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ABSTRACT

We present a new computational scheme that enables efficient and reliable quantitative trait
loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive
search effectively prohibits accurate QTL scans involving more than two loci to be per-
formed in practice, at least if permutation testing is used to determine significance. Some
more elaborate global optimization approaches, for example, DIRECT have been adopted
earlier to QTL search problems. Dramatic speedups have been reported for high-
dimensional scans. However, since a heuristic termination criterion must be used in these
types of algorithms, the accuracy of the optimization process cannot be guaranteed. Indeed,
earlier results show that a small bias in the significance thresholds is sometimes introduced.

Our new optimization scheme, PruneDIRECT, is based on an analysis leading to a
computable (Lipschitz) bound on the slope of a transformed objective function. The bound is
derived for both infinite- and finite-size populations. Introducing a Lipschitz bound in DI-
RECT leads to an algorithm related to classical Lipschitz optimization. Regions in the
search space can be permanently excluded (pruned) during the optimization process.
Heuristic termination criteria can thus be avoided. Hence, PruneDIRECT has a well-defined
error bound and can in practice be guaranteed to be equivalent to a corresponding ex-
haustive search. We present simulation results that show that for simultaneous mapping of
three QTLS using permutation testing, PruneDIRECT is typically more than 50 times faster
than exhaustive search. The speedup is higher for stronger QTL. This could be used to
quickly detect strong candidate eQTL networks.

Key words: algorithms, branch-and-bound, genetic mapping, genomics, statistical models,

statistics.

1. INTRODUCTION

The rapid development of off-the-shelf technology for molecular genetics has resulted in that

dense genetic maps and the corresponding genotype information can be provided in a much easier and

cheaper way than before. This development opens new possibilities for analysis of quantitative traits, that is,

traits that exhibit a continuous phenotype distribution. Since most important traits in humans, animals, and
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plants can indeed be seen as quantitative and affected both by the genetic composition and the environment,

genetic mapping of them represents both a major opportunity and a challenge for modern genetics.

The underlying genetic architecture of a quantitative trait can be described by identifying a set of

quantitative trait loci (QTL) in the genome for a population and attributing effect values to these loci using

a suitable statistical model framework. The standard approach for locating a QTL is based on interval

mapping (IM) (Lander and Botstein, 1989). Evaluating the standard IM model at a given position in the

genome involves solving a maximum-likelihood problem based on genotype and phenotype frequencies for

the population studied. In a QTL search, the evaluation of the statistical model is repeated for a large set of

candidate positions in the genome to determine the QTL locations that results in the best model fit.

Mathematically, this corresponds to solving a global optimization problem using some optimization

scheme.

The result of a QTL mapping procedure is normally useful only if a proper significance threshold can be

derived. Already when searching for a single QTL, traditional v2 approximations have been shown to have

a significant bias (Carbonell et al., 1992). Therefore, randomization testing is frequently used (Churchill

and Doerge, 1994), where many permuted datasets and the corresponding QTL searches are employed to

empirically derive the distribution of the optimal model fit under the null hypothesis of no QTL being

present.

In general, it can be assumed that multiple interacting QTL (epistatic interactions) should be included in

a model to fully describe the genetic effect on a trait (Doerge, 2002). However, using a d-QTL model with

general interactions, a d-dimensional global optimization problem has to be solved for each QTL search.

For QTL models, the optimization landscape is often varied with many local minima, and still today the

standard approach for QTL mapping problems is to use a brute-force exhaustive search over a dense lattice

covering the search space. For multidimensional searches, this approach rapidly becomes computationally

intractable. Beyond d = 2, QTL mapping employing true multidimensional dimensional optimization has,

as far as we know, not been used in practice. This means that geneticists have so far not drawn any firm

conclusions on how important epistatic interactions between more than two QTL are for describing

quantitative traits. However, there are indications that such interactions may indeed be important (see, e.g.,

Carlborg and Haley, 2004).

A main reason for the inconclusive situation regarding the importance of more complex epistatic in-

teractions is the lack of efficient and reliable computational tools for performing multidimensional QTL

mapping, as well as determining the joint significance of the set of QTL found. In this context, it should

also be noted that even under the assumption that the QTL do not interact (i.e., the true population effects

are perfectly additive), the estimated QTL effects will be more accurately estimated if all putative loci are

included in a single, multilocus model. Hence an efficient computational tool also can be very useful for

such settings. If a single-locus model is used repeatedly, correlations between loci could inflate or distort

the detected effects. This is especially true for linked loci residing on the same chromosome, but also holds

due to random correlations for loci located on different chromosomes.

