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ABSTRACT

The problem of identifying dynamics of biological networks is of critical importance in
order to understand biological systems. In this article, we propose a data-driven inference
scheme to identify temporally evolving network representations of genetic networks. In the
formulation of the optimization problem, we use an adjacency map as a priori information
and define a cost function that both drives the connectivity of the graph to match biological
data as well as generates a sparse and robust network at corresponding time intervals.
Through simulation studies of simple examples, it is shown that this optimization scheme
can help capture the topological change of a biological signaling pathway, and furthermore,
might help to understand the structure and dynamics of biological genetic networks.
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1. INTRODUCTION

Modeling of biological genetic networks has received much recent research attention. Many

current data-driven inference algorithms, such as Bayesian network models of genetic networks

formed by coding a priori knowledge on the regulatory relationships into probabilistic models (Sachs et al.,

2002; Friedman and Koller, 2000; Yu et al., 2004), are limited in their ability to represent temporally evolving

dynamics. On the other hand, there are many studies of identification of regulatory networks using deter-

ministic models, such as ordinary differential equations (ODEs), or linear models based on least squares

identification (Schmidt et al., 2005; Bansal et al., 2006; Schmidt and Jacobsen, 2004). However, such

assumptions about the model structure could be problematic because prejudices are automatically imposed,

which then restrict the representation and understanding of biological data. For example, a key assumption of

a mass-action kinetics model is that there is a large number of molecules that are homogeneously mixed, an

assumption that may fail inside a cell when there are only a few molecules governing the reaction. Therefore,

such ‘‘theory-driven’’ modeling requires a good understanding of the dynamics of the signaling pathway.

However, often models of biological systems are too complex to understand because of the large number of
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components involved and the nonlinearity of the reaction or interaction. As a result, the behavior of these

systems in general cannot be completely understood from a systems point of view.

On the other hand, logical models like Boolean networks (BNs) seek completely qualitative rather than

quantitative models of biological systems. BNs can succeed in capturing high-level phenomena such as

activation or deactivation with fewer parameters than their ODE counterpart and can be used to evaluate

model structure. However, they cannot capture transient response, only steady state. In spite of this, there

are many applications of Boolean networks to modeling and analyzing biological systems, because they are

easy to simulate or evaluate, as well as an increase in research activities to address questions arising from

biological applications (Sontag et al., 2008; Zou, 2010).

Since a graph is a natural way to represent a biological network, if a system can be abstracted into a

graph, it might help to understand the biological network. A graph is a set of vertices that represents states

and a set of edges that depicts the relationship or connection between two or more states. A given

connectivity or adjacency map is a signed, directed graph GR = (V, E, S) where V is a set of vertices, E is a

set of directed edges, and S : E / {- 1, 0, + 1}. For example, eij = 1 represents the case in which input

node j activates output node i. If input node j inhibits output node i, then eij = - 1. If input node j does not

affect output node i, then eij = 0. Also, graphs are well-suited for situations in which there is little prior or

explicit knowledge of the dynamics. Moreover, if we can build a graph model to represent biological data,

we could escape imposed prejudices from the model structure. There are several graph-mining approaches

to biological networks (Alon, 2007; Han et al., 2007). These approaches represent biological networks as

graphs, where nodes represent genes and edges represent relationships between each gene, and discover

frequent patterns or motifs (Alon, 2007) in these graphs. They focus on structural features of networks, and

they can effectively uncover the functional interaction structure of a biological network. Also, these

approaches consider time-invariant networks and local or modular behavior of large networks. Recent

studies (Chang et al., 2009; Kim et al., 2010) have proposed a concept of a temporal sequence of network

motifs in which the motifs change according to the dynamic nature of the biological system and can

describe pivotal developmental events that cannot be captured by the static network approach. Chang et al.

(2009) develops algorithms for graph-rewriting rules based on machine-learning techniques, which brings

complexity issues with analyzing very large graphs (Chang et al., 2009). On the other hand, Kim et al.

(2010) applies a temporal sequence of network motifs analysis by reconstructing the active subnetworks

(3-node subgraphs).

In this article, we focus our attention on identifying time-varying linear models of sparse biological

networks represented as graphs. We develop time-varying linear models, where the model remains constant

for a time step or a series of time steps. This can capture dynamics that change over time and can allow the

graph at each time step to be sparse.

With this approach in mind, our question becomes how to infer the graph structure from a set of data

and how to find the most reasonable model among many possible configurations, since our problem

formulation has fewer constraints than theory-driven modeling. We assume a priori information is

given as a connectivity map, however, this is not necessary, as the map may include all possible

connections in the case of no a priori information. In general, including known information helps to

find a more biologically reasonable model. For example, without any a priori information, our algo-

rithm can find the most reasonable model in the sense of minimizing a cost function, but if we include

known information as a connectivity map, we find the most reasonable model satisfying the connec-

tivity map. Despite uncertainties about details for a given biological system, we often have reasonable

qualitative knowledge about interactions of each gene, so we can use this information as a priori

information. In this setting, the model behavior is solely based on this qualitative information, which

guarantees biologically reasonable behavior: a sparse and smooth evolving network. We formulate our

cost function based on those assumptions. Then, using convex optimization techniques, we find the

sparsest time-varying graph consistent with experimental observations (Chang et al., 2011b). Also, the

reconstructed graph shows the signal propagation through the sparse network that drives the placement

of links and nodes. It might help to uncover the underlying dynamics and how the system dynamics

evolve over time.

