
Locally Learning Biomedical Data Using Diffusion Frames

M. EHLER,1,2 F. FILBIR,1 and H.N. MHASKAR3,4

ABSTRACT

Diffusion geometry techniques are useful to classify patterns and visualize high-dimensional
datasets. Building upon ideas from diffusion geometry, we outline our mathematical foun-
dations for learning a function on high-dimension biomedical data in a local fashion from
training data. Our approach is based on a localized summation kernel, and we verify the
computational performance by means of exact approximation rates. After these theoretical
results, we apply our scheme to learn early disease stages in standard and new biomedical
datasets.
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1. INTRODUCTION

As personalized medicine expands, increasingly detailed biomedical data must be integrated to better

understand normal function and evolution of multifactorial chronic disease in clinical trials and indi-

vidual treatment decisions. The complexity of molecular, cellular, and tissue interactions, however, is a

fundamental barrier to extracting the complicated relationships that underlie human physiology.

A recent idea, originating in computational harmonic analysis, is to let the data speak for itself. In this

approach, one deals typically with high-dimensional, unstructured data. In theoretical analysis, one assumes

that the data represents a sample from some unknown low-dimensional manifold embedded in a high-

dimensional ambient Euclidean space. The objective is then to understand the geometry of this manifold.

Thus, statistical techniques have been devised to estimate the dimension of this manifold (Costa and Hero,

2004). A simulation of Brownian motion is expected to reveal the relative neighborhoods of different data

points, as well as provide local coordinate systems for the manifold (Jones et al., 2010; Lafon, 2004). See

the special issue (Chui and Donoho, 2006) for an introduction to these ideas. Related analysis of graphs is

discussed in Pesenson and Pesenson (2010).

In many practical applications, one needs to go beyond an understanding of the manifold and answer

queries based on the data. These queries can be modeled mathematically as functions in the (unknown)

manifold. This function may be known to us on few training points, and we aim to accurately predict the

value of the function of items that are not yet observed. Models for this have been developed as eigenmaps/

diffusion maps (Coifman et al., 2005a), multiscale approaches (Coifman et al., 2005b; Gavish et al., 2010;
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Nadler and Galun, 2007), and nonlinear dimension reduction (Belkin and Niyogi, 2003; Chui and Wang,

2010; Roweis and Saul, 2000; Saito, 2008; Tenenbaum et al., 2000; Wu et al., 2010).

Necessarily, any such model cannot be expected to yield perfect reproduction of the actual target

function. The subject of approximation theory deals with the intrinsic errors inherent in constructing

different kinds of models for the target function. In traditional scenarios, the accuracy of approximation is

closely related to the smoothness of the function. Because of this history, many experts in approximation

theory nowadays consider the accuracy of approximation itself to be a measurement of smoothness. This

viewpoint is particularly useful in our setting, where the manifold is unknown and, therefore, it is im-

possible to define the smoothness in a classical manner.

The last named author and his collaborators have developed approximation theory tools applicable in the

current context in a series of papers (Filbir and Mhaskar, 2010; Filbir and Mhaskar, 2011; Maggioni and

Mhaskar, 2008; Mhaskar, 2010; Mhaskar, 2011). A particularly interesting aspect of this theory is a

definition of pointwise smoothness of the target function. The research has also enabled us to devise

specific algorithms, extending the theory developed for the understanding of geometry, with the property

that the rate of convergence of these algorithms in neighborhoods of different points completely charac-

terize local smoothness properties of the target function at those points.

Such local smoothness ideas are particularly useful in biomedicine, as disease progression underlies

natural variations, medication leads to abrupt changes in disease progression, and environmental factors

vary quickly, so that the query function might not be globally smooth. While late disease stages underlie

large variations, the transition from healthy to early pathology can be smooth, leading to query functions

that are locally smooth within such early disease transitions.

In this article, we shall review and further develop the salient features of diffusion geometry and

approximation theory needed to ‘‘learn locally’’ from the acquired data. In contrast to common clustering

methods used in biomedicine, we explicitly use that the clusters represent disease stages, i.e., are ordered

quantitatively in a progressing fashion. Thus, some unspecific ordering is a-priori fed into the clustering process

and is specified in the final result. Moreover, instead of interpolating on the training data, which usually leads to

instabilities with large training sets, we allow our algorithm to correct misclassified training points.

The outline is as follows. In Section 2, we briefly discuss two approaches to reconstructing the query

function from training data. In Section 3, we present our local learning approach. The numerical im-

plementation is discussed in Section 4. In Section 5, we outline our scheme for the special case in which the

manifold is the sphere. We apply our methods to analyze several biomedical datasets in Section 6.

2. APPROXIMATION ON UNKNOWN MANIFOLDS

Let X be the underlying but unknown compact manifold, endowed with a probability measure l. The

training data C = fyigM
i = 1 � X yield pairs of the form f(yj‚ zj)gM

j = 1, with zj & f (yj) for the as yet unknown

function f. This defines f only on C. The objective is to extend this function to the entire manifold X,

including the data already observed and the data not yet available. In deterministic analysis, we do not deal

with the noise explicitly, although some probabilistic estimates can be given in addition to deterministic

guarantees that account for the noise (Gia and Mhaskar, 2008a).

