )e(L+1)/δ2)

⌉
,

and with probability at least 1−δ2, produces an output µ0 satisfying µ0 ≥ µh
c (ε +δ1/2) and

dh(D∞,µ0−δ ,U)≥ ε−δ1/2.

The proof of the above theorem appears in Section B.6, where we also point out some technical subtleties
about the definition of error thresholds.
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A Starting State and Transition Matrix of the RSM Markov Chain

As stated before, the RSM Markov chain starts with the “fittest” possible population with all the weight
concentrated on the master sequence, so that NM

0 = N and Nσ
0 = 0 for all σ 6= M. We now proceed to set up

some notation for writing out the transition matrix M .

Definition A.1. (Multivariate Geometric distribution). Let g(σ) denote the number of genomes of type
σ in an urn. Consider the process of choosing, without replacement, N genomes from this urn. Then
Phyp (g→ f ;N) denotes the probability of obtaining f (σ) genomes of type σ for each σ . We have,

Phyp (g→ f ;N)
def
=

∏
σ∈{0,1}L

(g(i)
f (i)

)(〈g,1〉
N

) (5)

Definition A.2. (Multivariate Binomial Distribution). Let f (σ) denote the number of genomes of type
σ . Consider a stochastic process in which each genome of type σ independently mutates into a genome τ

(possibly equal to σ ) with probability Q(σ ,τ). We denote by Pbin ( f → D;Q) the probability that D(σ ,τ)
genomes of type σ mutate to type τ under this process. We have

Pbin ( f → D;Q)
def
= ∏

σ∈{0,1}L

( f (σ){
D(σ ,τ)|τ ∈ {0,1}L

}) ∏
τ∈{0,1}L

Q(σ ,τ)D(σ ,τ)

We can now write the entries of M . For f ,g : {0,1}L −→ N satisfying 〈 f ,1〉 = 〈g,1〉 = N, we denote by
M ( f ,g) the conditional probability of obtaining g starting from f in one step of the RSM process. Given a
function f {0,1}L −→ N, we denote by A f the function such that A f (σ) = aσ f (σ). Then, we have

M ( f ,g) = ∑
h:〈h,1〉=N

Phyp (A f → h;N) ∑
D:1D=g;D1=h

Pbin (h→ D;Q) ,

where Q and A are as defined above.
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B Proofs Omitted from Section 5

B.1 Proofs Omitted from Section 5.1

Proof Sketch of Fact 5.1. When µ ∈ (0,1) and aσ > 0 for all σ , it can be verified easily that this chain is
irreducible and also has a non-zero self-loop probability at every point in the state space. Thus, the chain
is ergodic and hence by the Fundamental theorem of Markov chains, has a unique stationary distribution to
which it converges as t→ ∞.

We now give a proof of Lemma 5.2.

Proof of Lemma 5.2. We will show that under class invariance, we can project the RSM Markov chain so
that its state space consists of equivalence classes indexed by functions h : [0,L]−→ N with ∑

L
i=0 h(i) = N,

such that a function f in the state space of M is in the equivalence class [h] if and only if for every i ∈ [0,L],

∑
{σ∈{0,1}L|wH(σ)=i}

f (σ) = h(i).

We will find it convenient to consider the reproduction and selection phases separately from the mutation
phase, show that the projection described above can be done for both of them, and then combine the two
results using the following general fact about projected Markov chains, the proof of which we include for
completeness.

Fact B.1. Let P and R be the transition kernels of two Markov chains on the same state space Ω, and let S
denote the composition PR of the two chains. Suppose that there is a partition of Ω into equivalence classes
Ω′, such that for any f ≡ f ′, and any equivalence class [g], we have

P( f , [g]) = P( f ′, [g]) and R( f , [g]) = R( f ′, [g]).

Then, we also have S( f , [g]) = S( f ′([g]), for all f , f ′ and g as described above.

Proof. The proof is by direct computation. We have,

S( f , [g]) = ∑
q′∈Ω

P( f ,q′)R(q′, [g])

= ∑
[q]∈Ω′

∑
q′∈[q]

P( f ,q′)R(q′, [g])

= ∑
[q]∈Ω′

R(q, [g]) ∑
q′∈[q]

P( f ,q′)

= ∑
[q]∈Ω

R(q, [g])P( f , [q]) (6)

= ∑
[q]∈Ω

R(q, [g])P( f ′, [q]) (7)

Just as in the derivation of equation (6) above, we get S( f ′, [g]) = ∑[q]∈Ω′ R(q, [g])P( f ′, [q]), and hence, by
equation (7), we have S( f ′, [g]) = S( f , [g]), as claimed.

In order to use the last fact, we now decompose the matrix of the RSM process into the following two
Markov chains on Ω:
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1. The Reproduce-Select Chain. We denote the transition matrix of this chain as P, such that P( f ,g)
is the probability of obtaining the state g starting from state f after the reproduction and selection
phases. Notice that

P( f ,g) = Phyp (A f → g;N) .

Assume that A is class invariant and let A(i) denote the reproduction rate for a genome of Hamming
weight i. For an equivalence class [h] of Ω as defined above, we consider the probability P( f , [h]),
with f ∈ [h′]. By the definition of Phyp (→;), this is the probability of drawing h(i) genomes of Ham-
ming weight i for 0≤ i≤ L, when N genomes are drawn without replacement from a bag containing
A(i)∑σ :wH(σ)=i f (σ) = A(i)h′(i) genomes of weight i. By definition, this probability depends only on
h and the equivalence class h′ of f , and hence P( f , [h]) = P(g, [h]) when A is class invariant and f ≡ g.