The rest of this article is organized as follows: Section 2 presents the proposed method related to

modeling of biological networks and an optimization problem formulation with simple examples. Section 3

presents an example of the biological network of HER2 over-expressed breast cancer, which has motivated

our work. Finally, conclusions are given in Section 4.
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2. METHOD

We define a state vector x(t) = [x1(t)‚ . . . ‚ xnx
(t)]T , the components of which represent concentrations of

proteins or states in a biological network, and nx represents the number of components or states. The

evolution of state x(t) can be modeled using an ordinary differential equation (ODE):

_x(t) = f (x(t)‚ p) (1)

where p is a parameter set. The nonlinear dynamic system (Eq. 1) can be approximated by a linear system

based on forming the Jacobian around steady states as shown below:

d _x(t) =
qf

qx
dx(t) +

qf

qp
dp = Adx(t) + Bdp (2)

A system in the form of Equation (2) can be considered as a weighted, directed graph. In this, A represents

connectivity and B represents the sensitivity to parameter variation. If Aij is zero, node j has no direct effect

on node i. Also, if Aij > 0, node j activates node i. Similarly, if Aij < 0, node j inhibits node i. In Sontag

et al. (2004) and Han et al. (2007), a convex optimization is constructed as follows:

min
A‚ �B
jj( _~X - �B - A ~X)W jjF

subject to card(A) � k‚ Ai‚ j > 0‚ Ar‚ s < 0 (3)

where ~X( = [X1X2 . . . XL]) represents time-course data set with different stimulations and/or inhibitions, and

each Xi represents the matrix form of nx different components at M different time points

Xi =

xi
1‚ 1 xi

1‚ 2 � � � xi
1‚ M

xi
2‚ 1 xi

2‚ 2 � � � xi
1‚ M

� � � � � � � � � � � �
xi

nx‚ 1 xi
nx‚ 2 � � � xi

nx‚ M

2
664

3
775: Also, �B( = [B1B2 . . . BL]) represents the set of sensitivities of parameter

variation with Bi = [bi . . . bi]
zfflfflfflfflffl}|fflfflfflfflffl{M

, and W represents a weighting matrix for specific experiments. Also, k is a

given positive constant that represents maximum connectivity, all Ai,j > 0 represent activation edges (node j

activates node i), and all Ar,s < 0 represent inhibition edges (node s inhibits node r). Therefore, this

approach gives us the optimal static graph map consistent with various experimental data sets.

In this article, we extend this idea to a dynamic graph model. First, we define

X =
�
XT

N‚ XT
N - 1‚ . . . ‚ XT

1

�T 2 Rnx�N · 1 where Xk 2 Rnx · 1 represents experimental data or known values

(normalized or Booleanized biological data) at time k for 1 £ k £ N, the components of which represent

concentrations or activities in a biological network, nx is the number of states of Xk, and N is the number of

discrete time steps. We define an augmented matrix G= f (G1‚ G2‚ . . . ‚ GN ), which is a function of the

dynamic graph Gk where each Gk 2 Rnx · nx is a connectivity map at time k for 1 £ k £ N, which is based on

a priori information, or a connectivity map denoted by GR. The augmented matrix G satisfies an evolution

of the state Xk as Xk = GkXk - 1. In contrast to previous methodologies for dynamic graph analysis (Chang

et al., 2009; Kim et al., 2010), we formulate a convex optimization-based inference method, where we

embed the dynamics of a linear time varying representation and enforce sparsity and smooth evolution at

corresponding time intervals.

2.1. Dynamic graph (linear time varying system)

The state Xk evolves along with time and constitutes the following linear-time varying system:

Xk = GkXk - 1 (4)

where Gk = g(GR,XkjXk - 1) is a function of both the connectivity map and time series data. Note that Gk

describes how the edge activities evolve over time. For example, for given connectivity map GR, we allow

the change of strength of connection to drive our dynamic model consistent with biological system or

experimental data. At each time step, only a few edges may evolve based on the relationship between Xk

and Xk - 1. If all the interactions between each component are properly identified, we can reconstruct the

map Gk in terms of the connectivity and strength. For instance, Gk(i, j) = 0.5 represents that node j activates
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node i with strength 0.5. The strength might be related to the reaction rate and the concentration of other

species, demonstrated by the Jacobian of a mass-action kinetics model.

The goal of system identification of biological systems is to infer each Gk for 1 £ k £ N consistent with

both a biological data set v and a priori information GR. In general, a gene regulation network (GRN) has

the following characteristics (Marc et al., 2010):

1) Directionality: Regulatory control is directed from regulators to regulated genes.