There are two common approaches to solving this problem. In the first approach, one finds the extension

fC as a solution of some minimization/regularization problem, for example,

fC = arg min
g2F
fjjg - zjj + djjgjjF g‚ (1)

where d is a balancing parameter, F is a suitable class of functions to choose the modeling function g from,

g denotes the vector (g(y1)‚ . . . ‚ g(yM))‚ z denotes the vector (z1‚ . . . ‚ zM)‚ jj � jj is some norm on, RM , and

jj � jjF is a penalty functional, commonly the norm on F . We will call Equation (1) the optimization

approach.

The other approach is to imagine a priori that there is an underlying unknown function f on X, so that

f (yi) = zi‚ i = 1‚ . . . ‚ M. We then seek a model P 2 F so that for some performance guarantee �C,

jj f - Pjj1p�Cjj f jjF ‚ (2)

where jj � jj1denotes the supremum norm. We will call Equation (2) the approximation approach.
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The optimization approach has the advantage that the penalty functional may be chosen to reflect some

domain-specific knowledge about the target function. Also, even if one does not expect any function

underlying the phenomenon, one gets some smooth model to work with. On the other hand, when we do not

know with absolute certainty any physical model that underlies the data, and are seeking a function on X as

a model anyway, then it is more natural to assume that there is an underlying function from which the data

is sampled, even though the function itself is yet unknown, so that the approximation approach seems more

natural.

We noted some comparisons between the two approaches. First, we the optimization approach does not

necessarily imply any performance guarantees of Equation (2). Moreover, the value of the regularization

functional depends upon the data. There are no bounds to how large this value might get as more and more

data are introduced. Finally, there are common computational issues such as local minima, convergence of

the algorithms, and convergence of the minimizers fCas the data becomes dense on the manifold. All of

these issues are completely avoided in the approximation approach.

We will demonstrate below that in the approximation approach, we can construct a linear operator with

mathematical performance guarantees of Equation (2). We do not need to solve any minimization

problem, so that all the computational issues mentioned above are avoided altogether. Moreover, we can

design this operator in a manner that its performance guarantees are automatically better on regions of X

where the target function is ‘‘smoother.’’ This does not involve a careful detection of edges and parti-

tioning of X.

3. LOCAL APPROXIMATION OF THE QUERY FUNCTION

3.1. Local smoothness classes

Before we can define local smoothness of a function f : X! R, we must specify a few more objects. Let

fukg1k = 0 be the eigenfunctions of the Laplace-Beltrami operator D on X, and f‘2
kg
1
k = 0 the associated

eigenvalues, ordered in a nondecreasing way with ‘0 = 0 and ‘k / N as k / N . The space of diffusion

polynomials up to degree N is PN : = span{uk : ‘k < N}. Further technical details are discussed in

Appendix A. Note that fukg
1
k = 0 was replaced by a more general orthonormal basis for L2(X,l) in Filbir and

Mhaskar (2010, 2011).

The object of interest in approximation theory is the degree of approximation of the target function:

EN(f ) = min
P2PN

k f - P k1: (3)

Equation (3) measures the best error achievable if one wishes to use PN as the model for f, and wishes the

error to be small at each point of X. It turns out that the rate at which the quantity EN(f) decreases to 0 as

N / N is closely related to the smoothness of f. Thus, if f is smooth enough so that Drf 2 C(X) for some

integer r ‡ 1, then

EN (f ) � c

N2r
kDrf k1‚

where c > 0 is a constant. Here, C(X) denotes the continuous functions on X endowed with the supremum

norm. In practice, it is quite common to find an approximation of f by ad hoc means. This gives rise to the

question that if one finds EN(f) Y 0 at a certain rate, is it because f inherits a certain smoothness? Thus, the

correct notion of smoothness required to answer this question is defined in terms of a regularization

functional (known in some branches of analysis as the K-functional). If r ‡ 1 is an integer, this functional is

defined by

Kr(f ‚ d) = inff k f - g k1 + d2r kDrg k1g‚ d > 0‚

where the infimum is taken over all g for which kDrg k1 < 1. In the terminology introduced before, this

measures the approximation of f by smooth functions g while controlling the growth of Drg with the help of

the regularization parameter d. It is known (Maggioni and Mhaskar, 2008) that if s > 0 and r > s/2 is any

integer, then

EN(f ) =O(N - s) as N !1 if and only if Kr(f ‚ d) =O (ds) as d! 0:
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Standard approximation theory arguments show that if c < s/2 is an integer, and b = s - 2c, then

EN(f ) =O(N - s) if and only if Dcf 2 C(X) and Kr(D
cf ‚ d) =O(db):

In particular, the choice of r > s/2 is not critical except that the constants involved in the O relations will

depend upon the choice of r. This leads us to define the (global) smoothness class Ws directly in terms of

the quantities EN(f) as

Ws(X) := ff 2 C(X) : EN (f ) =O(N - s)g‚

endowed with the norm k � kWs := k � k1 + k(NsEN(f ))Nk1. We will think of s as the parameter mea-

suring the smoothness of the function f.