Some early examples of simultaneous mapping of two QTL are found in Carlborg et al., (2000), where a

genetic optimization algorithm is used for solving the optimization problem. Today, performing two-

dimensional QTL mapping is regarded as a standard procedure by many researchers in genetics. In

Ljungberg et al. (2004), the deterministic optimization algorithm DIRECT (Jones et al., 1993) was in-

troduced for solving QTL search problems and also for d ‡ 2, but these results have so far not been used to

perform high-dimensional QTL mapping experiments of relevance to genetics.

In this article, we present a computational scheme that enables an efficient and reliable solution to QTL

mapping problems in experimental populations for high-dimensional general models of interacting QTL.

Our scheme is based on an analysis of the behavior of the objective function (the results from a linear

regression QTL model fit) and implemented in deterministic global optimization framework. We also show

how the result of the analysis and our optimization framework can be used to set up permutation testing in a

very efficient way to determine the relevant significance thresholds. Our algorithms are structured in such a

way that the problem of determining the set of d QTL resulting in the optimal model fit is separated from

the evaluation of the model of the QTL effects. This implies that models based on for example, both the

linear regression approximation and the standard interval mapping maximum-likelihood model can easily

be included in a production tool for genetic analysis. We focus on linear regression models in this article

since they are much less computationally demanding and lend themselves to the type of transformations

that are exploited in our analysis of the behavior of the objective function. In this context, it is important to
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note that if complete genetic information is available, and general assumptions of normal distributions hold,

the linear regression and maximum likelihood are equivalent (Haley and Knott, 1992).

2. LINEAR REGRESSION QTL MODELS

We consider QTL analysis for experimental populations with known relations between individuals, with

the founder individuals demonstrating some origin-defining feature. This can be a matter of a known

genetic relation (a set of common inbred or outbred lines) between the founders, or founders expressing a

specific phenotype. Today, very dense marker maps are available, and we formulate the analysis assuming

information on allele origin being available in any position tested.

If a model with a total of d QTL is used, then the corresponding d sites in the genome are assumed to

represent the only genetic factors that contribute to the phenotype. One can split individuals based on

genotype into 2d classes in a backcross (3d for an intercross), since each of the d sites can take two different

values (three for an intercross, two homozygote genotypes, and one heterozygote, if allele parental origin is

ignored). Within each of these classes the variance is entirely nongenetic. Another important assumption is

that phenotypes are normally distributed with different means but identical variance in each class, that

is, yjg1‚ g2‚ . . . gd ~ N(lg1‚ g2‚ ...gd
‚ r2). For details on different experimental cross structures, see, for ex-

ample, Wu et al. (2007). For ease of presentation, we now consider the typical case in which we have an F0

generation of individuals that can be considered to belong to either out of two lines, Q and q. Assuming loci

act additively, one can model a relation between genotype and phenotype in a backcross based on these

founders as:

yi = l(x) +
Xd

j = 1

aj(xj)Zi(xj) + ei(x)‚ where : Zi(xj) =
1‚ Qq at xj;
0‚ qq at xj:

�
(1)

In this model, x = (x1‚ . . . ‚ xd) is a vector of d elements that defines the search space, spanning a hypercube

where xi ranges over the length of the genome. In practice, the search space volume can be slightly reduced

by employing the symmetries, resulting from the fact that the ordering of the QTL within the model is

irrelevant. The phenotypes of all individuals are denoted by y = (y1‚ . . . ‚ yn). ei is normally distributed with

mean 0 and variance r2, l is the reference effect, and a is the additive effect. The model (1) can be written

in a matrix form:

y = A(x)b(x) + e(x)‚ where b(x) = (l(x)‚ a(x))T : (2)

The least-squares estimate of the QTL effects for this linear model is:

b̂ = (A(x)T A(x)) - 1(A(x)Ty) (3)

r̂2 =
1

n
(y - A(x)b(x))T (y - A(x)b(x)): (4)

These QTL positions can now be found by minimizing the residual sum of squares over all x and b:

RSSopt = min
x‚ b(y - A(x)b(x))T (y - A(x)b(x)): (5)

The solution to this minimization problem can be separated into two parts: the inner, linear problem:

RSSopt = min
b

(y - A(x)b(x))T (y - A(x)b(x))‚ (6)

and the outer, nonlinear problem:

RSSopt
= min

x RSS(x): (7)

Solving the minimization problems (5) for a multiple QTL mapping problem is computationally heavy

since x is a d-dimensional vector, and the optimization landscape for the outer (global) optimization

problem is in general quite complex. It is clear that an optimal (albeit not necessarily unique) solution to the

QTL search problem always exists, but to determine if a result is statistically valid a significance threshold
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has to be determined. If permutation testing is used for determining the genome-wide threshold, several

hundreds or thousands of QTL mapping problems of the type (5) must then be solved for the permuted

datasets.