2) Sparsity: Each single gene is controlled by a limited number of other genes, which is small compared

to the total gene content (and also to the total number of TFs) of an organism.

3) Combinatorial control: The expression of a gene may depend on the joint activity of various regu-

latory proteins.

Since GRNs have a sparse structure with combinatorial control, we should reconstruct the sparsest graph

consistent with experimental observations. We can construct an optimization problem as follows:

min
Gk

jjXk - GkXk - 1jj + cjjAkjj

subject to Gk = g(GR‚ XkjXk - 1) (5)

where the second term in the cost function penalizes the cost of adding edges in order to avoid heavy

combinatoric computation, Ak is defined as follows:

Ak = Gk \ (Gk \ Gk - 1)c = Gk - Gk - 1 (6)

and c is a positive constant. Therefore, Ak enforces the network to be sparse, and thus, the cost function

represents a trade-off between reconstruction error and sparsity. Here we define the function g as shown

below:

Gk = g(GR‚ XkjXk - 1) = GR�MAP = ProjMAPGR (7)

where 4 is defined as a projection operator onto MAP 2 Rnx · nx , whose i-th column is a column vector, the

components of which are all one if Xk - 1(i) is active, which means the state of the i-th element is over the

threshold. On the other hand, if Xk - 1(i) is nonactive, then the i-th column of MAP is a zero-column vector.

Therefore, this projection gives us all possible candidate edges based on both Xk - 1 and GR. For example, if xi at

the (k - 1)th step is active, then the i-th column of GR contains the candidate edges. On the other hand, if xi at

(k - 1)th step is not active, we cannot use the i-th column of GR as candidate edges. By using Equation (7), our

method generates a sparse network representation without any Lasso-type regressions in Equation (5).

If we implement the optimization problem for every single step as shown in Equation (5), the

penalty term for sparsity does not play the role of generating a sparse network but instead uses all

possible edges. In other words, distributing signal to all possible nodes (dense network) gives us a

lower cost than distributing signal to only a few nodes (sparse network) in our formulation (Eq. 5).

We can think about this by considering dynamic programming in optimization. The main idea behind

dynamic programming is that, to solve a given problem, we need to solve different parts of the

problem (subproblems), then combine the solutions of the subproblem to reach an overall solution in

a recursive manner. Similarly, in order to find the sparsest smoothly evolving graph, we need to have

a certain connection between every subproblem. For example, when we consider the overall time

horizon in Equation (8), the penalty term for sparsity can play a key role in generating a sparse graph

structure by connecting the discrete time dynamics at each time step with those at different time

steps. Then, we can construct a convex optimization problem for the proposed identification problem

as shown below:

min
G1‚ ...‚ GN

XN

k = 1

jjXk - GkXk - 1jj2 + c
XN

k = 2

jjGk - Gk - 1jjF + jjG1jjF + jjGN jjF

( )

subject to Gk = g(GR‚ XkjXk - 1) (8)

Note that the first term of Equation (8), the summation of jjXk - GkXk - 1jj, forces the minimization of

the reconstruction error for a given dynamical network at time k for 1 £ k £ N. Also, the second term,

the summation of jjGk - Gk - 1jjF, plays the role of realizing a smooth evolution and minimizes the change
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in network evolution. Finally, with the penalty term jjG1jjF + jjGNjjF, which acts as a boundary constraint,

we can find the sparsest dynamic graph. We can also arrange and reformulate Equation (8) as follows:

min
G
jjX -GXjj2 + cjj(GT -G) · W jjF

subject to given X ‚ W

Gact
k � 0‚ Ginhib

k � 0‚ Gothers
k = 0

(9)

where G =

Onx
GN Onx

� � � Onx

Onx
Onx

GN - 1 � � � Onx

� � � � � � � � � � � � � � �
Onx

Onx
� � � Onx

G1

Onx
Onx

� � � Onx
Inx

2
66664

3
77775‚X =

XN

XN - 1

� � �
X1

X0

2
66664

3
77775and W =

Inx
Onx

Onx
Inx

Inx
Onx

Onx
Inx

� � � � � �
� � � � � �

2
6666664

3
7777775

where X 2 Rnx�(N + 1) · 1‚G 2 Rnx�(N + 1) · nx�(N + 1) and W 2 Rnx�(N + 1) · 2�nx for 1 £ k ‡ N. Note that the first term

of the cost function in Equation (9) is a reconstruction error cost, and the second term plays the role of

connecting each discrete system with another and realizing a smooth evolution of the network by selecting

effective edges with inequality constraints.