In the context of data-defined manifolds, we do not explicitly know any formulas for the local coordinate

charts. Therefore, it is not easy to define the notion of derivatives. Nevertheless, we can redefine the notion

of an infinitely differentiable function on our unknown manifold as membership in every smoothness class

WsðXÞ. Thus, the set of all infinitely differentiable functions is denoted by C1(X) =
T

s> 0 Ws(X). If

x0 2 X, we will define the local smoothness of f at x0 by the natural windowing construction. Thus, we say

that f 2 Ws
x0

(X)if there exists a neighborhood U of x0 such that for every / 2 C1(X), supported on U,

/f 2 Ws(X).

3.2. Localized summation kernels

We can clearly expand any f 2 L2(X‚ l) in the orthonormal basis fukg1k = 0 by f =
P1

k = 0 Æf ‚ ukæuk: To

motivate our scheme presented later, we manipulate this expression without caring about convergence and

interchanging limits, so that we derive

f (x) =
X1
k = 0

Z
X

f (y)uk(y)dl(y)uk(x) =
Z

X

f (y)F(x‚ y)dl(y)‚ (4)

where we formally use F(x‚ y) =
P1

k = 0 uk(y)uk(x). This representation requires knowledge of f on the entire

manifold X. To reconstruct f from the data only, we must replace the integral with a finite sum over data

points and localize the kernel F so that f (x) is determined by its values in a neighborhood around x. In this

section, we shall make these ideas mathematically precise and construct a linear operator based on the data

to derive P 2 PN that essentially minimizes Equation (3).

First, we define

FN(x‚ y) :=
X1
k = 0

h

�
‘k

N

�
uk(x)uk(y)‚ for all x‚ y 2 X‚ (5)

where h : R / [0, 1] satisfies h(t) = 1 if jtj £ 1/2 and h(t) = 0 if jtj ‡ 1, see Figure 1 for a typical function h

and Appendix A for a few more technical conditions. Due to the ‘‘cut-off’’ function h, Equation (5) is a

FIG. 1. Filter function: A typical filter function h that can be used in Equation (5).
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finite sum, and FN, as a function of only one variable x or y, is contained in PN. Under the technical

assumptions collected in Appendix A, the estimate

jFN(x‚ y)j& Na

max (1‚ (Nq(x‚ y))S
‚ (6)

holds, where a is the dimension of X, q the metric on X, and S any integer (Filbir and Mhaskar, 2010;

Maggioni and Mhaskar, 2008; Mhaskar, 2011). Here means that there is an absolute positive constant on

the right-hand side such that the inequality holds. This localization property (6), very much like multi-scale

approaches with wavelets, enables local analysis of functions on the manifold.

If f & P, then the we also have fFN (x‚ � ) � PFN (x‚ � ). Naturally, we would expect that the product of

two polynomials is again a polynomial of a larger degree, so that PFN(x‚ � ) 2 PaN , for some fixed a > 0.

Here, we only need the weaker product assumptions. (Appendix A), implying that PFN (x‚ � ) can be

sufficiently well approximated with polynomials in PaN. To replace the integral in Equation (4) with a

finite sum, we need a quadrature formula that is exact for polynomials up to degree aN: If our data

C = fyigM
i = 1 are sufficiently dense in X (Appendix B), then there are quadrature weights fxigM

i = 1 such that

Z
X

P(x)dl(x) =
XM

j = 1

xjP(xj)‚ for all P 2 PaN :

Since u0 h 1, these weights can be computed by solving the linear system of equations

XM
j = 1

xjuk(xj) = dk‚ 0‚ for all k = 0‚ 1‚ 2‚ . . . ‚ aN:

We refer to Appendix B and Filbir and Mhaskar (2010) for details on the existence of such quadrature

weights with respect to the training data.

We now replace the right-hand side of Equation (4) with

rN(f ‚ x) : =
XM

j = 1

xjf (yj)FN(x‚ yj): (7)

To study the asymptotics for N / N , we call for a sequence of training sets CN that induce quadrature

formulas of strength aN. We shall verify in Appendix C that, for f 2 Ws
y0

(X), there is d > 0, such that,

sup
x2Bd(y0)

j f (x) - rN (f ‚ x)j&N - s‚ (8)

where Bd(y0) � Xdenotes a ball of radius d around y0. Thus, when f is locally smooth in a neighborhood

around y0, then we can locally reconstruct f from the training data. The analogous result for functions that

are globally smooth is contained in Filbir and Mhaskar (2010, 2011), Maggioni and Mhaskar (2008), and

Mhaskar (2011), which contains local estimates, but the approximand requires global knowledge of f and is

not purely defined through the training data only.