2. The Mutation Chain. We will directly write down the entries R( f , [h′]) for the probability of obtain-
ing a state in the equivalence class [h′] starting from a state f in the equivalence class [h]. We will
show now that we can write R( f , [h′]) in terms only of h and h′, and hence R( f , [h′]) = R(g, [h′]) for
f ≡ g. Denote by Qi j the probability that a string σ of Hamming weight i transforms into some string
of Hamming weight j in the mutation step, and notice that this probability is well defined because of
the definition of the mutation transition matrix Q. Since f ∈ [h], there are h(i) strings of Hamming
weight i initially, for 0≤ i≤ L. Denote by di j the number of strings of weight i which transform into
strings of weight j in the mutation step. Then, we have

R( f , [h′]) = ∑
d:∑ j di j=h(i)
∑i di j=h′( j)

∏
0≤i≤L

(
h(i){

di j|0≤ j ≤ L
}) ∏

0≤ j≤L
Q

di j
i j . (8)

Since R( f , [h′]) depends only upon h and h′, we get that R( f , [h′]) = R(g, [h′]) for f ≡ g.

Combining the above two discussions and using Fact B.1, we see that when A is class invariant, the transition
matrix M of the RSM process satisfies M ( f , [h′]) = M (g, [h′]) whenever f ≡ g. This completes the proof
of Lemma 5.2.

B.1.1 Relationships between Error Thresholds

We first define error thresholds according to various dispersal measures.

Definition B.2 (Error Thresholds). Let ε ≥ 0, and U be the uniform distribution over the set of genomes.

1. µ
ex,1
c (ε,N)

def
= min

{
µ ∈ (0,1) :

∥∥E[D∞,µ

]
−U

∥∥
1 ≤ ε

}
.

2. µh
c (ε,N)

def
= min

{
µ ∈ (0,1) :

∣∣∑σ wH (σ)E
[
Dσ

∞,µ

]
−2−L

∑σ wH (σ)
∣∣≤ ε

}
.

3. µsh
c (ε,N)

def
= min

{
µ ∈ (0,1) :

∣∣H(E
[
D∞,µ

]
)−H(U)

∣∣≤ ε
}

. Here H denotes the Shannon entropy,
using the base e.

Definition B.3 (Error Threshold for the Quasispecies Model). Let µ ∈ (0,1) and let vµ denote the the
stationary expected fraction vector with `1 norm 1. The error thresholds are defined as follows.

1. µ
ex,1
c (ε)

def
= min{µ ∈ (0,1) : ‖vµ −U‖1 ≤ ε}.
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2. µh
c (ε)

def
= min{µ ∈ (0,1) : |∑σ vµ(σ)wH(σ)−2−L

∑σ wH(σ)| ≤ ε}.

3. µsh
c (ε)

def
= min{µ ∈ (0,1) : |H(vµ)−H(U)| ≤ ε}, where H denotes the Shannon entropy, using the

base e.

Our results are mostly stated in terms of the error threshold µh
c . However, we now describe how the different

definitions above are related to each other. The following inequalities relate the different distance measures
that we have considered. The first of these follows from the definition of the `1 norm, while the second is
the well known Pinsker’s inequality relating the `1 norm to the entropy.∣∣∣∣∣E

[
∑
σ

wH (σ)Dσ
∞,µ

]
−E [σ ←U ]∑

σ

wH (σ)

|Ω|

∣∣∣∣∣ ≤ L
∣∣∣∣E[D∞,µ

]
−U

∣∣∣∣
1 (9)

∣∣∣∣E[D∞,µ

]
−U

∣∣∣∣
1 ≤

√
2
∣∣H(E

[
D∞,µ

]
)−H(U)

∣∣ (10)

This gives us the following relationship between the error-thresholds:

µ
h
c (ε,N) ≤ µ

ex,1
c (ε/L,N)

µ
ex,1
c (ε,N) ≤ µ

sh
c (ε2/2,N) (11)

Using the fact that the distributions involved are defined over a state space of size 2L, we can show the
following weak converse to inequality (10):∣∣H(E

[
D∞,µ

]
)−H(U)

∣∣≤ 2L
∣∣∣∣E[D∞,µ

]
−U

∣∣∣∣2
1 .

This gives us a further relationship between the error thresholds:

µ
ex,1
c (ε,N)≥ µ

sh
c (2L

ε
2,N)

However, we notice that one cannot in general close the loop in inequalities (9) and (10) (and hence in
inequalities (11)) above. To see this, consider for example the following two distributions P and Q for
L > 1.

1. P: puts total weight 1− ε on weight 1 strings and weight ε on the string 0, so that the average
Hamming weight is 1− ε.

2. Q: puts total weight (1− ε)/L on weight L strings, and weight 1− (1− ε)/L the string 0, so that the
average Hamming weight is still 1− ε .

The average Hamming weight in both cases is 1− ε, so that in that metric, the distance between P and Q is
zero. However, the total variation distance between P and Q is at least 1− ε.

B.2 Proof of Theorem 5.6

In the rest of this section, we will use the following concentration inequalities about the multivariate hyper-
geometric distribution:

Fact B.4. Consider the hypergeometric distribution Phyp (g→ f ;N) defined in equation (5) above. Let Dσ

be the random variable denoting the fraction of genomes of type σ which are drawn in the process starting
with g(τ) genomes of each type τ . We then have:
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1. E [Dσ ] = g(σ)
〈g,1〉 .

