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ABSTRACT

RNA viruses exist in their hosts as populations of different but related strains. The virus
population, often called quasispecies, is shaped by a combination of genetic change and
natural selection. Genetic change is due to both point mutations and recombination events.
We present a jumping hidden Markov model that describes the generation of viral qua-
sispecies and a method to infer its parameters from next-generation sequencing data. The
model introduces position-specific probability tables over the sequence alphabet to explain
the diversity that can be found in the population at each site. Recombination events are
indicated by a change of state, allowing a single observed read to originate from multiple
sequences. We present a specific implementation of the expectation maximization (EM)
algorithm to find maximum a posteriori estimates of the model parameters and a method to
estimate the distribution of viral strains in the quasispecies. The model is validated on
simulated data, showing the advantage of explicitly taking the recombination process into
account, and applied to reads obtained from a clinical HIV sample.
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1. INTRODUCTION

Next-generation sequencing (NGS) technologies have transformed experiments previously con-

sidered too labor-intensive into routine tasks (Metzker, 2010). One application of NGS is the se-

quencing of genetically heterogeneous populations to quantify their genetic diversity. The genetic diversity is

of primary interest, for example, in infection by RNA viruses such as HIV and HCV. In these systems, the

combination of a high mutation rate of the pathogen with recombination between pathogens gives rise to a

population of different but related individuals, referred to as a viral quasispecies. Recombination can occur,
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as a subsequent event, when different viral particles infect a single cell. We denote the different viral strains in

this population as haplotypes. Studying the features of the viral quasispecies can shed light on the mecha-

nisms of pathogen evolution in the host and it is of direct clinical relevance. For example, the diversity of the

quasispecies has been shown to affect virulence (Vignuzzi et al., 2006), immune escape (Nowak et al., 1991),

and drug resistance ( Johnson et al., 2008).

The quasispecies equation is a mathematical model for RNA virus populations evolving according to a

mutation-selection process (Eigen, 1971). The dynamics of the model are described by a mutation term

accounting for transformation of one viral haplotype (or strain) into another at the time of replication, and a

selection term that accounts for varying replication rates of different strains. The mutation process is

generally considered as the result of point mutations only, although recombination is known to be frequent

in many clinically relevant viruses, including HIV and HCV. For example, the recombination rate of HIV is

estimated to be about tenfold higher than its point mutation rate. Therefore, the quasispecies model has

been extended to account for both mutation and recombination (Boerlijst et al., 1996). At equilibrium, the

model predicts the viral population to be dominated by one or a few haplotypes, which are surrounded by a

cloud of constantly generated, low-frequency mutants.

Recent NGS technologies allow for observing viral quasispecies at an unprecedented level of detail by

producing millions of DNA reads in a single experiment. However, this high yield comes at a cost. Reads

are usually short, up to 700 bp with the latest technology and much shorter than the smallest viral

genomes, and they are error prone due to sample preparation and sequencing errors (Gilles et al., 2011).

As a result, since the data obtained are incomplete and noisy, a meaningful characterization of viral

populations by means of NGS requires careful analysis of the sequencing data (Beerenwinkel and

Zagordi, 2011).

In this article, we aim at inferring viral quasispecies based on NGS data by explicitly modeling mutation

and recombination. We use a hidden Markov model (HMM) to generate viral populations, i.e., haplotype

distributions, and their probing by means of NGS. In our model, the haplotypes are originating from a small

number of generating sequences via recombination, described as switch of state in the HMM that selects

from which sequence the haplotype derives, and mutation, described by position-specific probability tables

for the generating sequences. The sequencing reads are obtained from the haplotypes subject to observation

error.

HMMs allowing for a switch between generating sequences, termed jumping HMMs, have been applied,

for example, to sequence alignment of protein domains (Spang et al., 2002) and to detecting inter-host HIV-

circulating recombinant forms (Schultz et al, 2006). A related model has been used in human genetics to

infer the haplotypes of diploid genomes from genotype data (Kimmel and Shamir, 2005; Scheet and

Stephens, 2006). The model presented here differs from previous approaches in several ways, including an

unknown and possibly large number of haplotypes, erroneous sequence read data, and high mutation and

recombination rates. In particular, our goal is to reliably identify the haplotypes shaping intra-host qua-

sispecies, including variants of low frequencies. Since sequencing errors will confound the true variation

present in the sample, methods for error correction have been proposed, including clustering of reads or

flowgrams followed by removal of any remaining within-cluster variation (Eriksson et al., 2008; Quince

et al., 2011; Zagordi et al., 2010a, 2010b).