4. SPECIFYING 4K NUMERICALLY

To design a numerically feasible algorithm, we still need to compute a suitable orthonormal basis

fukg
1
k = 0 for L2(X‚ l), while the manifold X is not explicitly known to us. In a typical situation, we may

have little training data and a much larger but finite collection fyigM
i = 1 of data lying on the manifold. These

data shall be used to approximate an orthonormal basisfukg1k = 0.

The eigenfunctions of the Laplace-Beltrami operator Dx = div= on the manifold form an orthonormal

basis that satisfies the technical assumptions needed in Appendix A. In order to compute them numerically,

we build the graph Laplacian from a finite set of points on the manifold as follows: By using data points

fyigM
i = 1 � X, the standard heat kernel ke(x‚ y) = e - kx - y k2=2e‚ e > 0, induces the weight matrixWe

M defined

by We
M;i‚ j = ke(yi‚ yj). We build the diagonal matrix De

M;i‚ i =
PM

j = 1We
M;i‚ j and define the (unnormalized)

graph Laplacian as Le
M =We

M - De
M . For M / N and e / 0, the eigenvalues and interpolations of the
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eigenvectors of L�Mconverge toward the ‘‘interesting’’ eigenvalues and eigenfunctions of Dx when

fyigM
i = 1are uniformly distributed on X. See Appendix D for the details and technical assumptions. If fyigM

i = 1

are distributed according to the density p, then the graph Laplacian approximates the elliptic Schrödinger-

type operator D+ Dp
p

(Coifman et al., 2005b; Nadler et al., 2006), whose eigenfunctions also form an

orthonormal basis for L2(X‚ l).

5. LOCALIZED KERNELS ON THE SPHERE

The data of one of our applications lie on the sphere Sd - 1, so that we specify our approach for X = Sd - 1

(Gia and Mhaskar, 2006; Gia and Mhaskar, 2008b). For f : Sd - 1 ! R‚ let �f (x) : = f (x= kx k) be its ex-

tension to Rdnf0g. The Laplace-Beltrami operator DSd - 1 is DSd - 1 f = (DRd
�f )jSd - 1 , and the set of spherical

harmonics Hd
k is formed by the homogeneous harmonic polynomials p on Rdof degree k restricted onto the

sphere Sd - 1. In other words, p is a polynomial whose monomials have all the same total degree k

andDRd p = 0: The eigenspaces of DSd - 1 are Hd
k with eigenvalues k(k + d - 2), respectively, and the di-

mension of Hd
k is mk : = k + d - 1

k

� �
- k + d - 3

k - 2

� �
. If we choose an orthonormal basis fuk‚ jgmk

j = 1 for Hd
k , thenPmk

j = 1 uk‚ j(x)uk‚ j(y) does not depend on the choice of fuk‚ jgmk

j = 1 and coincides with Pk(Æx‚ yæ), where Pk is

the Gegenbauer polynomial of degree k and parameter d/2 - 1, sec. Appendix E.1 and Stein and Weiss

(1971). Therefore, we can explicitly compute

FN (x‚ y) =
XN

k = 0

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k + d - 2)

p
N

�
Pk(Æx‚ yæ):

To derive rN(f,x) in Equation (7), we still need to determine the quadrature weights fxjgn
j = 1, which we shall

properly describe in Appendix E.2. Here, we only present a heuristic approach. Since fPk(Æx‚ � æ)gx2Sd - 1

generates Hd
k , we aim to solve, for R as large as possible,

Xn

j = 1

xjPk(Æx‚ xjæ) = dk‚ 0‚ for all k = 0‚ . . . ‚ R‚

and mk = dim (Hd
k ) random choices of x 2 Sd - 1. This leads to a linear system of equations whose solution

is reasonably close to exact weights in practice, but only for small parameters d, n, and R. If any of these

parameters is not small, then the problem becomes numerically unstable, and we need to follow the

approach presented in Appendix E.

If the manifold is known, as in the case of the sphere, many types of basis functions can be constructed

explicitly. For instance, spherical wavelets were considered in Antoine and Vandergheynst (1995), Dahlke

et al. (1995, 2004), and Starck et al. (2006), which can capture multi-scale structure. However, replacing

the eigenfunctions fukg
1
k = 0 of the Laplace-Beltrami operator would require checking in each case if all the

conditions in Appendix A are satisfied. Therefore, we shall not follow this path and, here, exclusively use

the eigenfunctions of the Laplace-Beltrami operator.

6. APPLICATIONS

We use the developed approximation scheme to cluster biomedical data into disease stages fClgL
l = 0.

Therefore, the classes (disease stages) have a natural ordering, and we assign a meaningful number cl to

cluster Cl such that 0pc0<c1< . . .<cL. Hence, jci - cjj represents the distance between Ci and Cj. The

query function f is defined on the training data by f (xi) = cl if and only if xi 2 Cl. The approximand rN(f,x)

induces a nearest neighbor classification on the entire dataset by the proximity of rN(f,x) to any of the

numbers c0‚ . . . ‚ cL.

