
Hap-seq: An Optimal Algorithm for Haplotype Phasing

with Imputation Using Sequencing Data

DAN HE,1 BUHM HAN,2 and ELEAZAR ESKIN2

ABSTRACT

Inference of haplotypes, or the sequence of alleles along each chromosome, is a fundamental
problem in genetics and is important for many analyses, including admixture mapping,
identifying regions of identity by descent, and imputation. Traditionally, haplotypes are in-
ferred from genotype data obtained from microarrays using information on population hap-
lotype frequencies inferred from either a large sample of genotyped individuals or a reference
dataset such as the HapMap. Since the availability of large reference datasets, modern ap-
proaches for haplotype phasing along these lines are closely related to imputation methods.
When applied to data obtained from sequencing studies, a straightforward way to obtain
haplotypes is to first infer genotypes from the sequence data and then apply an imputation
method. However, this approach does not take into account that alleles on the same sequence
read originate from the same chromosome. Haplotype assembly approaches take advantage of
this insight and predict haplotypes by assigning the reads to chromosomes in such a way that
minimizes the number of conflicts between the reads and the predicted haplotypes. Un-
fortunately, assembly approaches require very high sequencing coverage and are usually not
able to fully reconstruct the haplotypes. In this work, we present a novel approach, Hap-seq,
which is simultaneously an imputation and assembly method that combines information from a
reference dataset with the information from the reads using a likelihood framework. Our
method applies a dynamic programming algorithm to identify the predicted haplotype, which
maximizes the joint likelihood of the haplotype with respect to the reference dataset and the
haplotype with respect to the observed reads. We show that our method requires only low
sequencing coverage and can reconstruct haplotypes containing both common and rare alleles
with higher accuracy compared to the state-of-the-art imputation methods.

Key words: dynamic programming, genetic variation, haplotype phasing, hidden Markov model,

imputation.

1. INTRODUCTION

Haplotype, or the sequence of alleles along each chromosome, is the fundamental unit of genetic

variation, and inference of haplotypes is an important step in many analyses, including admixture

mapping (Patterson et al., 2004), identifying regions of identity by descent (Gusev et al., 2009; Browning and

1IBM T.J. Watson Research, Yorktown Heights, NY.
2Computer Science Department, University of California Los Angeles, Los Angeles, CA.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 20, Number 2, 2013

Mary Ann Liebert, Inc.

Pp. 80–92

DOI: 10.1089/cmb.2012.0091

80

Browning, 2010, 2011), imputation of uncollected genetic variation (Marchini et al., 2007; Li et al., 2010;

Kang et al., 2010), and association studies (Beckmann, 2010). It is possible to use molecular methods for

obtaining haplotypes (Patil et al., 2001), but they are expensive and not amenable to high throughput

technologies. For this reason, most studies collect genotype information and infer haplotypes from geno-

types, referred to as haplotype inference or haplotype phasing. One strategy for haplotype phasing is to collect

mother-father-child trios and use the Mendelian inheritance patterns. However, this strategy is limited to

related individuals.

Over the past two decades, there has been great interest in inference of haplotypes from genotypes

of unrelated individuals (Clark, 1990). Traditionally, these methods were applied to genotypes of a

cohort of individuals and utilized the insight that in each region a few haplotypes accounted for the

majority of genetic variation. Using this insight, these methods identified the common haplotypes and

used them to infer the haplotypes for each individual in the cohort (Stephens et al., 2001; Eskin

et al., 2003; Gusfield, 2003; Halperin and Eskin, 2004; Browning and Browning, 2007). More re-

cently, large reference datasets of genetic variation such as the HapMap (International HapMap

Consortium, 2007) and 1000 Genomes (1000 Genomes Project, 2010) have become available, en-

abling a new class of methods, referred to as imputation methods (Marchini et al., 2007; Kang et al.,

2010, Li et al., 2010). These use the information in the haplotypes in the reference datasets to both

predict haplotypes from genotypes as well as predict the genotypes at uncollected variants. Since

these methods use the reference datasets, they are able to infer haplotypes from a single individual’s

genotypes.

Recent advances in high-throughput sequencing have dramatically reduced the cost of obtaining se-

quencing information from individuals (Wheeler et al., 2008). One advantage of this data compared to

microarray genotypes is that this information contains data on both common and rare variants. The initial

approaches to inferring haplotypes from sequence data first infers genotype data from the sequencing data

and then applies an imputation algorithm (Li et al., 2010). Unfortunately, since variants that are very rare or

unique to an individual are not present in the reference datasets, phase information for these variants can

not be recovered using this approach.

This commonly applied approach does not take into account an important source of information for

haplotype inference. Each sequence read originates from a single chromosome, and alleles spanned by

that read are on the same haplotype. A set of methods referred to as haplotype assembly methods (Levy

et al., 2007; Bansal et al., 2008; Bansal and Bafna, 2008) have been developed around this idea. Since

many reads overlap each other, these methods infer haplotypes by partitioning the reads into two sets

corresponding to chromosomal origin in such a way that the number of conflicts between the reads and

the predicted haplotypes is minimized. Recently, a dynamic programming method has been proposed,

which obtains the optimal haplotype prediction from a set of reads (He et al., 2010). These methods

worked well for sequencing studies in which the sequencing coverage is high and the reads are long

(Levy et al., 2007) but perform very poorly for studies in which the sequencing coverage is low or the

reads are short.