2. The following concentration inequality holds for ε ≥ 0:

P [|Dσ −E [Dσ ] |> ε]≤ 2exp
(
−ε

2N
)
.

Similarly for the multivariate binomial distribution, we have the following:

Fact B.5. Consider N genomes with f (σ) genomes of each type σ . Let Dσ be the random variable denoting
the fraction of genomes of type σ after a mutation step. Then

1. E [Dσ ] = 1
N ∑σ f (τ)Qτσ .

2. The following concentration inequality holds for ε ≥ 0:

P [|Dσ −E [Dσ ] |> ε]≤ 2exp
(
−2ε

2N
)

Fact B.4 is a consequence of Azuma’s inequality, and a proof can be found in the book by Dubhashi and
Panconesi [DP09]. Fact B.5 is essentially a restatement of the Chernoff-Hoeffding bound. Combining the
above bounds, we can deduce the following concentration inequality for each step of the RSM process:

Lemma B.6. Consider a state Nt of the RSM process. We then have

1. E
[
Dσ

t+1|Nt
]
= (DtAQ)σ

〈Dt,A〉 = rσ (Dt), with rσ as defined in equation (2).

2. Let ε1 and ε2 be arbitrary positive constants. Then with probability (conditional on Nt) at least
1− 22L+1(exp

(
−ε2

1 N
)
+ exp

(
−2ε2

2 N
)
), we have |Dσ

t+1−E
[
Dσ

t+1|Nt
]
| ≤ (ε1 + ε2) for every σ . In

particular, choosing ε1 = ε2 = ε/2, we get that with probability (conditional on Nt) at least 1−
22L+2 exp

(
−ε2N/4

)
, we have |Dσ

t+1−E
[
Dσ

t+1|Nt
]
| ≤ ε for every σ .

Proof. For ease of notation, let gσ = aσ Nσ
t . Let Iσ be the random variable denoting the fraction of genomes

of type σ left after the selection step. Thus, we have

E [Iσ |Nt ] =
gσ

〈g,1〉
and E

[
Dσ

t+1|I,Nt
]
= ∑

τ

IτQτ,σ .

Using a union bound over all genome types with the concentration inequality in Fact B.4, we get that
with probability at least 1−2L+1 exp

(
−ε2

1 N
)

conditioned on Nt , we have∣∣∣∣Iσ ∈ gσ

〈g,1〉

∣∣∣∣≤ ε1, for all σ .

We denote the above event by E . Now, we consider the concentration of Dt conditioned on I. Using a union
bound over all genome types along with the concentration inequality in Fact B.5, we get with probability at
least 1−2L+1 exp

(
−2ε2

2 N
)

conditioned on I, we have∣∣∣∣Dσ
t+1−∑

τ

IτQτσ

∣∣∣∣≤ ε2, for all σ .
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We denote the above event by F . With probability at least 1−22L+1(exp
(
−ε2

1 N
)
+ exp

(
−2ε2

2 N
)
), condi-

tioned on Nt , both E and F occur, and then we have, for all σ ,∣∣Dσ
t+1−E

[
Dσ

t+1|Nt
]∣∣ =

∣∣∣∣∑
τ

Qτσ (Dσ
t+1−

gτ

〈g,1〉
)

∣∣∣∣
≤

∣∣∣∣Dσ
t+1−∑

τ

IτQτσ

∣∣∣∣+∑
τ

Qτσ

∣∣∣∣Iτ − gτ

〈g,1〉

∣∣∣∣
= ε2 + ε1 ∑

τ

Qτσ = ε1 + ε2,

which is what we sought to prove.

Before proceeding, we need the following lemma:

Lemma B.7. Fix a fitness landscape A with positive entries and a mutation transition matrix Q with µ < 1/2.
The functions rτ defined in equation (2) are Lipschitz with Lipschitz constant

K =
maxτ aτ

minτ aτ

(
(1−µ)L−µ

L)
on the set of probability distributions over genomes.

Proof. For a probability distribution x over genomes, we have∣∣∣∣∣∂ rσ ′(x)
∂xσ

∣∣∣∣∣ =
aσ

∑τ aτxτ

∣∣∣Qσσ ′− rσ ′(x)
∣∣∣

≤ maxτ aτ

minτ aτ

(
(1−µ)L−µ

L) ,
where the last line follows by noticing that fact that for all x and all σ ′, minσ ,τ Qστ ≤ rσ ′(x)≤maxσ ,τ Qστ ,
and minστ Qστ = µL, while maxστ Qστ = (1− µ)L. Thus, by the mean value theorem, for any probability
distributions x and y over genomes, we get

|r(x)− r(y)| ≤ K ||x−y||1 .

Proof (of Theorem 5.6). Fix a time t0. In the rest of the proof, we drop the conditioning on the initial state
being concentrated on the master sequence for ease of notation. We will prove the following claim by
induction for 0≤ t ≤ t0:

Claim B.8. For every σ ∈ {0,1}L and 0≤ t ≤ t0, there exist lσ
t ,u

σ
t and pt satisfying the conditions

1. 0≤ lσ
t ≤ uσ

t ≤ 1, and st
def
= maxσ uσ

t − lσ
t and pt are oN(1). Also, mσ

t lies in the interval [lσ
t ,u

σ
t ].