We first compare our proposed approach to widely used classification methods on two standard bio-

medical datasets. After this verification, we use our scheme to analyze multispectral retinal images of age-

related macular degeneration (AMD) patients. All eye-related data were collected by our collaborators at

the National Eye Clinic at the National Institutes of Health (Bethesda, NIH; Maryland).
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6.1. Standard biomedical datasets

6.1.1. Cleveland Heart Disease Database: learning disease stages. The Cleveland Heart Dis-

ease Database (CHDD) (Detrano et al., 1989) contains 297 patterns with 13 attributes and is grouped into

five progressive heart disease stages (values 0,1,2,3,4), where 0 corresponds to normal heart conditions. We

removed six patterns due to missing values. Due to homeostasis and its failure in progressed disease, we

expect the query function f to be smoother on normal heart conditions and early disease stages, while later

stages may form a more heterogeneous group. We compare our method to support vector machines (SVM),

in which clusters are derived through sequential binary clustering. Clusters are evaluated by means of

binary false-positive or false-negatives for each disease stage. Indeed, our proposed method recovers f

consistently better than SVM for the values 0, 1, and 2 when dealing with few training points (Table 1). As

expected, our kernel performs poorly on the stages 3 and 4, implying the lack of smoothness of f within

these progressed stages. The transition from 0 to 2 seems to be steered by a smoother process, which is

reflected by a smoother query function yielding better results than SVM methods.

6.1.2. Wisconsin Breast Cancer Database: data completion. After removing missing values, the

Wisconsin Breast Cancer Database (WBCD; original) (Wolberg and Mangasarian, 1990) contains 683

patterns with 9 attributes. We aim to predict quantitative attributes. In fact, we randomly select 200, 300,

and 400 training points to learn the attribute ‘‘clump thickness’’ (ranging from 1 to 10) and aim to predict

its values on the remaining data. We call it a hit when the prediction is within a radius of 1, i.e., if the

measured size was 3, the predictions in the interval [2, 4] are counted as a hit. The excellent performance of

our proposed method by means of sensitivity (number of hits divided by the cluster size) for few training

data is shown in Table 2.

6.2. Age-related macular degeneration

Age-related macular degeneration is the most common cause of blindness among the elderly population

in the western world (Chew et al., 2009; Coleman et al., 2008; Krishnadev et al., 2010). Aging of the human

retina is universally associated with microscopic changes within the retinal pigment epithelium (RPE),

including increased number and volume of fluorescent lipofuscin granules (Meyers et al., 2004). In a

Table 1. Sensitivity Analysis for Cleveland Heart Disease Database

Stage 0 SVM linear SVM Gaussian Local kernel

CHDD, 40 73% 71% 79%

CHDD, 100 78% 80% 83%

CHDD, 200 93% 95% 92%

Stage 1

CHDD, 40 69% 68% 73%

CHDD, 100 73% 75% 80%

CHDD, 200 88% 92% 85%

Stage 2

CHDD, 40 64% 62% 71%

CHDD, 100 68% 71% 75%

CHDD, 200 86% 85% 81%

Stage 3

CHDD, 40 61% 60% 54%

CHDD, 100 65% 66% 59%

CHDD, 200 78% 79% 69%

Stage 4

CHDD, 40 57% 55% 52%

CHDD, 100 63% 59% 54%

CHDD, 200 72% 69% 63%

Sensitivity (one minus false negative rate) for disease stages 0 to 4 using the dataset CHDD in Section 6.1.1. with 40, 100, and 200

training points, averaged over 50 instances for each method. Our local kernel method performs better for few training data than SVM

on disease stages 0, 1, and 2, in which we expect the query function to be relatively smooth. CHDD, Cleveland Heart Disease

Database.
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majority of Americans over the age of 60, the earliest clinical signs of RPE dysfunction are observed in

color fundus photographs as drusen—bright highly reflective extracellular deposits between the RPE and

its basement membrane. Macular drusen increase in number and size with advancing age in epidemio-

logical studies and larger, irregular-shaped, perifoveal drusen (‘‘soft’’) are considered to confer the greatest

risk for progression to advanced AMD. Through many years of large-scale studies of the natural history of

AMD and controlled prevention trials, clinical observations of fundus photographs suggest that people with

soft (larger than 150 microns and irregularly shaped) drusen are at high risk for progressing to advanced

AMD. Currently, pathologists in reading centers classify drusen based on size and shape (Bird et al., 1995)

in reflection color fundus images. There is demand for automated analysis tools that allow for quantitative

prediction of disease progression.