In the present article, we present a novel generative probabilistic model for making inference of viral

quasispecies, i.e., for estimating the intra-patient viral haplotype distribution. Specifically, we assume that

the true genetic diversity is generated by a few sequences, called generators, through mutation and re-

combination, and that the observed diversity results from additional sequencing errors. We present the

model for local haplotype inference, meaning that we aim at inferring the population structure in a genomic

region of a size that can be covered by individual reads, but extending this model to global haplotype

inference, i.e., to longer genomic regions, is straightforward. Local inference will generally be more

reliable and sufficient for many applications. For example, the HIV protease gene, an important target of

antiretroviral therapy, is 297 bp long, and it is now standard to obtain reads of 400 bp and longer with the

Roche/454 GS Junior sequencer, a common pyrosequencing platform for clinical diagnostics. Local hap-

lotype reconstructions can also be used as a starting point for global reconstruction (Astrovskaya, 2011;

Eriksson et al., 2008; Prabhakaran et al., 2010; Prosperi et al., 2011; Zagordi et al., 2011). We show that our

model is able to estimate the distribution of viral haplotypes with high reliability by applying it to simulated

data, where we have access to the ground truth, and we present an application to reads obtained from an

HIV-infected patient.
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2. METHODS

2.1. Hidden Markov model

During infection of a host cell, a viral strain can change either by point mutation, when a single base is

copied with error, or by recombination, when a cell is infected by more than one viral particle, and

viruses in subsequent generations produce a sequence that is a mosaic of those of the progenitors. The

model we present here does not aim at representing these evolutionary processes mechanistically. Rather,

it is a descriptive probabilistic model, in which the quasispecies is generated by switching among K

different generating sequences, each of length L. We denote by pk the probability to begin with generator

k at the first sequence position. The generators are defined as sequence profiles (ljkv), indicating the

probability over the alphabet A = fA‚ C‚ G‚ T‚ - g of base v 2 A at position j of the k-th generating

sequence.

The set of sequences generates viral haplotypes H 2 AL by mutation, modeled by the probability tables

(ljkv), and recombination, denoted by transition matrices qj. The transition probability qjkl describes the

recombination event in which the generating sequence k switches to l between positions j - 1 and j.

Let Zj be the hidden random variable with state space [K] = f1‚ . . . ‚ Kg, indicating the parental sequence

generating Hj, the haplotype character at position j. Each observed read R with bases Rj is obtained from a

haplotype subject to noise (sequencing errors), assumed to occur independently among sites at rates ej. The

probability of an observed read R is defined hierarchically as

Pr(Z1 = k) = pk (1a)

Pr(Zj = l j Zj - 1 = k) = qjkl (1b)

Pr(Hj = v j Zj = k) = ljkv (1c)

Pr(Rj = b j Hj = v) =
ej if b 6¼ v

1 - (n - 1)ej otherwise

�
(1d)

where n = jAj is the size of the alphabet.

The full model consists, for each observation i = 1‚ . . . ‚ N, of the hidden random variables Zi
j , indicating

generator sequences, and Hi
j , the haplotypes of the quasispecies, and the observed reads Ri

j, for all sequence

positions j = 1‚ . . . ‚ L (Fig. 1). The model parameters are summarized as h = (p, q, l, e).
For parameter estimation, we first describe the maximum likelihood (ML) approach and develop an

Expectation Maximization (EM) algorithm for ML estimation (MLE). Then, we define prior parameter

distributions that enforce sparse maximum a posteriori (MAP) solutions and present a modified EM

algorithm for MAP estimation of the parameters. This regularized model is used subsequently for the rest of

the article.