2.2. Static graph (linear time invariant system)

If we assume that the graph model does not evolve with time (static graph Gk = G), such as with a linear-

time invariant system (Han et al., 2007), we can modify the structure of G and constraints as shown below

for a fixed pattern graph:

G =

Onx
G Onx

� � � Onx

Onx
Onx

G � � � Onx

� � � � � � � � � � � � � � �
Onx

Onx
Onx

Onx
G

Onx
Onx

Onx
Onx

Inx

2
6666664

3
7777775

Gact � 0‚ Ginhib � 0‚ Gothers = 0

(10)

where G = �g(GR) does not depend on time [compared with Gk = g(GR,XkjXk - 1) for a linear time varying

system]. Note that for a fixed graph structure, the optimal solution represents the average connectivity map

(Han et al., 2007).

2.3. Dynamic and static graph

We can compare the dynamic graph and static graph method: the main difference in cost function from

dynamic and static graph is the penalty for sparsity as follows:

jj(GT -G)W)jjF‚ dynamic =

Onx
- GN

DGN - 1 Onx

Onx
DGN - 2

� � � � � �
Onx

DG1

G1 Onx

2
6666664

3
7777775 (11)

jj(GT -G)W)jjF‚ static =

Onx
- G

Onx
Onx

Onx
Onx

� � � � � �
Onx

Onx

G Onx

2
6666664

3
7777775 (12)
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where DGk = Gk + 1 - Gk. Also, if we modify the constraint for a dynamic graph similar to the static graph

approach, the dynamic graph approach gives us a lower cost than the static graph approach because the

structural constraint restricts the degrees of freedom in choosing edges:

min
G
jjX -GXjj2 + cjj(GT -G) · W jjF

� min
�G
jjX - �GXjj2 + cjj( �GT - �G) · W jjF

(13)

where G represents the optimal solution of the dynamic graph approach, and �G represents the optimal

solution of the static graph approach.

2.4. Inhibition edges

Based on our formulation of the optimization problem, we can find the optimal solution that satisfies a

trade-off between representation of data (dynamics) and sparsity and smooth evolution. However, the

optimal solution does not include any inhibition edges (x) because it is not necessary according to our

optimization problem as shown in Figure 1. For example, if X is active (1) and Y is not active (0), then there

might be two possible cases: X inhibits Y (X x Y connected, Figure 1 [left]) or no connection between X
and Y (Figure 1 [right]). Having no connection would give the lower cost. However, we can handle

inhibition edges using Boolean logic as an algebraic constraint as shown below:

Y = not �Y( = ~�Y) (14)

Also, we extend this algebraic constraint to a normalized state as shown below:

Y + �Y = 1 (15)

Consider the simple case shown in Figure 2, in which state X inhibits state Y. Using an algebraic constraint

(Eq. 14), we can change the inhibition edge to an activation edge with the new state �Y as shown below:

X a Y5X a (~�Y)5X! �Y - Y (16)

Hence, we extend states if there are inhibition input edges and introduce a diagonal weighting matrixM,

which makes all species have the same penalty as shown below:

min
G
jjM · ( �X -G �X )jj2 + cjj(GT -G) · W jjF (17)

where ~X represents extended states andMii = f1‚ 1ffiffi
2
p g. If there exists x‚ �x for a specific state,Mii = 1ffiffi

2
p , and

otherwise, Mii = 1.

2.5. Numerical examples

In this section, we consider simple examples to illustrate the proposed inference scheme.

2.5.1. Simple gene network. We first consider a toy example composed of four genes. The a priori

information and the snapshot of gene expression are shown in Figure 3. Here, we do not consider state

extension for inhibition edges, which means the optimal solution does not include any inhibition edges. By

FIG. 1. Possible cases for inhibition edge (dash end),

where X and Y represent different genes or states; 1 repre-

sents activated state and 0 represents deactivated state: (a)

inhibition reaction is triggered and (b) inhibition reaction has

not occurred.

FIG. 2. (a) Inhibition edge (X inhibits Y), and (b) modified

edge (X activates �Y and the relation between �Y and Y is de-

fined by Boolean logic or algebraic constraint).
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varying the parameter c, we can sweep out the optimal trade-off curve between the reconstruction error and

the sparsity of a solution as shown in Figure 4. We can choose the optimal parameter c* by the graphical

representation: the extreme point c* on the trade-off between the sparsity and the reconstruction error. Once

we fix the parameter c*, we solve the constrained convex optimization problem (Eq. 29) using a MATLAB-

based modeling system for convex optimization (CVX) (Boyd and Vandenberghe, 2004). Figure 5 shows

the dynamics of the connectivity graph. We can capture the temporal graph not only in terms of connection

but also by strength of the edge. From the optimal graph representations, we could extract how the

signaling pathway evolves over time with a systems point of view. Also, we can compare the two ap-

proaches: dynamic and static graph approach with average of dynamic graph.

2.5.2. Simple gene network with different structure. Here, we add one edge that connects vertex 3

to vertex 2 as shown in Figure 6 and solve the optimization problem again. We can see the difference of the

strength of edge 12 (e12) compared with Section 2.5.1 above. Basically, for Section 2.5.1, the optimal graph

shows the robust pathway distributing power evenly (e12 and e13 in Figure 5), because both pathways are

effective equally. However, for Section 2.5.2, an additional pathway (e32) changes the topology of the

graph, which makes the optimal graph choose the more effective or economical path (e13 - e32) in Figure 7.