In this article, we propose a new method for haplotype inference from sequencing reads, Hap-seq, which

combines information from a reference dataset with the information from the reads. We formulate the

problem of haplotype inference using a likelihood framework. We use a hidden Markov model (HMM) to

represent the likelihood model of the predicted haplotypes given the reference datasets, which is similar to

imputation methods (Marchini et al., 2007; Kang et al., 2010; Li et al., 2010), and we compute the posterior

probability of the predicted haplotypes given the reads averaging over all possible assignments of the reads

to chromosomal origin. Since consistency with the reference dataset and the read errors are independent,

our joint likelihood is the product of these likelihoods. We present a dynamic programming algorithm for

predicting the optimal haplotypes under this joint likelihood. This dynamic programming algorithm nests

the dynamic programming algorithm over the reads with a dynamic programming algorithm over the

reference haplotypes.

Through simulations generated from the HapMap data (International HapMap Consortium, 2007), we

show that our method significantly outperforms traditional imputation methods. We show that using our

method, haplotypes can be accurately inferred using 1X coverage assuming a 0.01 error rate. Hap-seq

achieved a 2.79% switch error rate, which is a 15% improvement over the number of switch errors over the

state-of-the-art haplotype imputation algorithm. In addition, our method is the first practical method for

predicting haplotypes for rare variants.

HAP-SEQ: AN OPTIMAL ALGORITHM FOR HAPLOTYPE PHASING 81

2. LIKELIHOOD MODEL

2.1. Overview

Previous methods for haplotype assembly (He et al., 2010) focused on finding the haplotype and the

assignment of reads to each haplotype such that the number of conflicts between the reads and the predicted

haplotypes is minimized. In our framework, we formulate the same intuition by computing the likelihood of

a pair of haplotypes as the probability of the reads, given the haplotypes using a simple error model

averaged over all possible partitions of the reads into chromosomal origin. Thus, we compute the likelihood

with respect to the reads

likelihoodreads = P(readsjhap1‚ hap2)

where hap1 and hap2 are the (unknown) haplotypes of an individual.

We also take into account information from the reference dataset. We compute the probability of a pair

of haplotypes in which each haplotype is represented as a mosaic of reference haplotypes, which is the

standard HMM model for imputation. Thus, we compute the likelihood with respect to the reference

dataset, or the imputation likelihood,

likelihoodimputation = P(hap1‚ hap2jreference)

Figure 1 shows the two types of data, sequencing reads and reference dataset. Since these two types of data

are independent, we represent the likelihood of a haplotype given the reads and the reference dataset by the

joint likelihood, which is the product of the two likelihoods

L(hap1‚ hap2) = likelihoodreads · likelihoodimputation / P(hap1‚ hap2jreads‚ reference)

Our goal is to reconstruct a pair of haplotypes hap1, hap2 such that this likelihood is maximized. We call

this objective function MIR (Most likely Imputation based on Reads).

2.2. Likelihood with respect to sequence reads

We will follow the notation by He et al. (2010) for the haplotype assembly problem. Given a reference

genome sequence and the set of reads containing sequence from both chromosomes, we align all the reads

to the reference genome. However, unlike the haplotype assembly problem, where the homozygous sites

(columns in the alignment with identical values) are discarded, we need to maintain the homozygous sites

FIG. 1. An illustration of re-

constructing the pair of haplotypes

as well as the imputation paths for

each haplotype given a set of ref-

erence sequences and a set of se-

quencing reads that contains errors.

82 HE ET AL.

that are polymorphic in the reference as well as the heterozygous sites (columns in the alignment with

different values). The sites are labeled as 0 or 1 arbitrarily.

A matrix X of size m · n can be built from the alignment, where m is the number of reads and n is the

number of SNPs (defined as the total number of positions that are either polymorphic sites in the reference

and/or heterozygous in the sample). The i-th read is described as a ternary string Xi 2 f0‚ 1‚ - gn
, where ‘‘ - ’’

indicates a gap, namely that the allele is not covered by the fragment (again following the notation of He et al.

[2010] for clarity). The start position and end position of a read are the first and last positions in the

corresponding row that are not ‘‘ - ’’, respectively. Therefore the ‘‘ - ’’s in the head and tail of each row will

not be considered as part of the corresponding read. However, there can be ‘‘ - ’’s inside each read that

correspond to either missing data for single reads or gaps connecting a pair of single reads (called paired-end

reads). Reads without ‘‘ - ’’ are called gapless reads; otherwise they are called gapped reads. An example of

the read matrix is shown in Table 1. As we can see, read5 is of length 4 and read6 is of length 9.

The goal here is to describe our likelihood model of haplotypes with respect to reads. For this purpose, we

should first describe the notion of a partial haplotype, which will be the unit of computation in our dynamic

programming algorithm. Partial haplotypes are the prefix of full-length haplotypes that end with a suffix r of

length k and the suffix starting position is i. For example, consider a full-length haplotype ‘‘00010100010.’’

When i = 4 and k = 4, the partial haplotype ‘‘0001010’’ has suffix r = ‘‘1010.’’ Similarly, r = ‘‘0100’’ is the

suffix of the partial haplotype ‘‘00010100’’ when i = 5 and k = 4. Since there are two chromosomes, we must

consider two partial haplotypes, and we refer to their two suffixes as r1 and r2. We note a difference from the

haplotype assembly problem described in He et al. (2010), where r1 and r2 are always complementary

because only heterozygous sites are considered. However, in our problem, we consider both homozygous

sites and heterozygous sites and therefore r1 and r2 are not necessarily complementary.