2. With probability at least 1− pt , Dσ
t lies in the interval [lσ

t ,u
σ
t ] for all σ .

We first see how to finish the proof of Theorem 5.6 assuming Claim B.8. From item 2 in Claim B.8, and
using mσ

t ∈ [lσ
t ,u

σ
t ] ,we get

|E
[
Dσ

t0

]
−mσ

t0 | ≤ pt0 +(1− pt0)|uσ
t0 − lσ

t0 |, for all σ . (12)

Now item 1 of the claim implies that the right hand side of equation (12) goes to 0 as N → ∞, which
concludes the proof of Theorem 5.6, assuming Claim B.8.
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We now proceed to prove Claim B.8.

Proof of Claim B.8. At t = 0, we can set lσ
t = uσ

t = mσ
t , and pt = 0. By the definition of the starting state,

this satisfies the conditions claimed in the claim. Now suppose that we have shown that with probability
1− pt , we have Dσ

t ∈ [lσ
t ,u

σ
t ] for all σ . We call the latter event Et . Recall that

E
[
Dσ

t+1|Dt
]
= rσ (Dt),

and define
l′σt+1 = min

{y|yσ∈[lτ
t ,uτ

t ]}
rσ (y); u′σt+1 = max

{y|yτ∈[lτ
t ,uτ

t ]}
rσ (y)

Notice that mσ
t+1 ∈

[
l′σt+1,u

′σ
t+1
]
. Also, because of the Lipschitz condition on the function rσ shown in

Lemma B.7, we have u′σt+1− l′σt+1 ≤ 2LKst . Now, we condition on the event Et defined above, and in this
case, we have

E
[
Dσ

t+1|Et
]
∈
[
l′σt+1,u

′σ
t+1
]

, for all σ .

Choose ε(N) = N−1/3 = oN(1), and set lσ
t+1 = l′σt+1− ε/2, uσ

t+1 = u′σt+1 + ε/2. Using the concentration
result quoted in Lemma B.6, we get that conditioned on Et , with probability at least 1− p(N) where p(N) =
exp(−Ω(N1/3)) = oN(1),

Dσ
t+1 ∈

[
lσ
t+1,u

σ
t+1
]

, for all σ .

Now, we saw above that Et occurs with probability at least 1− pt . Hence, by a union bound, we get that
with probability at least 1− pt+1, where pt+1 = pt + p(N),

Dσ
t+1 ∈

[
lσ
t+1,u

σ
t+1
]

, for all σ .

This proves the induction hypothesis, except that we need to make sure that st , pt are oN(1). We first consider
st . From above, we have the following recurrence for st :

st+1 ≤ 2LKst + ε(N); s0 = 0. (13)

This satisfies st = ON(ε) = oN(1) for all t ≤ t0, by the choice of ε . Similarly, we have pt = t p(N) = oN(1)
for t ≤ to by the choice of p(N). This proves Claim B.8.

B.3 Proof of Corollary 5.7

We begin by noticing that for 0 < µ < 1/2, we can choose a time t0 such that for t > t0, the state mt of the
quasispecies model satisfies ∣∣dh(mt ,U)−dh(vµ ,U)

∣∣≤ δ/2, (14)

where v is the unique stationary vector of the quasispecies model. Now fix t > t0. Since the distance function
dh is continuous, Theorem 5.6 allows us to choose an Nδ such that for N > Nδ ,∣∣dh(mt ,U)−dh(E

[
Dt,µ,N

]
,U)
∣∣≤ δ/2. (15)

Combining equations (14) and (15), we get∣∣dh(v,U)−dh(E
[
Dt,µ,N

]
,U)
∣∣≤ δ .

Thus, when µ < µh
c (ε), we have

dh (E[Dt,µ,N
]
,U
)
≥ ε−δ , when µ < µ

h
c (ε), and,

and when µ = µh
c (ε),

dh (E[Dt,µ,N
]
,U
)
≤ ε +δ when µ = µ

h
c (ε).
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B.4 Proof of Theorem 5.8

Before proving Theorem 5.8, we first set up some notation for the coupling argument.

Definition B.9. A coupling of two probability distributions D1 and D2 is a pair of random variables (X ,Y )
defined on a single probability space such that the marginal distribution of X is D1 and the marginal distri-
bution of Y is D2.

Definition B.10. A coupling of Markov chains with transition matrix M is defined to be a process (Xt ,Yt)
∞
t=0

with the property that both (Xt) and (Yt) are Markov chains with transition matrix M , although the two
chains may possibly have different starting distributions.

Any coupling of Markov chains with transition matrix M can be modified so that the two chains stay
together at all times after their first simultaneous visit to a single state: more precisely, such that if Xs = Ys,
then Xt = Yt for t ≥ s. In the following, we only consider such couplings. The following well known facts
are the basis of coupling based methods for proving mixing time bounds.

Theorem B.11. Let {(Xt ,Yt)} be a coupling satisfying the definition above for which X0 = α and Y0 = β .

Let τcouple be the first time the chains meet: τcouple
def
= min{t : Xt = Yt}. Then

‖M t(α, ·)−M t(β , ·)‖TV ≤ P
[
τcouple > t|X0 = α,Y0 = β

]
.

Lemma B.12 (Coupling Lemma). Let X ,Y be random variables defined on a finite sample space Ω and let
C be any coupling of C and Y. Then

min
C

PC [X 6= Y ] = ‖X−Y‖TV .