FIG. 1. Graphical representation

of the model. Only one observation

i is depicted; for the full model, the

graph is replicated for i = 1‚ . . . ‚ N.
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2.2. Maximum likelihood estimation

The likelihood Pr(R r h) of the model defined in Eqs. 1a–d factorizes into the product over independent

reads, and for each read, it can be computed efficiently using the Markov property,

Pr(R j h) =
Y

i

X
Zi‚ Hi

Pr(Zi‚ Hi‚ Ri)

=
Y

i

X
Zi‚ Hi

Y
j

Pr(Ri
j j Hi

j )Pr(Hi
j j Zi

j )Pr(Zi
j j Zi

j - 1)‚

where Pr(Zi
1 j Zi

0) = Pr(Zi
1). Using the distributive law, each sum in this expression can be factored along the

Markov chain, which gives rise to the forward algorithm (Rabiner, 1989). In this manner, the likelihood can

be computed in O(NLK2) time.

The EM algorithm (Dempster, 1977) is an iterative procedure to find local maxima of the likelihood as a

function of h by maximizing the auxiliary Baum’s function Q(h, h0), defined as the expected hidden log-

likelihood of the data with respect to the posterior distribution of (Z, H) given h0,

Q(h‚ h0) = EZ‚ Hjh0 [ log Pr(R‚ Z‚ H j h)]:

Here, h0 is the previous estimate of the parameters (p, q, l, e). Baum’s function bounds the log-likelihood

from below, and repeated iterations of maximizing Q with respect to h (M-step) alternated with estimation

of the posterior Pr(Z, H r R, h) (E-step) are guaranteed to find a local maximum of the likelihood function.

For the E-step, we compute

Q(h‚ h0) =
X

k

N
jump
1 (k) log pk +

XL

j = 2

X
k‚ l

N
jump
j (k‚ l) log qjkl +

X
j‚ k‚ v

N
hap
j (k‚ v) log ljkv

+
X
j‚ v

Nread
j (v‚ v) log (1 - (n - 1)ej) +

X
j‚ v 6¼b

Nread
j (v‚ b) log ej‚

where N
jump
1 (k) is the expected number of times a Markov chain starts in state k at position 1, N

jump
j (k‚ l) is

the expected number of times that a Markov chain switches from state k to state l right before position j,

N
hap
j (k‚ v) is the expected number of times the Markov chain is in state k and emits haplotype character v at

position j, and Nread
j (v‚ b) is the expected number of times the Markov chain emits character v at position j

and character b is observed in the reads. These expected counts are estimated for all reads by computing

posterior probabilities of the hidden variables H and Z given the data and the current estimate of h, using

the forward and backward algorithm (Rabiner, 1989).

In the M-step, the parameters are updated by maximizing Q(h, h0) with respect to h. This is achieved by

setting

pk =
N

jump
1 (k)P

k0 N
jump
1 (k0)

‚ qjkl =
N

jump
j (k‚ l)P

l0 N
jump
j (k‚ l0)

‚

ljkv =
N

hap
j (k‚ v)P

v0 N
hap
j (k‚ v0)

‚ ej =
P

v 6¼b Nread
j (v‚ b)

N(n - 1)
:

2.3. Maximum a posteriori estimation

The HMM defined by Eqs. 1a–d is non-identifiable (Ito et al., 1992). In this case, multiple solutions of h
share the same posterior. Hence, MLEs are not uniquely defined and the EM algorithm suffers from poor

convergence. To address this limitation, we define a prior distribution for the model parameters and

estimate them by maximizing the posterior probability

Pr(h j R) / Pr(R j h)Pr(h):
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We assume independent priors, Pr(h) = Pr(p)Pr(q)Pr(l)Pr(e), and Pr(p), and Pr(e) to be flat. For the

recombination probabilities q and the nucleotide probability tables l, we define independent and identical

Dirichlet distributions for all sequence positions j and all generators k,

qjk ~ Dir(a0‚ . . . ‚ a0)‚

ljk ~ Dir(a1‚ . . . ‚ a1):

The hyperparameter a0 controls the sparsity of recombination events. As a0 approaches zero, the transition

matrix qj, at the MAP estimate, approaches the K · K identity matrix IK, and recombination becomes more

unlikely. Similarly, a1 controls the variability of haplotype character emissions. For small values of a1,

mutations become increasingly unlikely. The Dirichlet priors can enforce sparse MAP solutions and for a

high degree of regularization (small a0 and a1), the model becomes identifiable.