3. A GLOBAL OPTIMIZATION ALGORITHM FOR QTL MAPPING

Our new computational scheme for solving the high-dimensional QTL mapping problem is based on a

deterministic Lipschitz optimization approach implemented in the DIRECT ( Jones et al., 1993) algorithmic

framework. In this section, we first review the original DIRECT algorithm and then summarize how this

scheme was adapted to solve multidimensional QTL search problems in Ljungberg et al. (2004). We then

present the basic idea behind our new optimization scheme, named PruneDIRECT, as a background for the

more detailed description and analysis in later sections.

3.1. The original DIRECT algorithm

In the DIRECT scheme, the search space is successively divided into progressively smaller boxes. The

search effort is focused in the most promising regions, and the subdivision of less promising boxes is

postponed. For a traditional exhaustive search over a d-dimensional hypercube, the objective function is

evaluated in a brute-force fashion at every point of a fine lattice covering the search space, using no further

information on the objective function. If DIRECT is run to completion using a minimum resolution

criterion matching the step length in the exhaustive search lattice, it will eventually explore exactly the

same points as the corresponding exhaustive search. The efficiency of the DIRECT algorithm comes from

exploiting the property that the most promising regions are explored first. A heuristic termination criterion

is then needed to stop the search well before it devolves into an exhaustive search. As the heuristic criterion

has no firm mathematical foundation, this implies that there is no well-established guarantee that the result

from DIRECT is equal to the result from an exhaustive search over the same space. This is a typical result

for global optimization schemes aimed at solving general problems. To be able to provide guaranteed

accuracy without exploring the full search space, more information on the properties of the objective

functions must be provided and used in the optimization procedure.

The original DIRECT algorithm initially creates a single search box covering the full search space. The

objective function, that is, in our case the RSS, is evaluated in the center of this box. The box is then split

into three equally sized boxes along the majoring dimension. This trinary split results in the centroid of the

original box coinciding with the centroid of one of the new boxes. Therefore, only two additional function

evaluations are required for the three resulting boxes. DIRECT then continues iteratively splitting the

boxes. At the end of each DIRECT iteration, the convex hull is determined among the remaining boxes, in a

space of box radii vs. objective function values. This hull determines which boxes to split in the following

iteration. By computing the hull, the RSS value for the sequence of boxes will be monotonously decreasing

if tracing along the box radii. The idea is that a promising box is characterized by either being large, so

there is a high possibility that exploring it further might recover a new optimum, or that the value at the

centroid is close to the current optimum and hence a new optimum might be found, even if the radius is

small. This qualitative argument can also be represented as different assumptions of the value of a Lipschitz

constant K, that is, on the maximal slope of the objective function ( Jones et al., 1993). Figure 1 illustrates a

few iterations of DIRECT in a simple one-dimensional space. The hull is ‘‘peeled off’’ when those boxes

are split, making new boxes available in the next iteration. This process is repeated until a suitable

termination condition has been reached.

3.2. Adaption of DIRECT to solve QTL mapping problems

In Ljungberg et al. (2004), the original DIRECT algorithm was adapted for solving QTL search prob-

lems. A heuristic termination criterion, as described above, was used to stop the search, and the resulting

scheme was proven to be orders of magnitudes faster than the corresponding exhaustive search. This made

QTL searches for at least d = 3, 4, and 5 possible using a reasonable computational effort. However, the

results in Ljungberg et al. (2004) also show that using DIRECT for the permutation tests can result in a bias

in the significance thresholds compared to those from an exhaustive search. The reason for this is that the
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termination criterion used in Ljungberg et al. (2004) results in premature termination for the very flat

optimization landscape present in most permuted cases. The end result is that a putative 95% threshold

instead would give, for example, 94.8% significance. It should also be noted that no bias was detected in the

DIRECT searches for nonpermuted phenotype data, probably due to the more structured nature of these

optimization landscapes. A main result of the analysis presented in later sections is that it is possible to

terminate our new PruneDIRECT process at a much earlier point than the corresponding exhaustive search

while still being able to guarantee, up to some defined residual probability, that the same global optimum is

found as for the exhaustive search.

We argue that the successful results for DIRECT presented in Ljungberg et al. (2004) originate from the

fact that the probability of co-inheritance of two genomic loci on a single chromosome is related to their

physical distance from each other. The standard unit for genetic distances, mapping distance, is even

directly defined from such probabilities. In Ljungberg et al. (2004), this fact is not explicitly used in the

algorithm, but since the end result is that the slope of the objective function is limited, the performance of

DIRECT ends up being quite good. It is also clear that this notion of co-inheritance cannot be extended

across chromosome boundaries. Separate chromosomes segregate independently and can be considered to

have an infinite mapping distance. In the search space for the QTL mapping problems, all genome locations

are lined up as a single line, one chromosome after another. There is a clear disjunction at the chromosome

borders, corresponding to a discontinuity of the RSS at these boundaries. In Ljungberg et al. (2004), this

situation is handled by introducing what is essentially several DIRECT searches governed by a common

priority queue. In this version of the algorithm, each chromosome combination is considered to correspond

to a separate search space, called a chromosome combination box (cc-box). In the first step of the DIRECT

scheme, the RSS is evaluated at the centroids of all these cc-boxes.