In other words, the optimal solution shows that the strength of e12 decreases because there exists a more

effective pathway (e13 - e32).

2.6. Extension for the continuous dynamics case

In this article, we infer discrete time dynamics from a set of data with a priori graph structure infor-

mation and focus on how to find the most reasonable model among many possible configurations. We can

extend this idea for the continuous time case. The identification problem has led to a linear quadratic (LQ)

optimal control problem with two main penalty functions by which we can match the experimental data

with a sparse representation using a priori information of structure (described in the Appendix).

3. BIOLOGICAL SIGNAL PATHWAY EXAMPLES

3.1. p53 Signal pathway

Aswani et al. (2009) proposed a graph-theoretic topological control applied to the p53 signaling pathway.

We apply our approach to understand how the controller affects the biological pathway and capture the

FIG. 3. (a) A priori connectivity map, where the

arrows indicate activation and blunted lines denote

inhibition. (b) Snapshots of gene expression from

time k = 1 to k = 4 (red or 1: activated states; green

or 0: deactivated states).

FIG. 4. Trade-off curve between the model fitting

(jjX -GXjj2) and the sparsity (jj(GT -G) · WjjF) with turning

parameter c.
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evolution of the signaling pathway. We define X = [x1, x2, x3, x4]T = [xMDM, xp53, xcyclinG, xc], where xc is

a virtual state that represents the proposed control scheme (actually removing the edge in Aswani et al.

2009):

xc = xMDM if controller Off

xc = 0 if controller On
(18)

Hence, by introducing this virtual state, we have an abstract model of abnormal p53 signaling pathway with

controller in Figure 8 (right). Also, we can define GR as follows, based on Figure 9 with extending states,

including the state extension due to incorporating the inhibition edges:

GR =

0 0 e21 0 0 0

0 0 0 0 e3�1 0

0 0 0 0 0 0

0 0 0 0 0 e4�2

0 0 e23 0 0 0

e14 0 0 0 0 0

2
6666664

3
7777775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{x1 �x1 x2 �x2 x3 x4

=

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0

2
6666664

3
7777775 (19)

Here, we normalize the data then apply our algorithm. We can capture the dynamic evolution of the graph

in Figure 9. The controller causes the p53 concentrations to increase to higher levels by regulation edge

from the murine double minute, an important negative regulator of the p53 tumor suppressor (MDM2) to

p53 (also known as protein 53 or tumor protein 53) and causes increased strength of inhibition edge ([p53]-

[cyclin G]-[MDM2]). In other words, p53 regulates MDM2 similar to the normal p53 pathway (Aswani et

al., 2009). If the controller is not applied again, the strength of edge ([p53]-[cycle G]-[MDM2]) decreases,

and the strength of activation edge [p53]-[Controller]-[MDM2] increases. This causes MDM concentrations

to increase to higher levels which cause regulation p53 by inhibition edge ([MDM2]-[Controller]-[p53])

similar to the abnormal p53 pathway (Aswani et al., 2009).

FIG. 5. The optimal solution for

the example in Section 2.5.1.: the

magnitude of each edge represents

strength of connection. Also, we

compare the results from dynamic

and static graph approaches with

average of dynamic graph.

FIG. 6. A priori connectivity map with an addi-

tional edge (e32), which connects from node 3 to

node 2.
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We can also apply our algorithm for the normal p53 pathway in order to compare with the abnormal p53

pathway with controller. In a normal p53 pathway, we can consider all possible combinations of both Ras

and L26 as two input signals. Here, the basic assumption is that the inhibition reaction is stronger than the

activation reaction. Then, we find that the p19 (alternate reading frame of the INK4a/ARF locus (ARF))

mainly regulates MDM2, and it cannot affect MDM2 from p53 through p19 ARF as shown in Figure 10.

Hence, we can use the same abstract model in Figure 8 for a normal p53 signaling pathway. The optimal

solution shows that the normal p53 cell uses mainly inhibition edges from p53 to MDM2 through cyclin G,

which means p53 regulates MDM2, as shown in Figure 11. Therefore, the controller drives the abnormal

p53 cell to the normal p53 cell by removing the inhibition edge from MDM2 to p53 as Aswani et al. (2009)

proposed.

3.2. HER2 overexpressed breast cancer

We are interested in HER2 overexpressed breast cancer, which represents 20–30% of breast cancers. The

experimental studies were done for investigating the effects of tyrosine kinase inhibitors (TKIs) on the

BT474 and SKBr3 cell lines (Sergina et al., 2007). In this work, short-term effects and long-term effects of

applying gefitinib (a TKI) to those cell lines were studied, and important effects of how the cancer cells

overcome or escape from the inhibitory effects of TKIs were discovered. The authors in Sergina et al.