The regularized model is not only computationally more convenient, but sparse recombination is also a

biologically plausible assumption. Indeed, despite high recombination rates, real RNA virus populations

always display genomic regions that are conserved or nearly conserved, and that define the virus. In these

regions, the different generating sequences cannot be distinguished because there is no or little diversity.

Therefore, recombination among different sequences can only be observed in regions with higher diversity,

which are a small fraction of genomic sites, and thus is expected to be a rare event.

For solving the MAP estimation problem, we use the Variational Bayes approach suggested and elab-

orated in Beal (2003) and Johnson (2007). With the Dirichlet priors defined above, it can be solved by a

modification of the EM algorithm introduced in the previous section. Specifically, only the M-step needs to

be modified to update q and l as follows:

qjkl /
f (N jump

j (k‚ l) + a0)

f (
P

l0 N
jump
j (k‚ l0) + Ka0)

‚

ljkv /
f (Nhap

j (k‚ v) + a1)

f (
P

v0 N
hap
j (k‚ v0) + na1)

‚

where the scaling function f (x) = ew(x) is defined in terms of the digamma function w, the derivative of the

log gamma function, and the constants of proportionality are given by the constraints
P

l qjkl = 1 andP
v ljkv = 1, respectively.

2.4. Model selection

For fixed sequence alphabet A and length L, the dimension of the model is determined by the number K

of generator sequences. For model selection, i.e., for choosing the optimal K, we consider the Bayesian

information criterion defined as

log Pr(R j ĥMAP) -
� log N

2
‚

where m is the dimension, or number of free parameters, of the model (Schwarz, 1978). However, the size of

the model makes it infeasible to compute its dimension directly by standard methods. Instead, we resort to a

heuristic inspired by the results in (Yamazaki, 2005) and approximate m by the number of nonzero para-

meters in the MAP estimate ĥMAP. In our empirical tests, this heuristic worked very well for values of K up

to at least 5. For practical purposes, this appears sufficient, as in the quasispecies model the number of

dominant haplotypes is assumed to be small and hence can be generated by a small number K of low-

entropy probability tables over A. For model selection, the smallest K is chosen within one standard error

of the K with the maximum BIC (Tibshirani et al., 2001).

As an alternative model selection strategy, the goodness of fit of the model may be assessed in a cross-

validation setting, but this approach is computationally much more expensive and would drastically slow

down the effective runtime.

2.5. Prediction

The main object of interest that we derive from the model is the haplotype distribution Pr(H), i.e., the

structure of the viral quasispecies. For given model parameters h, estimated from read data R, we can compute
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the probability of each haplotype efficiently using the forward algorithm, and the distribution Pr(H) might be

estimated by computing the probability of each haplotype. However, since there are 4L possible haplotypes,

enumeration is infeasible already for moderate sequence lengths L. Instead, we estimate Pr(H) by sampling

from the model using Eqs. 1a–c. In the applications below, we sampled 10,000 haplotypes at the MAP

estimate of h. This procedure is efficient, because the entropy of almost all model parameter probability tables

ljk and qjk is close to zero, and hence the probability mass of Pr(H) will be centered on a few haplotypes.

Although not employed in the present article, other quantities of interest can be predicted from the

model. For example, read error correction can be done by replacing each read Ri with the haplotype it most

probably originated from, i.e., with argmaxh Pr(Hi = h r Ri = r). If the allele frequency spectrum is sought

after, for example, because the effect of specific single-nucleotide variants (SNVs) is known, then the

posterior probability of each SNV given all observed reads can be computed as Pr(Hj = v r R).

2.6. Implementation

For the EM algorithm, we iterated the E-step and the M-step until convergence, which was detected by a

relative change of the log-likelihood smaller than 10 - 8. Since the EM algorithm is only guaranteed to find a

local maximum, we performed 50 random restarts and chose the solution with the largest likelihood.

The initial parameter values for ljk are constant, ljk = (1=n‚ . . . ‚ 1=n), and for p and qjk, they are drawn at

random from the distributions p~Dir(2‚ . . . ‚ 2) and qjk~Dir(s0‚ . . . ‚ s0), where s0 controls the sparsity. If

necessary, the values of qjk are reordered such that the k-th entry always has the highest value of this vector,

which is achieved by switching two entries. The resulting initial transition matrix encodes rare transitions

across the generators. Empirical analysis indicated good performance of MAP estimation with prior and

initialization Dirichlet hyperparameters set to a0 = a1 = s0 = 0.01.