Let H(i, r1) and H(i, r2) be the set of partial haplotypes that end with suffix r1 and r2 starting at position i,

respectively. These sets contain 2i - 1 haplotypes. We define R(i, r1, r2) as the likelihood of the reads with

starting position no greater than i that are generated from the pair of partial haplotypes h1 2 H(i‚ r1) and

h2 2 H(i‚ r2), which maximizes the likelihood of the reads. The key idea behind our approach is that we

will use dynamic programming to compute this quantity for larger and larger values of i, eventually

allowing us to identify complete haplotypes with the highest likelihood.

Since reads are independent, we can decompose our computation of R(i, r1, r2) into the likelihood with

respect to the reads starting at each position. Let R0(i, r1, r2) be the likelihood only for the reads starting at

position i. For every position, we assume the reads span at most k sites; thus, all partial haplotypes with the

same suffixes r1, r2 starting at position i (h1 2 H(i‚ r1) and h2 2 H(i‚ r2)) will have the same value for

R0(i, r1, r2). Each read can originate from only one of the chromosomes corresponding to either r1 or r2.

Since we do not know the origin of the reads, we consider all possible partitions of the reads. In each

partition, a read is assigned to either r1 or r2 but not both. We can compute the number of mismatches

between the reads and r1 and r2 and compute a likelihood given a partition using the following:

R0(l‚ i‚ r1‚ r2) = eEl(i‚ r1‚ r2)(1 - e)K(i) - El(i‚ r1‚ r2) (1)

where R0(l, i, r1, r2) is the likelihood corresponding to the l-th partition and El(i, r1, r2) is the number of

mismatches for the l-th partition, K(i) is the total count of the alleles of all reads starting at position i, and

Table 1. An Example of Read Matrix that Consists of 10 Reads Spanning 13 SNP Positions

Reads 0 1 2 3 4 5 6 7 8 9 10 11 12

Read1 0 1 - - - - - - - - - - -

Read2 - - 1 1 - - - - - - - - -

Read3 1 0 0 0 - - - - - - - - -

Read4 - - 1 0 1 - - - - - - - -

Read5 - - 0 - - 0 - - - - - - -

Read6 - - - 0 - - - - - - 1 1 -

Read7 - - - - 1 0 0 - - - - - -

Read8 - - - - 0 1 1 0 - - - - -

Read9 - - - - - - - - 1 1 - - -

Read10 - - - - - - - 1 0 0 - - 0

HAP-SEQ: AN OPTIMAL ALGORITHM FOR HAPLOTYPE PHASING 83

e is the sequencing error rate. R0(i, r1, r2) is sum of the likelihoods of all the partitions weighted by the

probability of each partition, namely

R0(i‚ r1‚ r2) =
X2ai

l = 1

R0(l‚ i‚ r1‚ r2) P (partition l) =
X2ai

l = 1

R0(l‚ i‚ r1‚ r2)=2ai (2)

assuming there are totally ai reads starting at position i, 2ai is the total number of possible partitions and the

probability of each partition is equal to 1
2ai

.

Consider the two complete haplotypes h1
max 2 H(i‚ r1) and h2

max 2 H(i‚ r2) that maximize the likelihood

of the reads and by definition, their likelihood is R(i, r1, r2). For these haplotypes, R and R0 have the

following relationship:

R(i‚ r1‚ r2) =
Yi

f = 1

R0(f ‚ r01‚ r02) (3)

where r01 and r02 are length k suffixes of the partial haplotypes of h1
max and h2

max with suffix starting position f.

R0 is computed for every possible suffix at each position of the dynamic programming. The dynamic

programing uses the value of R0(i, r1, r2) and the four values of R(i - 1, x, y), where the suffix of x is a prefix of r1

and the suffix of y is a prefix of r2, to compute R(i, r1, r2) (see He et al., 2010, for details). For high sequencing

coverage, we can compute just the likelihood of the most likely partition that approximates Equation (2).

2.3. Likelihood with respect to reference dataset

We use an HMM model, which is the basis of the widely used imputation methods (Marchini et al.,

2007; Kang et al., 2010; Li et al., 2010). Given a binary string r, in the HMM, for each SNP at position i, we

consider the HMM state with value Si,j corresponding to the j-th reference haplotype hj, where 1 £ j £ m.

We define the transition probability from the state Si,j to the state Si + 1,y as t(i,j),(i + 1,y) where 1 £ y £ m. We

assume that t(i, j), (i + 1, y) is the same for all y s j. (Once the transition occurs, the transition probabilities to

all possible states are equal.) We also define the emission probability from the state Si, j to the observed i-th

SNP r[i] as li, j. The emission probability models the mutations, and we assume that the mutation rate for

all the SNPs are the same. The emission probability li, j is defined as the following:

li‚ j = 1 - l hj[i] = r[i]
l otherwise

�

where l is the mutation rate. In this work, we assume we know the mutation rate and the transition

probabilities. An example of the HMM is shown in Figure 2.

FIG. 2. Example to illustrate the

hidden Markov model (HMM).

There are in total m reference se-

quences and 3 SNP locus. The gi-

ven string r is ‘‘ATC,’’ and the

optimal imputation path is high-

lighted in red.