6.2.1. Retinal multi-spectral imaging. The retina is a multilayer neural tissue, uniquely suited for

noninvasive optical imaging with high resolution. The first author, together with his collaborators at NIH,

developed noninvasive multispectral fluorescence imaging of the human retina by adding selected inter-

ference filter sets to standard fundus cameras, allowing the monitoring of early changes within the RPE via

the fluorescent lipofuscin granules (Dobrosotskaya et al., 2010, 2011; Ehler et al., 2010, 2011a, 2011b;

Kainerstorfer et al., 2010a, 2010b, 2011). If F(L,k) denotes the measured autofluorescence, where L is the

excitation and k the emission wavelength, then the Beer-Lambert law for the double-path yields

F(L‚ k) = I(L)F(L‚ k)e - (D(L) + D(k))‚

where D is the integrated absorbance (optical density) of the tissue the light travels through, F(L,k) is the

fluorescence efficiency of lipofuscin, and I(L) the radiant power of the excitation light. For each of the six

patients, four excitation filters with two emission filters and trifold imaging lead to 24 images (400 · 400

pixels) that are aligned by applying the commercial software i2k Align. We de-noise in z-direction by

principal component analysis, keeping five eigenvectors capturing more than 98% of the dataset’s variance.

Spatial noise is reduced by averaging each pixel with its eight neighbors. Since the pathological changes are

related to fractional changes of the autofluorescence, we can normalize the 160,000 vectors to lie on the

sphere S4.

The principal component analysis and normalization also helps to compare pixels across patients. The

drusen classification scheme presented in van Leeuwen et al. (2003; see also Bird et al., 1995) leads to 8

progressing stages. We partition them into four classes. An expert grader labeled few spatial regions, which

led to 2,000 training pixels in three patients that were each labeled with one of the four partitions. Thus, we

have 6,000 training vectors total, and pixels in a single patient can have distinct labels. We shall learn

locally the pixel classification into drusen classes. Note that our method relies on the multispectral com-

ponents of drusen in autofluorescence images rather than the spatial shape that is seen in reflection color

fundus images.

After the learning step, we mark a region of interest (ROI) in six patients (including the three patients

used for learning). To classify pixels from the ROI into the four partitions, we merge the ROI pixels of the

patient under consideration with the ROI pixels of the three learned patients to form the data on the

manifold. The labeled regions are the training data, and since the pixel vectors lie on the sphere, we can

follow the approach in Section 5 to derive rN(f, x) (Fig. 2). The majority of the pixels within the ROI would

define the drusen class of the patient. It should be mentioned that the size of the ROI influences the

classification scheme, and we obtained good results with the center in the fovea and extending to 5 degrees,

consistent with common image analysis in ophthalmology.

Table 2. Sensitivity Analysis for the Wisconsin Breast Cancer Database

SVM linear SVM Gaussian Local kernel

WBCD, 100 74% 72% 80%

WBCD, 200 76% 79% 84%

WBCD, 300 92% 93% 90%

Sensitivity analysis for the data set WBCD in Section 6.1.2, averaged over clump thickness and 50 instances for each method. Our

local kernel method yields high sensitivity compared to other methods when there are only few training data. WBCD, Wisconsin

Breast Cancer Database.
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Next, we explore the influence of the size of the training data. We only use a fraction of the pixels that

were originally labeled by our grader. The individual pixels are selected by a random sampling. Figure 3

shows that we require a critical number of training pixels and from there on, we obtain stable classification

results.

7. CONCLUSIONS

To facilitate the analysis of complex biomedical data, we developed the mathematical foundations for a

numerical algorithm that enables global and local data analysis integratively. After we validated our

FIG. 2. Drusen classification. The foveal class outnumbers the other classes in (d) and determines the patient’s class.

(a, left) Drusen in color fundus image; (a, right) Drusen in cross-section of a monkey retina. (b) Two spectral images of

pre-advanced AMD patient. (c) Two spectral images of advanced AMD patient. (d, left) Squares show class centers; (d,

right) four classes, where dark blue is not assigned to any class.

FIG. 3. The increments of the

training pixels are in steps of 200.

The y-axis counts the correct clas-

sifications. Note that we simply re-

moved random pixels from the

entire set of 3 · 2000 training pix-

els, so that each smaller training set

is contained in the larger one. We

repeated this process over 20 runs to

avoid random anomalies, which led

to the black curve. The most typical

curve in a single run is depicted in

red. For few training data, we only

classify one single patient correctly.

Increasing the size of the training

pixels enables consistently correct

classifications of all but one patient

(consistently the same one). It

seems that the critical number of

training pixels is between 600 and

800 pixels.
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approach on two standard datasets, we aimed to classify and predict disease progression in AMD patients.

Drusen were classified in multispectral retinal image sets that enabled quantitative measurements of ad-

vanced pathological changes. Clearly, our new mathematical approach to identifying new components

controlling AMD progression is preliminary and needs further validation to claim its usefulness in general

terms. We anticipate improvements through synergies of multiple analysis schemes with multi modal data

so that our proposed analysis could be part of an iterative process.