The forward and backward calculations of the E-step will underflow for long reads; therefore, these prob-

abilities are rescaled at each step rather than computed on a logarithmic scale, which would take much more

time. Reads are hashed at the beginning in order to identify identical ones and to avoid unnecessary compu-

tations. Thus, the effective runtime is O(NuLK2), where Nu is the number of unique reads. The E-step can be

independently computed for each read. In addition, all random restarts of the EM can be computed separately.

We have implemented MAP estimation, model selection, and prediction of the haplotype distribution in

a Java program called QuasiRecomb. It runs on any operating system supporting Java version 1.7 (Linux,

OSX, Solaris, Windows). The software is open source and licensed under the GNU General Public License.

It is available online at www.cbg.ethz.ch/software/quasirecomb/

3. RESULTS

3.1. Simulation study

We assessed the performance of our model on seven different datasets, corresponding to different

distributions of haplotypes of 300 bp length. Datasets 1, 2, 3, 5, and 6 have one recombination breakpoint,

dataset 4 has two recombination breakpoints, and dataset C serves as a negative control without any

recombinants. Generator sequences differed by between 6 and 10% of nucleotides. The haplotype distri-

bution of each dataset is reported in Figure 2.
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FIG. 2. Frequencies in percent

for the haplotypes of each dataset.

The symbols for the original hap-

lotypes and recombinants are filled

dots and open squares, respectively.

The numbers in parentheses on top

of each plot report the number of

original haplotypes plus the number

of recombinants in the respective

dataset.
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For each distribution of haplotypes, we sampled 50 datasets of 2,000 reads each with point mutations at

an error rate of 0.03% per base and evaluated the BIC score for model selection. The error rate reflects the

amount of substitution errors that can be expected in a typical NGS experiment using 454/Roche after

filtering low-quality reads and removing frameshift-causing indels in the alignment step. Figure 3 reports

the BIC scores for the seven datasets. In all cases, the correct number of generators is chosen, applying our

model selection. Except for the last dataset, the BIC score is maximum at the correct number of generators.

In order to study the impact of the sample size, we sampled instances of the first dataset of different sizes

and repeated the model selection procedure. We analyzed datasets of 300, 400, and 500 reads. The results

are reported in Figure 4. For the first two samples, the BIC score erroneously selects K = 1, whereas for 500

and more reads, the procedure correctly selects K = 2 generating sequences, indicating that sufficient

coverage is an important prerequisite.

Furthermore, the sensitivity has been tested using the first dataset, with fixed haplotype distances. We

sampled 1,000 error-free reads from the original haplotypes at frequencies 80% and 20%, and replaced

arbitrarily two reads of the sample with the two recombinants from the first dataset. QuasiRecomb was

able to reconstruct these recombinants at a frequency of 0.1%. Since the scenario of a technical error-free

sample is unrealistic, we again sampled as before, but with an error-rate of 0.03% per base, and again we

are able to reconstruct the low-frequency recombinants. Even in the case of a tenfold higher error-rate of

0.3% per base, QuasiRecomb successfully identifies and reconstructs the recombinants. This can be

explained by the fact that an accumulation of about 10 technical errors on a length of 300 bp is very

unlikely. One might also investigate the sensitivity w.r.t. the distances among haplotypes and fixed

frequencies.

For parameter estimation, we sampled an additional set of 2,000 reads from the haplotype distribution

and ran the EM algorithm with the value of K inferred before. Then, we inspected the MAP estimates of the

parameters l, p, and q. Whenever the correct K had been chosen, the entropy of the estimates of the tables

ljk is very close to zero. Regarding the recombination parameters, except for the negative control dataset,

there is always a position j after the last variable site and before the recombination hotspot such that

qjkl 6¼ 0 for two different generators k and l.

In the negative control dataset, where no recombinants are present, the three generating sequence profiles

corresponded exactly to the original haplotypes, i.e., the entropy of all ljk tables was very close to zero, and

no recombination was detected, i.e., qj = IK for all j. In this case, p represents the frequency of the original

haplotypes and its estimate was very close to the original distribution. The remaining discrepancy can be

explained by the sampling variance of the reads alone.