84 HE ET AL.

Since we assume that we know l as well as all t(i,j),(i + 1,y)’s, the most likely state sequence can be

obtained by the Viterbi algorithm. We can also use the HMM to compute the likelihood of a partial

haplotype. We define r as a length k binary string and l(i, r, j) as the imputation likelihood of the partial

haplotypes starting at position 0 and ending at position i + k - 1, with suffix r, and whose imputation at

position i + k - 1 (the last position) is from the j-th reference sequence. Also, l(i, r, j) is the maximum

value among many possible partial haplotypes having the same suffix r and the same ending HMM state

Si, j. Let hl(i, r, j) be the partial haplotype that maximized l(I, r, j), which can be traced back in the dynamic

programming algorithm.

3. HAP-SEQ

A naive algorithm to optimize MIR is to enumerate all possible pair of haplotypes and compute the

likelihood, which requires time complexity O(4n), where n is the length of the haplotypes. Then for each

pair, identify the number of mismatches between the reads and the haplotypes to compute the likelihood of

the reads. After that, run the HMM to compute the likelihood of the imputation for both haplotypes. The

complexity of this naive algorithm is obviously prohibitively large even for small n.

As the haplotype assembly problem can be optimally solved with a dynamic programming algorithm

(He et al., 2010), and the imputation problem can be optimally solved using an HMM, we next propose a

hybrid method combining a dynamic programming algorithm and an HMM, and we refer to the method as

Hap-seq. The basic idea is to use a dynamic programming algorithm operating on partial haplotypes with

suffixes r1, r2, which are the prefixes of full-length haplotypes similar to our algorithm for reconstructing

haplotypes that maximize the likelihood of the reads. However, for each suffix, we also introduce a state

encoding the current reference haplotype. Similar to the approach above, at each position we compute the

likelihood of reads starting at the position. We also use an HMM to compute the likelihood of imputation

for the partial haplotypes using the information on the reference state. For each position i, we store the

MIRs corresponding to different partial haplotype suffixes and imputation states in the dynamic pro-

gramming matrix. Then we compute the MIR values for position i + 1 using the previous values and repeat

this process until we obtain the full-length haplotypes. To compute the MIRs for position i + 1 when

extending the partial haplotypes, the MIR for the partial haplotypes from the previous position (i) is used in

addition to the likelihood of reads for the new partial haplotypes (reads starting at position i + 1), and an

HMM is used to compute the imputation likelihood for the extended partial haplotypes. The new MIR for

the partial haplotypes is then the product of the three values (likelihood from previous step, imputation

likelihood, and likelihood with respect to reads). We next discuss our Hap-seq algorithm in more details.

We define MIR(i, r1, r2, j1, j2) as the value of the MIR for the set of reads with starting positions no

greater than i and the pair of partial haplotypes with suffix r1, r2, respectively, where the current references

in the imputation model at position i + k - 1 are the j1-th and j2-th reference sequences, respectively. We

also define MIRmax(i, r1, r2) as the maximum MIR for 1 £ j1,j2 £ m given m haplotypes in the reference

dataset.

We build a dynamic programming matrix and at each position i we store MIR(i, r1, r2, j1, j2) for all r1, r2

and 1 £ j1, j2 £ m, respectively. For each pair of r1, r2, we call the HMM to compute the likelihood of the

imputation l(i, r1, j1) and l(i, r2, j2). MIR at position i can be computed as

MIR(i‚ r1‚ r2‚ j1‚ j2) = R(i‚ r1‚ r2) · l(i‚ r1‚ j1) · l(i‚ r2‚ j2)

where h1
max = hl(i‚ r1‚ j1) and h2

max = hl(i‚ r2‚ j2)

MIRmax(i‚ r1‚ r2) = argmaxj1‚ j2
MIR(i‚ r1‚ r2‚ j1‚ j2) for 1p j1‚ j2p m

The best MIR is the maximum MIRmax(n - k, r1, r2) over all r1, r2, where n is the full length of the

haplotypes.

The objective function contains terms R(i, r1, r2), l(i, r1, j1), and l(i, r2, j2), each of which is a maximum

likelihood value maximized by finding the corresponding haplotypes (h1
max‚ h2

max), hl(i, r1, j1), and hl(i, r2, j2)

respectively. It should be noted that in our definition, we constrain the problem using the condition

h1
max = hl(i‚ r1‚ j1) and h2

max = hl(i‚ r2‚ j2), which forces the same haplotypes in each of the terms R(i, r1, r2), l(i, r1, j1),

and l(i, r2, j2). Thus, we are searching for a single pair of haplotypes (h1
max = hl(i‚ r1‚ j1)‚ h2

max = hl(i‚ r2‚ j2)) that

maximize the product of these three terms.

HAP-SEQ: AN OPTIMAL ALGORITHM FOR HAPLOTYPE PHASING 85

We initialize MIR(0, r1, r2, j1, j2) by considering the reads starting at position 0. Given r1, r2, the HMM is

called to compute the optimal likelihood l(0, r1, j1), l(0, r2, j2) for the imputation of r1, r2, respectively.

Then MIR(0, r1, r2, j1, j2) = R(0, r1, r2) · l(0, r1, j1) · l(0, r2, j2) for 1 £ j1, j2 £ m.