(2007) showed that HER3 is recruited from the cytoplasm to the cell membrane by vesicular trafficking to

increase the triggering signal in order to escape from HER2 inhibition. Also, they tested the effects of

FIG 7. An optimal solution for

the example in Section 2.5.2.: an

additional pathway (e32) changes

the topology of the graph, which

makes the optimal graph choose a

more effective path (e13 - e32) ra-

ther than e12 (for the example in

Section 2.5.1., the optimal graph

shows distributing power evenly,

e12 = e13).

FIG. 8. (a) An abnormal p53

pathway in Figure 3c in Aswani

et al., 2009, and (b) the abstract

model that includes the effect of

controller.
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vesicular trafficking: when vesicular trafficking was stopped, phospho-HER3 and phospho-Akt did not

survive the inhibition of HER2.

We suspect there might be short-term and long-term topological changes because the TKI can inhibit and

regulate downstream effectively in the short term, but it cannot regulate for the long term. Therefore, we

hypothesize that during the short term, there might be positive negative (PN) feedback (Kim et al., 2007),

so the TKI inhibits HER3 effectively. However, for long-term behavior, even a small triggering signal

FIG. 9. (a,b) Normalized time

course plots for the abnormal p53

pathway with controller in Figure 4c

in Aswani et al., 2009, and (c,d)

dynamic evolution of each edge of

abnormal p53 pathway with the

controller: the p53 regulates MDM2

similar to the normal p53 pathway

by increasing strength of inhibition

edge ([p53]-[cyclin G]-[MDM2]).

FIG. 10. Possible cases for a nor-

mal p53 signaling pathway with dif-

ferent combinations of both [Ras] and

[L26], where H represents an active

state and L represents a nonactive

state (Aswani et al., 2009): the p19

ARF mainly regulates MDM2 and it

cannot affect MDM2 from p53

through p19 ARF.
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could amplify the phospho-Akt signal, because of positive positive (PP) feedback, which is similar to

vesicular trafficking. On the other hand, if the topology does not change, TKI should be able to regulate

downstream over the long term even though HER3 is recruited by vesicular trafficking.

We define the a priori map from biological information (Sergina et al., 2007; Amin et al., 2010; Itani

et al., 2009), where we include a nucleus model to capture this possible topology change. The behaviors of

the nucleus are not yet understood; however, we abstract it with the switch as shown in Figure 12.

Basically, there is a fail-safe mechanism, HER2-HER3 signaling, which is buffered so that it is protected

against an inhibition of HER2 catalytic activity, and it is driven by the negative regulation of HER3 by Akt

(Amin et al., 2010). Also, there is a compensatory mechanism by cross-talk between MAPK and Akt that

results in robust activation of this buffering. However, the compensatory buffering prevents apoptotic

tumor cell death from occurring as a result of the combined loss of MAPK and Akt signaling (Amin et al.,

2010). For example, once a signal is triggered and either MAPK or Akt is high, then the nucleus stays

active so MAPK and/or Akt are trying to keep the compensatory buffering. However, once both MAPK and

Akt are downregulated, the nucleus is deactivated for all time.

FIG. 11. (a,b) Normalized time

course plots for the normal p53

pathway in Figure 4a (Aswani et al.,

2009), and (c,d) the dynamic evolu-

tion of each edge of the normal p53

pathway: the edge activity shows that

the normal p53 cell uses mainly in-

hibition edges from p53 to MDM2

through cyclin G.

FIG. 12. Bifan motif of nucleus, which is two-layered graph with edges

from nodes in top- to bottom-layer: there is a fail-safe mechanism, HER2-

HER3 signaling, which is buffered so that it is protected against an

inhibition of HER2 catalytic activity, and a compensatory mechanism by

cross-talk between MAPK and Akt, which results in robust activation of

buffering.
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We apply the proposed optimization technique and the result is shown in Figure 13 and 14. Here, we use

the generated data based on biological experimental data (western blot (Sergina et al., 2007; Amin et al.,

2010). By applying the proposed method, we find that there are three main phases: before TKI is introduced

(triggering network), right after TKI is introduced (short-term), and long-term behavior after TKI is

introduced. We can capture the topology change of the biological network: for the initial stage (Fig. 14a),

the signal is triggered and propagated along activation edges. After TKI is introduced, downstream

components such as phospho-HER3, PI3K, Akt, and MAPK are regulated because TKI inhibits and

regulates downstream components. Moreover, the biological network shows PN feedback, which

FIG. 13. The upper two

panels show the normalized

biological data and the as-

sumed nucleus level. The

lower panels show the

strength of the downstream

edges. For example, the edge

connecting HER23 to MAPK

(middle panel) is activated

from step 4 to step 9 but de-

activated from step 9 to 18.

FIG. 14. (a) Signal is triggered and propagated along activation edges; (b) after TKI is introduced (short term),

downstream components such as phospo- HER3, PI3K, Akt, and MAPK are regulated because TKI inhibits and

regulates downstream components (positive negative feedback); and (c) for long-term behavior, even though a small

triggering signal is introduced, the downstream components are not regulated but are activated because the biological

network evolves to positive positive feedback (gray: not triggered edge; red: activation edge; blue: inhibition edge; light

red/blue: deactivated edges after once activated).