We assessed the accuracy of the inferred quasispecies by comparing it to the original set of sequences

using the proportion close measure, uq, defined as the fraction of reconstructed haplotypes that match an

original one with at most q mismatches (Eriksson, 2008). Figure 5 reports the proportion close, as a

function of the number of allowed mismatches, for the models learned from datasets 1 to 4. For com-

parison, we additionally learned a model in which recombination is not possible, i.e., where qj = IK for all j.
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simulated datasets. The model cor-
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Allowing recombination, model selection chose the correct number of generators for all four datasets.

Without recombination, the correct number of generators (and of haplotypes) is 4 = 2 + 2, 9 = 3 + 6,

27 = 3 + 24, and 16 = 4 + 12, respectively (Fig. 3). Identifying nine generators or more is hard, and

running the EM algorithm becomes inefficient, because the runtime grows quadratically in K. For dataset

1, without recombination, BIC still selects K = 2, because the penalization for a larger K is too high.

Visual inspection of the MAP estimate parameters shows that the first generator is completely concen-

trated on one profile, and the second generator explains the other three haplotypes by flat generator

distributions lj2. Setting K = 4, all generators concentrate on the original haplotypes, but as expected, the

runtime is higher and many more EM restarts are needed to find this MAP estimate, because the

likelihood surface is very flat.

The advantage of modeling recombinants is evident as the fraction of the population reconstructed is

always higher than in the recombinant-free case. For all four datasets, the proportion close is at least 99%

for q ‡ 1 if recombination is accounted for, whereas the recombination-free model fails to reconstruct the

quasispecies structure in these cases (Fig. 5). This is a consequence of the poor performance of the model

selection in this case, namely K = 2, 4, 5, and 5 for datasets 1, 2, 3, and 4, respectively.

3.2. Real HIV dataset

Using QuasiRecomb, we analyzed a set of experimental NGS reads obtained by sequencing a clinical

sample from an HIV-infected patient in the context of a study of viral tropism (Archer et al., 2010)

(Sequence Read Archive run SRR069887). We selected 1,517 reads overlapping a 179 bp long region of the

env gene (positions 6321–6499 in the HXB2 reference strain). We ran the EM algorithm on 50 datasets,

generated by bootstrapping 1,517 reads each, and selected the model with K = 2 generators (Fig. 6, left).

The estimated quasispecies is dominated by a single haplotype with an estimated frequency of 31%. This

master sequence is surrounded by a swarm of mutants, 12 of which have relative frequencies over 1% and

many others have lower frequencies (Fig. 6, right). The sequence similarities of the estimated haplotypes

with relative frequencies greater than 1% are between 93 and 99%. Each generator has four positions with a

positive recombination probability.

FIG. 4. BIC score for simulated

dataset 1 at different sample sizes

between 300 and 500 reads. The

model selection correctly selects

K = 2 already with 500 reads. The

boxplots summarize results on 50

independent datasets.
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already for q ‡ 1 if one allows re-

combination, but only for q = 3 to 15

if one does not allow recombination.
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In order to appreciate the compactness of the model inferred with the jumping HMM, we compared its

solutions with those of another tool to reconstruct haplotypes, implemented in the software ShoRAH

(Zagordi, 2011). This method, which does not take recombination into account, identified 15 haplotypes in

the same dataset, which can be further reduced to 10 if one excludes those with frequencies lower than 1%

and those which harbor a frameshift due to a deletion.

4. DISCUSSION

We have presented a probabilistic model based on an HMM that infers the distribution of haplotypes in a

viral quasispecies from NGS data. The model describes these different viral strains present in the popu-

lation as originating from different generating sequences by means of two processes: point mutation and

recombination. Point mutation is captured by the fact that the sequences are modeled as probability tables

over the sequence alphabet. Recombination is modeled via a change of the sequence from which the

haplotype is drawn, as indicated by a change of state, or a jump, in the hidden Markov chain. Due to the

possibility of switching between sequences, the number of tables necessary to describe the population

structure remains small, while offering an excellent fit to the data. This results in a more compact and

structured description of the viral population.