3.1. Transition probability

The partial haplotypes at position i can be obtained by extending the partial haplotypes at position i - 1

with either a 0 or 1, as we consider homozygous sites and heterozygous sites. At position i, we again

enumerate all length k binary strings for r1 and r2. Given a binary string r, l(i, r, j) is obtained by calling an

HMM on the j-th reference haplotype to find the likelihood for the imputation of the suffix r ending at

position i + k - 1. In the HMM, since we need to consider both haplotypes at the same time, we build a

state for each SNP that contains m2 different values as S (r1,r2), (i + k,j1,j2)
at position i + k of the j1-th and j2-th

reference haplotype hj1
, hj2

, where 1 £ j1, j2 £ m for all pairs of partial haplotypes with suffix r1 and r2,

respectively. We define the transition probability from the state with value S(r0
1
‚ r0

2
)‚ (i + k - 1‚ j1‚ j2) to the state

with value S(r1, r2),(i + k, f1, f2), where 1 £ f1, f2, j1, j2 £ m as t(i + k - 1,j1
,j2),(i + k,f1,f2)

. As the assignment of the two

partial haplotypes to the reference haplotypes are independent, we obtain the following formula:

t(i + k - 1‚ j1‚ j2)‚ (i + k‚ f1‚ f2) = t(i + k - 1‚ j1)‚ (i + k‚ f1) · t(i + k - 1‚ j2)‚ (i + k‚ f2)

where t(i + k - 1,j1)
,(i + k,f1)

and t(i + k - 1,j2),(i + k,f2)
are the standard transition probabilities used in imputation

methods. We assume t(i + k - 1,j),(i + k,f) is the same for all 1 £ f, j £ m, f s j for all possible r1’s and r2’s.

r01 = (b‚ r1[0‚ k - 2]) where b is 0 or 1. The brackets [x, y] denote a substring starting from x and ending at y,

both ends inclusive, where the index count starts from 0. A tuple of two strings denotes concatenation.

Similarly, r02 = (b‚ r2[0‚ k - 2]) where b is 0 or 1. For example, for k = 4, r1 = ‘‘0000,’’ r1
0 = ‘‘1000,’’ we

then have r01 = (1‚ r1[0‚ 2]).

3.2. Emission probability

We also define the emission probability from the state with value S(r1,r2),(i + k - 1,j1,j2)
to the k-th observed

SNPs in r1,r2, r1[k - 1],r2[k - 1], as l(r1,r2),(i + k - 1,j1,j2)
. Since the emissions from the two partial haplotypes

are independent, we have the following formula:

l(r1‚r2)‚ (i + k - 1‚ j1‚ j2) = lr1‚ (i + k - 1‚ j1) · lr2‚ (i + k - 1‚ j2)

The emission probability is defined using the mutation rate, and we assume the mutation rate for all SNPs is

the same. The emission probability lr,(i + k - 1,j) is defined as follows:

lr‚ (i + k - 1‚ j) = 1 - l hj[i + k - 1] = r[k - 1]
l otherwise

�

where l is the mutation rate, which is the same for all SNPs. Therefore if the two SNPs are identical, the emission

probability is 1 - l, otherwise it is l. We assume the mutation rate and transition probabilities are known.

3.3. Recursions

Given the transition and emission probabilities, the MIR at position i for partial haplotypes with suffix

r1, r2 is computed as the following:

MIR(i‚ r1‚ r2‚ j1‚ j2) = argmaxb1‚ b2‚ y1‚ y2

�
lr1‚ (i + k - 1‚ y1) · lr2‚ (i + k - 1‚ y2)

· t(i + k - 2‚ y1)‚ (i + k - 1‚ j1) · t(i + k - 2‚ y2)‚ (i + k - 1‚ j2)

· MIR(i - 1‚ (b1‚ r1[0‚ k - 2])‚ (b2‚ r2[0‚ k - 2])‚ y1‚ y2) · R0(i‚ r1‚ r2)

�

for b1 2 f0‚ 1g‚ b2 2 f0‚ 1g‚ 1py1‚ y2pm‚ 1p j1‚ j2pm

which allows us to compute MIRmax(i, r1, r2) for each i for every r1, r2.

86 HE ET AL.

3.4. Complexity

The complexity of the Hap-seq algorithm is O(n · m4 · 4k) where 4k is from the enumeration of all pairs

of length-k binary strings and m4 is from the HMM model on the m reference sequences, which is known to

be reduced to m2 by pre-computing and saving the transition probabilities (Li et al., 2010). Therefore, the

complexity of Hap-seq is O(n · m2 · 4k), and typically m for imputation algorithms is around 100, for

which Hap-seq is computationally feasible.

3.5. Read length

At each position, we enumerate all possible binary strings of length k, where k is the maximum number

of SNPs the reads contain. Since the SNPs are usually far from each other, k is small. In our experiments,

99% of the reads contains no greater than three SNPs. Therefore, we set a threshold as k = 3. For reads

containing more than three SNPs, we simply split them. For example, for a read ‘‘0001000’’ starting at

position 0, we split it as ‘‘000’’ starting at position 0, ‘‘100’’ starting at position 3, and ‘‘0’’ starting at

position 6. We show later in our experiments with k = 3 that Hap-seq can finish quickly.

3.6. Illustrative example

For illustrative purpose, we show a running example of our Hap-seq algorithm in Figure 3. In Figure 3a,

we show when k = 4, how we enumerate all length-4 binary strings at each position as suffixes of partial

haplotypes and extend the suffix by one bit each time till the end of the haplotypes. As shown in the red

FIG. 3. Example to illustrate the Hap-seq algorithm.