1318 CHANG ET AL.



effectively modulates signal responses. Finally, for long-term behavior, even if a small triggering signal is

introduced (because of TKI inhibition, step 17–step 20), the downstream components are not regulated but

are activated because the biological network evolves to PP feedback, which induces a slower but amplified

signal response and enhances bi-stability.

4. CONCLUSION

In this article, we have proposed a data-driven inference scheme in order to understand and identify a

model for temporally evolving biological networks. The inference problem has led to a convex optimi-

zation problem with two main penalty functions of sparsity and reconstruction error using a priori in-

formation of structure. We show through examples that the proposed schemes can be useful to capture the

dynamic evolution of the network and understand the biological system with a systems point of view. We

use this algorithm to study a breast cancer signaling pathway to help understand short-term and long-term

behaviors.

5. APPENDIX (CONTINUOUS CASE)

Here, we extend the proposed scheme for the continuous time case. As we mentioned earlier, since a

graph model is a natural way to represent a biological signal pathway, it doesn’t require any constraints on

dynamics such as mass-action kinetics or Hill function representations used in ODE models. Also, many

different measurement techniques are developed that allow us continuous data acquisitions. Therefore, the

inference scheme for the continuous case can be useful to build models with fine-sampled data set and

identify general systems using graphical representation.

5.1. Problem statement

We define a state vector x(t) = [x1(t)‚ . . . ‚ xn(t)]T , the components of which represent concentrations of

proteins or states in a biological network. It is assumed that the state of the network evolves over time and

this evolution of state x(t) can usually be modeled using an ODE:

_x = f (x‚ p) (20)

where p is a parameter set. As we mentioned in this article, many studies in systems biology impose a

structure on f (�), such as mass-action kinetics or Hill function dynamics, and identify parameters using

least-square criteria. However, we are interested in finding the discrete time-varying influence map that can

be formulated as a discrete time-varying linear system. Here, we basically extend this idea for the con-

tinuous case. The nonlinear dynamic system (Eq. 20) can be approximated by a time-varying linear system

based on forming the Jacobian around steady states as shown below:

d _x1(t)
d _x2(t)

. . .
d _xn(t)

2
664

3
775=

qf1
qx1

qf1
qx2

. . . qf1
qxn

. . . . . . . . . . . .

. . . . . . . . .
qfn
qx1

qfn
qx2

. . . qfn
qxn

2
664

3
775

dx1

dx2

. . .
dxn

2
664

3
775= G(t)dx(t) (21)

where we assume there is no parameter variation (dp = 0). A system in the form of Equation (21) can be

considered as a temporally evolving weighted directed graph. Then, G(t) is a time-varying adjacency

matrix, or influence matrix, of dimension n · n, which describes the temporal evolution of the edges with

strength change. In general, G(t) is a sparse matrix (Marc et al., 2010):

Gi‚ j(t) =
qfi

qxj

=
6¼ 0 if node j can affect node i directly

= 0 otherwise

(
(22)

where Gi,j(t) is nonzero if there exists a direct connection between node j (input node) and node i (output

node). Otherwise, Gi,j(t) is zero.
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Definition. Let G(t) be a time-varying adjacency matrix that represents a dynamic graph with n

nodes and k edges, where k is the number of candidate edges from a priori information. The component of

G(t), denoted e(t) = comp(G(t)), is a k · 1 vector whose elements are the nonzero entries of G(t).

Example. Consider the dynamic graph shown in above Figure A1. Following the conventions intro-

duced above, the corresponding adjacency matrix G(t) has the form:

G(t) =

0 e21 0 e41

0 0 0 0

e13 0 0 e43

0 e24 0 0

2
664

3
775 (23)

Its component e(t) is constructed by extracting the nonzero elements from each column, which produces the

vector:

e(t) = [e13‚ e21‚ e24‚ e41‚ e43]T = : [e1‚ e2‚ e3‚ e4‚ e5]T (24)

Using e(t), we can reformulate Equation (21) as follows (for example, n = 4, k = 5):

_x1

_x2

_x3

_x4

2
6664

3
7775

n · 1

=

0 e21 0 e41

0 0 0 0

e13 0 0 e43

0 e24 0 0

2
6664

3
7775

n · n

x1

x2

x3

x4

2
6664

3
7775

n · 1

=

0 x2 0 x4 0

0 0 0 0 0

x1 0 0 0 x4

0 0 x2 0 0

2
6664

3
7775

n · k

e13(t)

e21(t)

e24(t)

e41(t)

e43(t)

2
6666664

3
7777775

k · 1

= A(x)e(t)

= e1(t)

0

0

x1

0

2
6664

3
7775 + e2(t)

x2

0

0

0

2
6664

3
7775 + e3(t)

0

0

0

x2

2
6664

3
7775+ e4(t)

x4

0

0

0

2
6664

3
7775 + e5(t)

0

0

x4

0

2
6664

3
7775 (25)

where A(x) 2 Rn · k is a linear function of x, which can be constructed from a priori information, re-

presenting possible influence modes of biological networks. For example, the first mode, [0 0 x1 0]T in

Equation (25), shows that node 1 activates node 3 (i.e., x1 ! _x3 ! x3). Also, each ei(t) represents a time-

varying coefficient or an activity of i-th mode 2 Rn · 1. Therefore, we can assign the network topology by

adding edges, for example, if there are suspicious interactions among nodes.