Definition B.13. Let d : Ω×Ω−→R≥0 be a distance metric on the state space Ω of the two Markov chains
{Xt}t and {Yt}t . Suppose C is a coupling such that for every t ≥ 0,

E [d(Xt+1,Yt+1)]≤ θ ·E [d(Xt ,Yt)]

for every starting distributions X0,Y0, then we call C a (θ ,d) coupling. Note that this implies that

E [d(Xt ,Yt)]≤ θ
t ·D,

where D = maxσ ,τ∈Ω d(σ ,τ).

Fix a integer valued distance function d. Let let {Xt}t be a realization of the Markov chain starting from X0
and Yt be another realization starting from the stationary distribution π of the Markov chain. If C is a (θ ,d)
coupling, then it follows from the Coupling Lemma that

‖Xt −π‖TV
Coupling
≤ P [Xt 6= Yt ]

d integral
= P [d(Xt ,Yt)]≥ 1]

Markov
≤ E [d(Xt ,Yt)]≤ θ

t ·D.

This implies that the mixing time τmix(ε) = O
(

log (D/ε)
log (1/θ)

)
when θ < 1.

B.4.1 A Coupling for the RSM Process

The coupling C we will construct will have two independent parts C = (CS,CM), CS for the Reproduce-
Select phase and CM for the mutation part. We first describe the somewhat simpler mutation coupling.
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Mutation Coupling CM. Let Xt = {σ1, . . . ,σN} and Yt = {ν1, . . . ,νN}. Let M denote an arbitrary per-
mutation on [N] such that M(i) denotes the image of i ∈ [N]. We define the distance between the states
as

dmatch(Xt ,Yt)
def
= min

M

{
N

∑
i=1

dH
(
σi,νM(i)

)}
.

The mutation coupling follows the following algorithm, with M set to be the permutation which achieves
the minimum in the above definition.

1. For i = 1, . . . ,N

(a) For j = 1, . . . ,L

i. Choose independently and uniformly at random r j from [0,1].
ii. If σi( j) = νM(i)( j)

A. Flip σi( j) and νM(i)( j) if and only if r j ≥ 1−µ.

iii. Else
A. Let r j,1

def
= r j and r j,2

def
= 1− r j.

B. Flip σi( j) if and only if r j,1 ≥ 1−µ.

C. Flip νM(i)( j) if and only if r j,2 ≥ 1−µ.

Lemma B.14. For µ ≤ 1/2, CM is a ((1−2µ),dmatch) coupling.

Proof. To prove that CM is a valid coupling one just needs to note that if r is distributed uniformly at random
in [0,1] then so is 1− r. Hence, for i = 1, . . . ,N and j = 1, . . . ,L, each bit σi( j) (respectively, νi( j))) flips
with probability exactly µ. Further, these flips are independent by construction.

To prove that CM is a ((1−2µ),dmatch) coupling, let Xt ,Yt be the states of the two Markov chains with
distance d def

= dmatch(Xt ,Yt). By definition of dmatch, there is some matching M? which achieves d. Without
loss of generality assume that M? is identity, i.e., M?(i) = i, for all 1 ≤ i ≤ N. Hence, ∑

N
i=1 dH(σi,νi) = d.

Let Xt+1
def
= (σ t+1

1 , . . . ,σ t+1
N ) and Yt+1

def
= (ν t+1

1 , . . . ,ν t+1
N ) be the output of CM on input (σ1, . . . ,σN) and

(ν1, . . . ,νN) respectively. We will calculate E
[
∑

N
i=1 dH(σ

t+1
i ,ν t+1

i )
]

and show that it is exactly (1−2µ) ·d.
Hence, dmatch(Xt+1,Yt+1) ≤ (1− 2µ) · d, as dmatch is defined as the minimum over all possible matchings.
By linearity of expectation it is sufficient to show that for all i = 1, . . . ,N,

E
[
dH(σ

t+1
i ,νi(t +1)

]
= (1−2µ) ·dH(σi,νi).

Again by linearity of expectation it is sufficient to show the following:

Er j

[
dH(σ

t+1
i ( j),ν t+1

i ( j))
]
= (1−2µ) ·dH(σi( j),νi( j)).

This follows from observing that if σi( j) = νi( j), then P
[
σ

t+1
i ( j) = ν

t+1
i ( j)

]
= 1, while if σi( j) 6= νi( j),

then, as µ ≤ 1/2, P
[
σ

t+1
i ( j) = ν

t+1
i ( j)

]
= 2µ. Hence, P

[
σ

t+1
i ( j) 6= ν

t+1
i ( j)

]
= 1−2µ. This completes the

proof.
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Coupling CS for the Selection Process. We again consider two states Xt = {σ1,σ2, . . . ,σN} and Yt =
{ν1,ν2, . . . ,νN}. Our distance function is still dmatch defined above. We first note the dmatch (·, ·) is actually
a metric.

Lemma B.15. dmatch (·, ·) is a metric.

Proof. By construction dmatch (X ,Y ) ≥ 0 with equality if and only if X = Y . Now consider states X =
{σi}N

i=1 ,Y = {τi}N
i=1 and Z = {νi}N

i=1 in the state space Ω. Let α and β be permutations of [N] such that

dmatch (X ,Y ) =
N

∑
i=1

dH
(
σi,τα(i)

)
and dmatch (Y,Z) =

N

∑
i=1

dH
(
τi,νβ (i)

)
Now we have

dmatch (X ,Z) ≤
N

∑
i=1

dH
(
σi,νβ (α(i))

)
≤

N

∑
i=1

(
dH
(
σi,τα(i)

)
+dH

(
ταi +νβ (α(i))

))
= dmatch (X ,Y )+dmatch (Y,Z) .