8. APPENDIX

Appendix A. Technical assumptions

For the sake of readability, we list simple conditions used in Section 3 that can be further weakened

(Filbir and Mhaskar, 2010; Maggioni and Mhaskar, 2008). The manifold X is supposed to be a smooth,

compact, and connected Riemannian manifold without boundary. We point out that the following technical

conditions are satisfied when fukg1k = 0 are the eigenfunctions of the Laplace-Beltrami operator on

X‚ f‘2
kg
1
k = 0 its eigenvalues, and l the standard Riemannian probability measure (see Filbir and Mhaskar,

2010, 2011; Maggioni and Mhaskar, 2008; Sikora, 2004 for details).

A.1. Assumption on the volume of balls. If a > 0 is the dimension of X, then we assume that

l(Br(x))(ra, for all x 2 X and r > 0.

A.2. Assumption on products of polynomials. There is a ‡ 2 such that, for all f ‚ g 2 PN , their

product fg is contained in PaN. In fact, we only need the weaker condition saying that, for

�N := sup
‘j‚ ‘kpN

dist(ujuk‚PaN)1‚

we have Nc�N ! 0 as N / N , for every c > 0.

A.3. Assumption on the growth of the heat kernel. For

Kt(x‚ y) =
X1
j = 0

exp ( - ‘2
j t)uj(x)uj(y)‚

let jvcKt(x, y)j( t - a/2 - c exp( - cq(x, y)2/t),for all t 2 (0‚ 1]‚ x‚ y 2 X, where c is a constant, c = 0, 1, and v
is a differential operator of first order.

A.4. Assumption on the filter. Let: R�0 ! R be infinitely often differentiable and a nonincreasing

function such that h(t) = 1 if t £ 1/2 and h(t) = 0 if t ‡ 1. For instance, we can choose

h(x) =
1‚ xp1=2‚

exp (
(x - 1

2
)2(2x2 - 2x - 1)

x2(x - 1)2 )‚ 1=2pxp1‚

0‚ 1px‚

8<
:

see Figure 1.

Appendix B. Existence of quadrature weights

For training data C = fxjgn
j = 1 � X, let dC := supx2X dist q(x‚ C) and qC := mini 6¼j q(xi‚ xj). If X is well

covered by C, i.e., dCp2qCp2dC, then there exists a constant c with the following property: for Npc=dC,
there are positive numbers fxjgn

j = 1, such that the cubature formula
R

X
P(x)dl(x) =

Pn
j = 1 xjP(xj) holds, for

all P 2 PN (Filbir and Mhaskar, 2010). Note that the weights satisfy
Pn

j = 1 xj = 1 and hence are bounded

since u0 h 1.

Appendix C. Proof of local approximation

Given f 2 Ws
y0

(X), pick d > 0 such that /f 2 Ws(X), for any / 2 C1(X), supported on B3d(y0) and

equals one on B3d/2(y0). We can choose / such that /(X) � [0‚ 1]. To verify Equation (8), we assume Nq 2
d

and estimate,
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sup
x2Bd(y0)

j f (x) - rN(f ‚ x)jp sup
x2Bd(y0)

j f (x) - rN(/f ‚ x)j + sup
x2Bd(y0)

jrN (/f - f )j

p sup
x2Bd(y0)

j/(x)f (x) - rN (/f ‚ x)j + sup
x2Bd(y0)

jrN(/f - f ‚ x)j

&N - s + sup
x2Bd(y0)

jrN(/f - f ‚ x)j‚

where we have used global approximation results from Mhaskar (2010), applied to the globally smooth

function /f. In the remainder of this section, we shall estimate supx2Bd(y0) jrN(/f - f ‚ x)jN - s.

To do so, we use the localization property of FN, i.e., for S > max(1, a + s),

jFN(x‚ y)j Na

max (1‚ (Nq(x‚ y))S

(Filbir and Mhaskar, 2010; Maggioni and Mhaskar, 2008; Mhaskar; 2011). This kernel localization yields,

for x 2 Bd(y0),

jrN(/f - f ‚ x)j&
Xn

j = 0

xj(1 - /(xj))f (xj)
Na

max (1‚ (Nq(x‚ xj))
S
:

We split the sum into two parts, I1 = fj : xj 62 B3d=2(y0)g and the remaining indices, on which the summands

vanish. Thus, we obtain

jrN(/f - f ‚ x)j&
X
j2I1

xj(1 - /(xj))f (xj)
Na

max (1‚ (Nq(x‚ xj))
S
:

Since Nq 2
d and q(x, xj) ‡ d/2 on the range that we consider, we obtain

jrN(/f - f ‚ x)j&
X
j2I1

xj(1 - /(xj))f (xj)
Na - S

q(x‚ xj)
S
:

The ball Bd/2(x) is contained in B3d/2(y0) so that I2 = fj : xj 62 Bd=2(x)g yields

jrN (/f - f ‚ x)j&
X
j2I 2

xj(1 - /(xj))f (xj)
Na - S

q(x‚ xj)
S

& sup
j2J2

(f (xj))N
a - S
X
j2I2

xj

q(x‚ xj)
S

&Na - S
X
j2I2

xj

q(x‚ xj)
S

‚

where we have used that f is bounded. To finalize the proof, we can apply the crude estimateP
j2I 2

xj

q(x‚ xj)
S p( 2

d )S, which follows from
Pn

j = 1 xj = 1. The relation a - S £ - s implies the desired in-

equality supx2Bd(y0) jrN(/f - f ‚ x)j&N - s, where the constant may depend on f, y0, d, a, and s.