In order to find all ei(t), which drive our system dynamics with influence modes, we formulate a linear

quadratic (LQ) optimal control problem, as a regulation problem (x(t) / xd(t)) with control inputs both e(t)

and _e(t). Once we solve the LQ problem, ei(t)* shows the optimal activity or sequence of each mode over

time, which drives our dynamic system to match biological data.

FIG. A1. A simple graph model.
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5.2. Time varying linear system

In order to formulate the LQ optimal control problem, we define the controlled system as follows:

dx(t)

dt
= A(x)e(t) (26)

and the optimal control is sought to minimize the quadratic performance index as follows:

J =
1

2
(x(tf ) - xd(tf ))

T S1(x(tf ) - xd(tf ))

+
1

2

Z tf

0

fjx(t) - xd(t)]T Q1[x(t) - xd(t)] + _e(t)T R _e(t) + e(t)T Q2e(t)gdt (27)

where S1, Q1 and Q2 are positive semidefinite matrices and R is a positive definite matrix. The LQ problem

as formulated above is concerned with tracking of the desired trajectory (xd(t), biological data). In the

performance index J, the first term penalizes the deviation of x(tf) from the desired trajectory at the final

time. Inside the integral, the first term penalizes the transient deviation of x(t), from the desired trajectory

xd(t), which represents the error dynamics. The second penalizes the change of activity of edges (dynamic

graph), which attempts to minimize the variation of activity of edges over time (smoothly evolving). Also,

the third term penalizes the activities of edges. Therefore, the second and third term attempt to achieve a

sparse and smoothly evolving biological network. In order to use a general LQ framework, first we define

_e(t) = v(t) and �x(t) = x(t) - xd(t). Here, we assume that we know xd(t) and _xd(t) for 0 £ t £ tf because once we

have xd(t) then we can get _xd(t) by using the derivative of a polynomial fitting. We define an (n + k) · 1-

dimensional state X(t) = [�x(t)T ‚ e(t)T ]T . Then, the state equation for the enlarged state vector can be for-

mulated as follows:

d

dt

�x(t)

e(t)

� �
=

0n · n A(x)n · k

0k · n 0k · k

� �
�x(t)

e(t)

� �
+

- _xd(t)

v(t)

� �
=A(x)X(t) +

- _xd(t)

0k · 1

� �
+

0n · 1

v(t)

� �

=A(x)X(t) + W(t) + V(t)

(28)

where A(x) is also a linear function of x. Note that the augmented system is still a linear system because

there is no multiplication between A(x) and �x(t). Also, the performance index (Eq. 27) can be written as

follows:

J =
1

2
X(tf )

T S1 0

0 0

� �
X(tf ) +

1

2

Z tf

0

X(t)T Q1 0

0 Q2

� �
X(t) + V(t)T 0 0

0 R

� �
V(t)

� 	
dt

=
1

2
X(tf )

TSX(tf ) +
1

2

Z tf

0

fX(t)TQX(t) + V(t)TRV(t)gdt (29)

The problem is now reformulated as a standard LQ problem with the exception of R, which is a singular

matrix. However, we are interested in v(t), so the solution of the continuous time LQ problem is given by

the state feedback control law as shown below:

V(t) = -R + P(t)X(t) = -
0 0

0 R - 1

� �
P(t)X(t) =

0

v�opt(t)

" #
(30)

-
dP(t)

dt
=A(x)T P(t) + P(t)A(x) - P(t)TR + P(t) +Q (31)

where P(tf ) =S and Equation (31) is a Riccati equation ( proof in Chang et al., 2011a).

Note that the Riccati Equation (31) includes A(x) term in A, yet we can handle this easily by replacing x

by xd. This trick is reasonable because our optimal control input, v�opt(t), drives x(t) to xd(t) by choosing

proper Q1, Q2, and R. Otherwise, we would have to solve a two point boundary value problem (TPBVP) by

numerical iteration.

Proposition (Chang et al., 2011a). The Riccati equation (31) can be solved by replacing x by xd,

using Q‚R, which drive x to xd.
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Also, we can evaluate the dynamic graph e(t) by integration:

e�(t) =
Z t

0

v�opt(s)ds (32)

Therefore, this proposed LQ optimal control framework allows us to capture pivotal development events

and dynamics of the temporally evolving system.

6.3. Numerical example

Numerical examples are illustrated in Chang et al. (2011a).
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