HAP-SEQ: AN OPTIMAL ALGORITHM FOR HAPLOTYPE PHASING 87

color, the suffix of a binary string is identical to the prefix of the binary strings extended from it. In Figure

3b and c, we consider a pair of enumerated length-4 strings (0000, 0000) at position 0 as an example. We

assume there are only two reads (001, 000) starting at position 0. In 3b, we compute the likelihood of these

two reads by considering all four possible partitions. The likelihood is computed according to Equation (2).

In 3c, we assume there are only three reference sequences. We apply HMM to compute the imputation

likelihood for the pair of length-4 binary strings (0000,0000) at position 0. It is obvious that the best

imputation path for both binary strings is through the first reference sequence without transition to other

reference sequences. Then MIR(0, 0000, 0000) = MIR(0, 0000, 0000, 1, 1), which is simply the product of

the two likelihoods: e(1 - e)5 · (l · t3 · 1
3

)2.

Next at position 1 (we do not show this step in the above figure), assuming we enumerate two binary

strings as (0001, 0001), we can compute the likelihood R0(1, 0001, 0001) of reads starting at position 1 by

considering all possible partitions similar to the one shown in Figure 3. Since 0000 = (0, 0001[0,2]),

1000 = (1, 0001[0,2]), we can then compute the new MIR at position 1 as follows:

MIR(1‚ 0001‚ 0001‚ j1‚ j2) = l1‚ (4‚ y1) · l1‚ (4‚ y2) · t(3‚ y1)‚ (4‚ j1) · t(3‚ y2)‚ (4‚ j2)

· R0(1‚ 0001‚ 0001) · max

MIR(0‚ 0000‚ 0000‚ y1‚ y2)

MIR(0‚ 1000‚ 0000‚ y1‚ y2)

MIR(0‚ 0000‚ 1000‚ y1‚ y2)

MIR(0‚ 1000‚ 1000‚ y1‚ y2)

8>>>><
>>>>:

where 1 £ j1, j2 £ 3 and 1 £ y1, y2 £ 3. Then MIRmax(1, 0001, 0001) = argmax1 £ j1, j2 £ 3MIR(1, 0001, 0001,

j1, j2). We repeat the recursive procedure till we reach position n – 4, where n is the length of the full

haplotypes.

3.7. Relationship to previous methods

Our method Hap-seq has a relationship to the standard imputation methods dealing with sequence reads

in that the standard methods are a special case of our method. The standard methods such as MACH (Li

et al., 2010) ignore the fact that alleles on the same sequence read originate from the same chromosome.

Instead, the reads are split into SNP-wise information, where at each SNP we count how many times we

observe 0 and 1. Then, the likelihood of the reads given a pair of haploytpes is modeled using a binomial

distribution (Li et al., 2010).

Suppose a special case of our method such that we limit the read length k to 1. Then, r1 and r2 in

Equation (1) corresponds to single allele 0 or 1. We can rewrite Equation (1)

R0(l‚ i‚ r1‚ r2) =
Yai

w = 1

e1 - d(w = rl(w))(1 - e)d(w = rl(w))

where w iterates all ai single-allele reads at SNP i, l(w) is the haplotype number that w is assigned in

partition l (either 1 or 2), and d() is the indicator function. Then the 2ai terms in R0(i, r1, r2) in Equation (2)

can be factorized into the product of ai terms,

R0(i‚ r1‚ r2) =
Yai

w = 1

1

2
e1 - d(w = r1)(1 - e)d(w = r1) +

1

2
e1�d(w = r2)(1 - e)d(w = r2)

� �

=
Yai

w = 1

R00(w‚ r1‚ r2)

Consider the case that r1 = r2 = 1. Then, R†(w, r1, r2) = e if w = 0 and (1 - e) if w = 1. Thus,

R0(i‚ r1‚ r2) = eAi (1 - e)Bi

where A are B are the counts how many times we observe 0 and 1 in the reads at SNP i respectively.

Similarly, if r1 = r2 = 0, R0(i‚ r1‚ r2) = eBi (1 - e)Ai . Now consider the case that r1 s r2. Then, R†(w, r1,

r2) = 1/2 regardless of w, and therefore R0(i‚ r1‚ r2) = (1=2)ai .

Hence, the likelihoods of the reads at SNP i are equivalent to

88 HE ET AL.

R0(i‚ r1‚ r2) =
Binomial(Ai‚ ai‚ 1 - e)=C if r1 = r2 = 0

Binomial(Ai‚ ai‚ 1=2)=C if r1 6¼ r2

Binomial(Ai‚ ai‚ e)=C if r1 = r2 = 1

8<
:

which is exactly the same formulation of the probabilities of the observations presented in Li et al (2010),

with only difference being the constant term C = ai

Ai

� �
. This constant term is due to whether we consider the

reads ordered or unordered and does not affect the computation results. Consequently, the standard im-

putation method can be considered a special case of our method where the read length is limited to 1.

4. EXPERIMENTAL RESULTS

We perform simulation experiments to compare the performance of our Hap-seq algorithm and the

standard HMM. The implementations of the two methods are as follows. The standard HMM is our own

implementation of the IMPUTE v1.0 model, which uses the pre-defined genetic map information for the

transition probability. We use the genetic map data downloaded from the IMPUTE website. Since IMPUTE

does not accept sequence read data, we allow our own implementation to accept sequence read by splitting

the reads into SNP-wise information similarly to MACH (Li et al., 2010). Our implementation runs the

Viterbi algorithm and gives the most likely haplotype phasing based on the IMPUTE model. To make a fair

comparison, for the part of Hap-seq that computes the imputation likelihood, we use the same IMPUTE

v1.0 model using the same genetic map data.