We have introduced regularization to achieve sparse MAP estimates accounting for the fact that mutation

and recombination are rare events. Using the EM algorithm, MAP estimates can be computed efficiently.

Our results on simulated data demonstrate the usefulness of enforcing this sparsity when inferring re-

combinant haplotypes from read data.

There are several ways to extend the methodology presented here. Estimating the haplotype dis-

tribution is currently done by sampling from the model. Another approach would be to compute the top

suboptimal haplotypes from the recombinant sequence generators. In previous work on the analysis of

NGS data to estimate genetic diversity, model selection has been approached in a non-parametric way

by using the Dirichlet process mixture (Prabhakaran et al., 2010; Zagordi, 2010a). Extension of the

HMM in this direction has been proposed and might be explored in this context as well (Beal et al.,

2002).

We have presented our results in a local reconstruction setting, but our implementation QuasiRecomb is

already adapted to accept global read alignments in BAM format. In this scenario, the population structure

inferred locally is extended to genomic regions that are longer than the typical read length. This is achieved

by allowing for longer generating sequences, along with two additional silent states, to describe the

unobserved regions before and after each read in the same fashion as the pair-HMM can be used for semi-

global sequence alignment.

The quasispecies inference approach we propose here is designed for sequencing technologies with long

reads. In general, we expect the accuracy of our method to decrease for shorter reads. We note, however,

that the read length of most sequencing technologies is constantly improving and that some NGS platforms

can produce reads over 1,000 bp. With such long reads, the probability to observe recombinations on a

single read will be higher, and the necessity to keep the number of generators small will be even more

compelling.

FIG. 6. BIC scores for a clinical

sample based on 50 bootstrap

samples (left) and the haplotype

distribution of the inferred quasi-

species on a log–log scale for K = 2

(right).
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Gilles, A., Meglécz, E., Pech, N., et al., 2011. Accuracy and quality assessment of 454 GS-FLX Titanium pyro-

sequencing. BMC Genomics 12, 245.

Ito, H., Amari, S.I., and Kobayashi, K. 1992 Identifiability of hidden Markov information sources and their minimum

degrees of freedom. IEEE Transactions on Information Theory 38, 324—333.

Johnson, J.A., Li, J.F., Wei, X., et al. 2008. Minority HIV-1 drug resistance mutations are present in antiretroviral

treatment-naı̈ve populations and associate with reduced treatment efficacy. Plos Med. e158.

Johnson, M. 2007. Why doesn’t EM find good HMM POS-taggers? EMNLP-CoNLL, 296–305. www.aclweb.org/

anthology/D/D07/D07-1031

Kimmel, G., and Shamir, R. 2005 GERBIL: Genotype resolution and block identification using likelihood. Proc. Natl.

Acad. Sci. U. S. A. 102, 158–62.

Metzker, M.L. 2010. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46.

Nowak, M.A., Anderson, R.M., McLean, A.R., et al. 1991. Antigenic diversity thresholds and the development of

AIDS. Science 254, 963–9.

Prabhakaran, S., Rey, M., Zagordi, O., et al. 2010. HIV-haplotype inference using a constraint-based dirichlet process

mixture model. Machine Learning in Computational Biology (MLCB) NIPS Workshop 2010, 1–4.

Prosperi, M.C., Prosperi, L., Bruselles, A., et al. 2011. Combinatorial analysis and algorithms for quasispecies re-

construction using next-generation sequencing. BMC Bioinformatics 12, 5.

Quince, C., Lanzen, A., Davenport, R.J., and Turnbaugh, P.J. 2011. Removing noise from pyrosequenced amplicons.

BMC Bioinformatics 12, 38.

Rabiner, L.1989. A tutorial on hidden Markov models and selected applications in speech recognition (with erratum).

Proceedings of the IEEE 77, 257–286.

Scheet, P., and Stephens, M. 2006. A fast and flexible statistical model for large-scale population genotype data:

applications to inferring missing genotypes and haplotypic phase. The American Journal of Human Genetics 78,

629–644.

Schultz, A.K., Zhang, M., Leitner, T., et al. 2006. A jumping profile hidden Markov model and applications to

recombination sites in HIV and HCV genomes. BMC Bioinformatics 7, 265.

Schwarz, G. 1978. Estimating the dimension of a model. Ann. Satist. 6, 461–464.
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