We will use the following general path coupling result of Bubley and Dyer [BD97] to define the coupling
CS.

Theorem B.16 (Path Coupling [BD97]). Consider a Markov chain M on state space Ω and a distance
function d on Ω such that d′(x,x) = 0 for all x ∈ Ω. Consider a connected undirected graph G on Ω such
that the length of each edge {x,y}, if present in G, is d(x,y), and let d′ be the shortest path metric on G.
Suppose there exists a coupling C for M such that for some α < 1, and all Xt ,Yt ∈Ω which are adjacent in
G,

EC [d(Xt+1,Yt+1)|Xt ,Yt ]≤ αd(Xt ,Yt).

If every edge of G is a shortest path under the metric d′ described above, then the coupling C can be
extended to a coupling C ′ such that

EC ′
[
d′(Xt+1,Yt+1|Xt ,Yt

]
≤ αd′(Xt ,Yt).

for all Xt ,Yt ∈Ω.

We will first show now that the path metric resulting from an application of the above theorem to dmatch
is dmatch itself, since this is crucial for composing the CS coupling with the coupling CM described above.

Lemma B.17. Consider the state space Ω of the RSM Markov chain M . Let G be the graph on Ω in which
two vertices X and Y are adjacent if and only if dmatch (X ,Y ) = 1. Then the path metric d′ constructed in
Theorem B.16 is identical with d, and each edge in G is a shortest path.

Proof. For brevity we will denote dmatch (·, ·) by d. Notice that since each edge is of length 1, it is also a
shortest path by construction. Since d is a metric, we also have d′(X ,Y ) ≥ d(X ,Y ) for all X ,Y ∈ Ω. We
now proceed by induction to show that d(X ,Y )≥ d′(X ,Y ) for all X ,Y ∈ Ω. Notice that when d(X ,Y ) = 1,
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this is true by definition of d′. Now, suppose that d(X ,Y )≤ k−1 implies d′(X ,Y )≤ d(X ,Y ), and consider
the case d(X ,Y ) = k > 1. We claim that there exists a Z such that d(X ,Z) ≤ k− 1 and d(Y,Z) ≤ 1. The
existence of such a Z implies using the induction hypothesis that

d′(X ,Y ) ≤ d′(X ,Z)+d′(Z,Y )

≤ d(X ,Z)+d(Z,Y )≤ k = d(X ,Y ).

It only remains to construct such a Z. Let X = {σi}N
i=1 and Y = {νi}N

i=1. Without loss of generality, we
may assume that d(X ,Y ) = ∑

N
i=1 dH (σi,νi). Since d(X ,Y ) = k > 1, there exists a j such that dH (σ j,ν j)≥ 1.

Let s be a string obtained by flipping a single bit of ν j such that dH (σ j,s) = dH (σ j,ν j)− 1. Now let
Z = {τi}N

i=1, where τi = νi for i 6= j and τ j = s. By construction, d(Y,Z)≤ 1 and d(X ,Z)≤ k−1.

Claims about the Coupling. Suppose we find a coupling C for the selection phase such that when
dmatch (Xt ,Yt) = 1, then the intermediate states I(Xt) and I(Yt) satisfy

E [dmatch (I(Xt), I(Yt)) |Xt ,Yt ]≤ α,

then using Theorem B.16 and the coupling for the mutation phase described above, we get

E [dmatch (Xt+1,Yt+1|Xt ,Yt)]≤ α(1−2µ)dmatch (Xt ,Yt) .

This will give us fast mixing as long as α(1−2µ)< 1.
We now describe such a coupling for the selection process, for general Xt and Yt , which we will analyze

only in the simple but sufficient case when dmatch (Xt ,Yt) = 1. Suppose that Xt and Yt contain, respectively,
nx

σ and ny
σ genomes of type σ . After reproduction, the number of genomes of type σ in the two chains

is aσ nx
σ and aσ ny

σ respectively. Let the total number of genomes be Mx = ∑σ aσ nx
σ and My = ∑σ aσ ny

σ

respectively. Without loss of generality let us assume that Mx ≥My, and set M = Mx.
We now construct a bag of M balls as follows. For each σ , the bag has exactly aσ min

(
nx

σ ,n
y
σ

)
balls

with label (σ ,(x,y)). If nx
σ ≥ ny

σ , then the bag has exactly aσ (nx
σ −ny

σ ) balls with label (σ ,x), otherwise it
has exactly aσ (n

y
σ −nx

σ ) balls with label (σ ,y). Thus the total number of balls in the bag is M.
We now take a random permutation of the M balls, and take the intermediate state IX (respectively, IY )

to be the multiset of genomes given by the first N balls carrying the label (x,y) or x (respectively, (x,y) or
y). Notice that a ball carrying a label (x,y) can contribute a genome to both IX and IY .

Claim B.18. The above coupling is a valid Markovian coupling for the selection phase of the RSM chain.

Proof. Notice that sampling without replacement a objects from a set of b objects is equivalent to taking the
first a elements from a uniform random permutation of the b objects. Also note that given a subset S of a set
of b objects, and a uniform random permutation α over the b objects, the restriction of α to the elements of S
is a uniformly random permutation of the elements of S. Now consider the set of M labeled balls constructed
above, and define SX (respectively, SY ) to be the set of balls carrying a (x,y) or x (respectively, x(x,y) or y)
label. By the observations above, see that the set IX (respectively, IY ) has the same distribution as if it was
sampled without replacement from SX (respectively, SY ). This proves the claim.