We use 60 parental individuals of CEU population of HapMap Phase II data downloaded from the

HapMap website. We perform a leave-one-out experiment to measure the accuracy of our method. We

choose one target individual, generate simulated sequence reads, and infer the genotypes and phasing of the

target individual using the 59 individuals as the reference data set. We repeat this for all 60 individuals and

the results are averaged. When we generate the data, we use the per-allele sequencing error rate of 1%. We

assume that both IMPUTE and Hap-seq know the true error rate. In all datasets we generate, we assume a

low coverage of 1x. That is, all heterozygous sites will be covered by two reads on average, since there are

two chromosomes.

The first dataset we generate is the short region of 1,000 SNP sites at the beginning of chromosome 22.

This region is approximately 1.8 Mb in length. We make an unrealistic assumption that each read covers a

fixed number (F) of SNPs. Although this assumption is unrealistic, in this setting the performance gain of

our Hap-seq over IMPUTE will be the most prominent because every read will contain phasing information

when F > 1. We generate data for F = 2, F = 3, and F = 4. The results of switch error rate, which is the

proportion of consecutive heterozygote genotypes that are incorrectly phased, for both algorithms are

shown in the left of Table 2. As we can see, Hap-seq makes significant improvements over IMPUTE with

respect to the number of switch errors. As F increases, the improvement becomes more significant. This is

because as F increases, splitting reads loses more information that the SNPs in the same reads are from the

same haplotype. Therefore, Hap-seq has more advantages as the reads gets longer. One thing to note is that

Table 2. Averaged Switch error Rate and the Improvement of Hap-seq over IMPUTE

F IMPUTE Hap-seq Improvement

2 6.7% 6.2% 7.4%

3 5.4% 4.9% 8.2%

4 7% 5.7% 12.4%

W IMPUTE Hap-seq Improvement

100 5.36% 5.2% 2.8%

200 6.4% 6.25% 2.5%

500 7.2% 6.9% 3.5%

1000 7.8% 7.3% 6.5%

Vary the number of SNPs F in the reads. Vary the length of the reads W.

HAP-SEQ: AN OPTIMAL ALGORITHM FOR HAPLOTYPE PHASING 89

the accuracy of both methods drops at F = 3 compared to F = 2. This is because when F increases, the total

number of reads decreases, which can result in some regions not effectively covered by the reads. This

raises an interesting question of what are the optimal read length and coverage that maximize the impu-

tation and phasing accuracy given a cost, which requires further investigation.

The second dataset we generate is the same 1,000-SNP region where we generate a more realistic

simulated read that has a constant size (W) in bp. We vary W between 100, 200, 500, and 1,000 bp. Thus,

the number of SNPs contained in the reads is not fixed and can vary. However, as the SNPs are far from

each other, over 99% of the reads contain no greater than three SNPs. The results of switch error rate for

both algorithms are shown in the right of Table 2. We again observe over 2.5% improvement of Hap-seq

over IMPUTE. The improvement is less significant compared with the last dataset. This is because we do

not fix the number of SNPs in the reads and thus there are many reads containing just one SNP. Hap-seq

does not have any advantages over IMPUTE for these reads. We again observe a general increase in the

improvement ratio when the read length increases.

Finally, we generate the paired-end read data of the whole chromosome 22, which contains 35,412 SNPs.

We randomly select one individual and generate the paired-end sequence reads of size 1,000 bp in each end.

The gap size is assumed to follow a normal distribution of mean 1,000 bp, and a standard deviation of

100 bp. Therefore, the number of SNPs contained in the reads can vary. We use 1X coverage, and around

99% of the reads contain no greater than three SNPs, out of which 74% of the reads contain a single SNP.

In order to parallelize our algorithm, we conduct a simple strategy. We split the chromosome 22 into

chunks containing 1,000 SNPs each and run Hap-seq on each chunk in parallel only using reads in the

chunk. In order to concatenate the reconstructed haplotypes from adjacent chunks seamlessly, we overlap

adjacent chunks with a buffer region containing 200 SNPs. Therefore, the first chunk covers locus

[0, 1000], the second chunk covers locus [800, 2000], the third chunk covers locus [1800, 3000], and so on.

Our intuition is that the haplotypes from adjacent chunks in the overlapped buffer region should be highly

consistent with each other. Therefore, when we concatenate them, we select the best option that is able to

minimize the differences between the haplotypes from adjacent chunks in the buffer region.

The program finished in nine hours on a cluster processing chromosome 22. We first compare the switch

errors of Hap-seq and IMPUTE for each chunk containing 1,200 SNPs (the first and the last chunks contain

different numbers of SNPs). As we can see in the left of Figure 4, it is obvious that for every chunk Hap-seq

has lower switch error rate. For some chunks the improvement with respect to the number of switch errors

is reduced by almost 80%. We also show the number of mismatches in the overlapping buffer regions for

the haplotypes reconstructed by Hap-seq and IMPUTE in the right of Figure 4. We can see that although

there are certain regions with relatively high inconsistencies, most of the buffer regions are highly con-

sistent with mismatches close to 0. We then concatenate the haplotypes from all the chunks. After the

FIG. 4. (A) The switch error rate when using IMPUTE and Hap-seq for each chunk of length 1,200 SNPs for whole

chromosome 22. (B) The number of mismatches in the overlapping buffer regions for the haplotypes reconstructed by

Hap-seq and IMPUTE.