Appendix D. Computing eigenfunctions

The graph Laplacian, as an operator on smooth functions, is

(Le
Mf )(x) =

1

M

�XM
j = 1

ke(x‚ yj)f (yj) - f (x)
XM
j = 1

ke(x‚ yj)

�

and, when fyigM
i = 1 is uniformly distributed, Le

M converges almost surely toward DX as M tends to infinity

and e to zero (Lafon, 2004; Nadler et al., 2006; Singer, 2006). Let ke
M‚ i and ge

M‚ i be the ith eigenvalue and

eigenfunction of (2pe)1 - a=2Le
M , respectively, where a is again the dimension of the underlying manifold X.

If ki and ui are the ith eigenvalue and eigenfunction of DX, then according to Belkin and Niyogi (2006),

there exists a sequence eM / 0 such that, in probability,
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lim
M!1

jkeM

M‚ i - kij = 0‚ lim
M!1

kgeM

M‚ i - ui kL2
= 0:

In order to compute ge
M‚ i, we need to relate the spectrum of Le

M with the spectrum of the matrix Le
M

introduced in Section 4. It was shown in von Luxburg et al. (2008) that, for fixed e and M, the ‘‘interesting’’

eigenvalues and eigenvectors of Le
M are in a one-to-one relationship with the ‘‘interesting’’ eigenvalues and

eigenfunctions of Le
M , respectively. In fact, if g is any eigenfunction of Le

M with eigenvalue k, then the

sampling v = (g(y1)‚ . . . ‚ g(yM))> is an eigenvector of Le
M with eigenvalue Mk. If k is in the discrete

spectrum of Le
M , then g is of the form

g(x) =
PM

i = 1 ke(x‚ yi)viPM
j = 1 ke(x‚ yj) - Mk

: (9)

Conversely, if v is an eigenvector of Le
M with eigenvalue Mk such that k is not in the essential spectrum of

Le
M , then g defined by Equation (9) is an eigenfunction of Le

M with eigenvalue k. Note that then g

interpolates v, i.e., (g(y1)‚ . . . ‚ g(yM))> = v. Thus, we diagonalize Le
M for large M and small e, and inter-

polate via Equation (9), which yields an approximation of the eigenfunctions of DX.

Note that the relation between eigenvectors of Le
M and Le

Mf described above are independent on the

distribution of fyigM
i = 1. This is useful if fyigM

i = 1 are not uniformly distributed but distributed according to the

density p. In this case, Le
Mf approximates the Fokker-Planck operator D + Dp

p
(Coifman et al., 2005b; Nadler

et al., 2006).

Appendix E. Polynomials needed for the example on the sphere

E.1. Gegenbauer polynomials. The Gegenbauer polynomials

P
(s)
k (x) =

Xºk=2ß

‘ = 0

( - 1)‘
G(k - ‘ + s)

G(s)‘!(k - 2‘)!
(2x)k - 2‘‚

are orthogonal polynomials on the interval [ - 1, 1] with respect to the weight function (1 - x2)s - 1/2, where

G is the usual Gamma function.

E.2. Orthonormal basis forHd
k . In the following, we shall present an explicit basis fuk‚ ig

mk

i = 1 forHd
k

such that we can solve
Pn

j = 1 xjuk‚ i(xj) = dk‚ 0, for all i = 1‚ . . . ‚ mk and k = 0‚ . . . ‚ R, so that N =
PR

k = 0 mk.

For m‚ s 2 N, and d > 1, let

Gs
m(x(d)) : =

Xºm=2ß

i = 0

( - 1)i jx(d - 1)j2i
xm - 2i

d =(m - 2i)!

(2‚ 2)i(d - 1 + 2s‚ 2)i

‚

where (a‚ b)i = a(a + b) � � � (a + (i - 1)b) with the convention (a, b)0 = 1 and x(d) = (x1‚ . . . ‚ xd). The collec-

tion of polynomials

G�(x(d)) : = G�2

�1 - �2
(x(d)) � � �G�d

�d - 1 - �d
(x(d - 2))‚

for � 2 Nd‚ �1q�2q � � �q�d = 0‚ 1, forms an orthonormal basis for Hd
�1

(Karachik, 1998). This basis in

hand, we can find the weights fxjgn
j = 1 that are needed to define rN(f, x). For quadratures on S2, see Filbir

and Themistoclakis (2008), and for other bases ofHd
k , see, for instance, Dunkl and Xu (2001). Note that the

polynomial expression of Gm(x(d)) can be computed using computer algebra software. Evaluating these

polynomials at our data points lead to round-off errors that can be controlled applying standard three-term

relations of orthogonal polynomials.
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