Lemma B.19. Suppose dmatch (Xt ,Yt) = 1. Then under the above coupling, we have

E [dmatch (IX , IY ) |Xt ,Yt ]≤
1

1− 1
N

maxaσ

minaσ

L.
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Proof. For brevity, we will denote Xt and Yt as X = {σi}N
i=1 and Y = {νi}N

i=1 and dmatch (·, ·) by d. Since
d(X ,Y ) = 1, we can assume without loss of generality that σi = νi for i > 1, and σ1 and ν1 differ in exactly
one bit.

We now consider the coupling described above, and let S be the set of balls with label (x,y). Notice that
|S| = ∑1<i≤N aσi . Notice that |S| ≥ (N− 1)minσ aσ . We assume without loss of generality that aσ1 > aν1 ,
so that the number of balls M in the bag is |S|+aσ1 . Consider a random permutation α of the M balls, and
let I be the (random) multiset of balls with label (x,y) occurring in the first N positions of α . Notice that
|IX ∩ IY | ≥ |I|. We observe that if the intersection of IX and IY (seen as multisets) is of size at least |I|, then
dmatch (IX , IY )≤ L(N−|I|), hence we have

E [dmatch (IX , IY ) |X ,Y ]≤ L(N−E [|I| |X ,Y ]). (16)

Now, we have

E [|I| |X ,Y ] =
|S|

|S|+aσ1

N

≥ N
(

1− aσ1

|S|

)
≥ N

(
1− aσ1

(N−1)minτ aτ

)
.

Plugging this into equation (16), we get

E [dmatch (IX , IY ) |X ,Y ] ≤ LNaσ1

(N−1)minτ aτ

≤ 1
1− 1

N

maxτ aτ

minτ aτ

L,

which establishes our claim.

Using the above discussion, we get fast mixing under the condition that

(1−2µ)
1

1− 1
N

maxσ aσ

minσ aσ

L < 1.

Formally, we have

Theorem B.20. Fix a mutation rate µ < 1/2, and a fitness landscape A. Define

K(A,µ) = (1−2µ)
1

1− 1
N

maxσ aσ

minτ aτ

L.

When K(A,µ)< 1, we have τmix(ε) = O
(

log(NL/ε)
log(1/K)

)
.

We note here that the main difficulty in designing coupling arguments for the RSM process is the distance
expansion property of the reproduction and selection phases. Given two states of the RSM process, the
reproduction phase amplifies the distance between them, and the nature of the selection phase tends to
keep this distance intact. In this setting, the chain can be described as a noisy random walk on a boolean
hypercube, and our bound reflects the intuition that when the noise is small, the fast mixing property of
the hypercube should able to enforce fast mixing of the RSM chain. We reemphasize that we consider that
achieving a better understanding of the mixing properties of the RSM walk, in terms of both upper and lower
bounds appears to be an interesting and challenging open problem.
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B.5 Proof of Theorem 5.9

We now proceed to prove Theorem 5.9. We will use notation similar to that used in the proof of Lemma
5.2 in Appendix B.1. By a slight abuse of notation, we will use P and R for the transition matrices of the
projected versions of the chains described in the proof of Lemma 5.2 above. We note that for any numbers M
and M′1,M

′
2, . . . ,M

′
l summing up to M,

( M
M′1,M

′
2,...,M

′
l

)
is of size at most O(M logM) bits and can be computed

in at most O(M) operations over numbers of size at most O(M logM). We start with an estimation of the
time required to compute the entries of P. Using the above observation, and the form of entries of P, we
have the following observation for P.

Observation B.21. Each entry of P is of size at most Õ(N maxaσ ), and can be computed in N maxaσ

operations over integers of size Õ(N maxaσ ).

We now proceed to estimate the complexity of computing entries of the matrix R. We first get a bound
on the time required to pre-compute the (L+1)×(L+1) matrix Q defined in the description of the mutation
chain in Appendix B.1.

Observation B.22. Let b be the number of bits required to represent µ . We have

Qst = (1−µ)L
(

µ

1−µ

)s−t

∑
x

(
L− s

x

)(
s

t− x

)(
µ

1−µ

)2x

.

Hence, each entry of Q is of size at most Õ(bL) and can be pre-computed in time O(L2) operations over
numbers of size Õ(bL).

Proof of Theorem 5.9. Notice that the number of terms in the sum in equation (8) for the computation of the
entry of the matrix R([h], [h′]) is at most

L

∏
i=0

(
h(i)+L

L

)
≤

( e
L

)L(L+1) L

∏
i=0

(h(i)+L)L

≤
(

e
(

1+
N

L(L+1)

))L(L+1)

, by the AM-GM inequality.

We will use the shorthands S =
(N+L

L

)
≤ (N+L)L

L! and

G =

(
e
(

1+
N

L(L+1)

))L(L+1)

.

Notice that R is of dimension at most S×S. Computing the products of all the Qi j’s in each of these terms
takes N multiplications on numbers of size at most Õ(bL), and hence produces a number of size Õ(NbL)
in time at most Õ(NbL). Computing the products of all the multinomial coefficients in each of the terms
takes O(N) multiplications on integers of size logN, thus producing an integer of size O(N logN) in time
Õ(N logN). The total size of each entry of R is thus at most s1 = Õ(logG+N logN +NbL), and the entry
can be computed in time t1 = Õ(Gs1). All the entries of R can thus be computed in time S2t1.