90 HE ET AL.

concatenation, we obtain a 2.79% overall error rate for Hap-seq on the whole chromosome 22. Compared to

the 3.28% overall error rate for IMPUTE, this is a 15% improvement with respect to the number of switch

errors. This again indicates that our Hap-seq algorithm is more effective in reconstructing the haplotypes

using sequencing reads compared to IMPUTE.

5. DISCUSSION

We have presented Hap-seq, a method for inferring haplotypes from sequencing data that takes into

account both a population reference dataset as well as the information of alleles spanned by sequencing

reads. Our method uses a dynamic programming approach to obtain the optimal haplotype prediction under

a likelihood formulation of the haplotype inference problem.

Our approach is the first practical approach that can perform haplotype inference for both common and

rare variants. The current imputation-based approaches that obtain genotype information from the se-

quencing and then apply imputation are ineffective for phasing rare variants. The reason is that reference

datasets only contain common variants and since these are the only variants on the reference haplotypes, the

variants that are unique to an individual can not be phased. Since our approach also uses read information,

if a read is present in the data that spans a rare variant and a common variant, our method can recover the

phase for the rare variant. To our knowledge, this is the first practical approach to phase rare variants.

ACKNOWLEDGMENTS

D.H., B.H., and E.E. are supported by National Science Foundation grants 0513612, 0731455, 0729049,

0916676, and 1065276, and National Institutes of Health grants K25-HL080079, U01-DA024417, P01-

HL30568, and PO1-HL28481. B.H. is supported by the Samsung Scholarship.

DISCLOSURE STATEMENT

The authors declare that no competing financial interests exist.

REFERENCES

1000 Genomes Project. 2010. A deep catalog of human genetic variation. Available at: www.1000genomes.org/

Bansal, V., and Bafna, V. 2008. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem.

Bioinformatics 24, i153.

Bansal, V., Halpern, A., Axelrod, N., and Bafna, V. 2008. An MCMC algorithm for haplotype assembly from whole-

genome sequence data. Genome research 18, 1336.

Beckmann, L. 2010. Haplotype sharing methods. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd,

Chichester. Available at: http://dx.doi.org/10.1002/9780470015902.a0022496

Browning, B.L., and Browning, S.R. 2011. A fast, powerful method for detecting identity by descent. Am. J. Hum.

Genet. 88, 173–82.

Browning, S.R., and Browning, B.L. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-

genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–97.

Browning, S.R., and Browning, B.L. 2010. High-resolution detection of identity by descent in unrelated individuals.

Am. J. Hum. Genet. 86, 526–39.

Clark, A.G. 1990. Inference of haplotypes from pcr-amplified samples of diploid populations. Mol. Biol. Evol. 7, 111–22.

Eskin, E., Halperin, E., and Karp, R. 2003. Efficient reconstruction of haplotype structure via perfect phylogeny.

International Journal of Bioinformatics and Computational Biology 1, 1–20.

Gusev, A., Lowe, J.K., Stoffel, M., et al. 2009. Whole population, genome-wide mapping of hidden relatedness.

Genome Res. 19, 318–26.

Gusfield, D. 2003. Haplotype inference by pure parsimony. Proceedings of the Combinatorial Pattern Matching

Conference, 144–155.

HAP-SEQ: AN OPTIMAL ALGORITHM FOR HAPLOTYPE PHASING 91

Halperin, E., and Eskin, E., 2004. Haplotype reconstruction from genotype data using imperfect phylogeny. Bioin-

formatics 20, 1842–9.

He, D., Choi, A., Pipatsrisawat, K., et al. 2010. Optimal algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics 26, i183.

International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature

449, 851–61.

Kang, H., Zaitlen, N., and Eskin, E. 2010. Eminim: An adaptive and memory-efficient algorithm for genotype im-

putation. J. Comp. Biol. 17, 547–560.

Levy, S., Sutton, G., Ng, P., et al. 2007. The diploid genome sequence of an individual human. PLoS Biol. 5, e254.

Li, Y., Willer, C.J., Ding, J., et al. 2010. Mach: using sequence and genotype data to estimate haplotypes and

unobserved genotypes. Genet. Epidemiol. 34, 816–34.

Marchini, J., Howie, B., Myers, S., et al. 2007. A new multipoint method for genome-wide association studies by

imputation of genotypes. Nature genetics 39, 906–913.

Patil, N., Berno, A., Hinds, D., et al. 2001. Blocks of limited haplotype diversity revealed by high-resolution scanning

of human chromosome 21. Science 294, 1719.

Patterson, N., Hattangadi, N., Lane, B., et al. 2004. Methods for high-density admixture mapping of disease genes. The

American Journal of Human Genetics 74, 979–1000.

Stephens, M., Smith, N., and Donnelly, P. 2001. A new statistical method for haplotype reconstruction from population

data. The American Journal of Human Genetics 68, 978–989.

Wheeler, D., Srinivasan, M., Egholm, M., et al. 2008. The complete genome of an individual by massively parallel

DNA sequencing. Nature 452, 872–876.

Address correspondence to:

Dan He

IBM T.J. Watson Research

1101 Kitchawan Rd.

Yorktown Heights, NY 10598

E-mail: dhe@us.ibm.com

92 HE ET AL.