Notice that Mw = PR, and given the above estimates on the sizes of the entries of P and R and the times
required to compute their entries, each entry of Mw is of size at most s2 = O(logS+ s1 +N maxaσ ), and
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can be computed in time Õ(Ss2), given the entries of P and R. Thus, the time taken for the computation of
Mw, including the computation of R and P and the pre-computation of Q is

T1 = Õ
(
bL3 +S3s2 +S2Gs1

)
and each entry of Mw is of size

s2 = Õ(NbL+N maxaσ +L2).

The time required to compute an exact solution of Mwπw = πw with the restriction ||πw||1 = 1 using Gaussian
elimination is thus of the order Õ(S3s2). Comparing this with T1, we get that the total running time is Õ(T1),
which is what we sought to prove.

B.6 Proof of Theorem 5.10

INPUT: An initial state α0 ∈Ωw, an ε > 0, grid resolution δ , accuracy parameter δ1, and error probability
δ2, L,N and an A which is class invariant.
GOAL: To estimate µh

c (ε,N).

OUTPUT: µ0 such thatµ0 ≥ µh
c (ε +δ1/2) and dh(D∞,µ0−δ ,U)≥ ε−δ1/2.

Let ε ′ = δ1
2L2 (the distance from stationarity), c =

⌈ 1
2δ

⌉
and s =

⌈
8L4

δ 2
1

log(2c(L+1)/δ2)
⌉

(number of sam-
ples from the distribution).
For δ ≤ µ ≤ 1/2 in steps of δ ,

1. Let τ
def
= τ(L,N,A,µ,ε ′).

2. Let Dτ,k, for k = 1, . . . ,s, denote s independent samples from the RSM process with parameters
L,N,A and µ starting from the initial state α0.

3. Let Zs
def
= 1

s ∑
s
k=1 Dτ,k.

4. If dh(Zs,U)≤ ε then Return µ and Stop.

5. Else µ = µ +δ .

Figure 1: The Algorithm ERRORTHRESHOLD

In this section, we give a proof of Theorem 5.10. Recall that πw denotes the stationary distribution of the
projected RSM chain described in Section 5.1. Using the definition of the mixing time, and the Chernoff-
Hoeffding bound, we have the following lemma in order to bound the number of samples s required in each
iteration of the algorithm:

Lemma B.23. Suppose we take s samples from independent realizations of the fully mixed projected RSM
process, denoting the samples so obtained as D(i) for i = 1,2, . . . ,s. For any fixed genome σ , we then have
E [Dσ (i)] = Eπw [D

σ ] for all i. Now for every ε > 0

P

[∣∣∣∣∣1s s

∑
i=1

Dσ (i)−Eπw [D
σ ]

∣∣∣∣∣≥ ε

]
≤ 2exp

(
−2ε

2s
)
.
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In particular, if we run s independent realizations of the chain up to the time τ(L,N,A,µ,ε/2), and let Di

denote the sample obtained by the ith realization, then

P

[∣∣∣∣∣1s s

∑
i=1

Dσ (i)−Eπw [D
σ ]

∣∣∣∣∣≥ ε

]
≤ 2exp

(
−ε

2s/2
)
.

Proof of Theorem 5.10. Consider the random variables Zs in any of the at most c iterations in ERRORTHRESH-
OLD. By the choice of ε ′ and s, we get from the above lemma and a union bound that all the c different
variables Zs that we get across all the iterations of the loop satisfy

||Zs−Eπw [D]||
∞
≤ δ1/(2L2) (17)

with probability at least 1−δ2. In the rest of the proof, we condition on the above event occurring.
Since the average Hamming distance can be at most L, and we are running the projected chains till

τ(L,N,A,µ,δ1/(2L2)) for each µ , we get that for every µ considered by the algorithm∣∣dh(πw,µ ,U)−dh(Zs,U)
∣∣≤ δ1/2.

We therefore deduce that when the algorithm outputs a µ , dh(πw,µ ,U) ≤ ε + δ1/2, using the conditioning
on the event in equation (17). Similarly, by noticing that the algorithm had dh(Zs,U)≥ ε for µ−δ , we get
that dh(πw,µ−δ ,U)≥ ε−δ1/2. The estimate of the running time follows by noticing that assuming bits with
bias µ can be sampled in O(log(1/µ)) time, it takes time O(NLmaxaσ log(1/µ)) to simulate each step of
the Mw chain. The bound on the error probability follows from the conditioning used on the validity of
equation (17).

We comment briefly on a technical point about the definition of the error threshold that has been used in
the literature (and that we use too). With this definition, there might exist a µ satisfying 1/2 > µ > µh

c (ε) such
that dh(v,U)> ε . An analogous condition might hold in the finite population case too. If we could preclude
the occurrence of such anomalous behavior of error-thresholds, we would be able to improve the guarantee
on the output µ0 of the algorithm ERRORTHRESHOLD to be of the form µh

c (ε+δ1,N)≤ µ0≤ µh
c (ε−δ1)+δ .

We observe, however, that somewhat surprisingly, even for the simpler case of the quasispecies model, to
the best of our knowledge, no attempts have been made to rigorously prove that such anomalous behavior
cannot occur. We leave the resolution of this point for the finite population case as an open problem.
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