3.3. The PruneDIRECT algorithm

The original DIRECT algorithm is based on an assumption of Lipschitz continuity, where the value of

the Lipschitz constant is unknown. This means that we know there exists a constant K such that no partial

first-order derivative of the RSS will exceed K in any position but that the value on this bound of the slope

of the objective function is not known.

Our improvement of the DIRECT procedure for QTL mapping is based on the fact that a Lipschitz bound

for a QTL problem can be computed based on the relation between co-inheritance and physical distance

mentioned above. Parts of the search space can then be permanently excluded from further subdivisions at

each iteration in the DIRECT procedure, resulting in an efficient algorithm where a heuristic termination

criterion does not have to be used. The resulting scheme has a well-defined error bound and is equivalent to

the corresponding exhaustive search.
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FIG. 1. To the left, three boxes in the optimization space are illustrated. As all boxes are of equal size, only one will

be selected for splitting in the convex hull, resulting in the boxes on the right. If the splitting continues, two boxes

would be split, one from each size, as the smallest function value in the smaller box size is slightly lower than the

smallest value in the larger one. Dashed lines indicate possible minimum function values found at each distance from

the box centroid, assuming a strict Lipschitz bound of K = 0.04.
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If a bound on the Lipschitz constant K is known, it is possible to compute upper and lower bounds for the

objective function within any box in the search space, given knowledge of the value at the centroid. When

using the original DIRECT algorithm, K is unknown, but it is still possible to impose a partial ordering of

boxes. If a box A is both smaller and has a larger value of RSS than another box B, then no value of K can

result in a smaller minimum bound within A than within B. This partial ordering gives rise to the choice of a

convex hull of boxes to split in the next iteration.

However, DIRECT can also be considered in the more general context of Lipschitz optimization

schemes. Here, the more traditional schemes (Shubert, 1972; Pinter, 1986; Galerpin, 1985; Mladineo, 1987)

assume that a bound of the Lipschitz constant is known. By introducing an upper bound on K in DIRECT,

the resulting algorithm is brought close to classic Lipschitz optimization. A known value of the objective

function in small boxes will also enable exclusion of larger boxes, hereby introducing a pruning of the

search tree, indicating the choice of name for our new algorithm. In contrast to the peeling effect of

successive convex hulls in DIRECT, which will eventually result in every existing box getting split, box

volumes pruned due to a Lipschitz criterion are permanently irrelevant for further evaluation of the RSS

and can be removed from all data structures.

The natural termination condition for the PruneDIRECT algorithm is given by the finite resolution

criterion corresponding to the lattice in the underlying exhaustive search. This results in an error bound of

Kh on the value of the objective function, where h is the step length in the lattice. Thus, a bound on the

Lipschitz constant K leads to the new PruneDIRECT algorithm having improved performance compared to

exhaustive search (by excluding parts of the search space) and a well-defined error bound. Since no

heuristic termination criterion is used anymore, a main new result is also that PruneDIRECT can be

guaranteed to be equivalent to the corresponding exhaustive search, effectively removing any bias of the

results caused by the optimization procedure.

For multidimensional QTL mapping that explores the full search space, it is possible to directly use the

permutation test methodology for single-QTL models. However, performing hundreds or thousands of

multidimensional QTL searches for permuted data in order to get a significance threshold can be a very

computationally demanding task, even when an efficient global optimization scheme is employed. Here, it

should be noted that since the purpose of doing the random permutations is to determine a significance

threshold empirically, it is not necessary to locate the location of the best model fit for every set of

randomized data. Rather, it is enough to answer the yes/no question if it is possible to find a location in the

permuted dataset with a residual variance below that of the putative set of QTL. If the optimum value used

to determine pruning is replaced by the value of the QTL candidate tested, rather than the optimum found in

the current permute search, significant decreases in computational effort are possible, even compared to

using the same algorithm to solve the full QTL search problem for each permuted dataset. The significance

levels derived are identical. We use this approach to derive a very fast scheme for performing permutation

tests, described in more detail later.

4. PRESENTING THE LOGVAR OBJECTIVE FUNCTION
AND ITS LIPSCHITZ BOUND

In this section, the behavior of a transformed QTL search objective function at, and in the vicinity of, a

QTL is considered. For a QTL search, the explainable genetic variance can be considered a natural

objective function since the position with minimum residual variance can be defined as the location of a

putative QTL. The benefit of using our transformed objective function, which we call LogVar, is the

possibility to calculate a bound for its Lipschitz constant. The derivation of the bound is based on cal-

culating the explainable variance as a function of genetic distance from the true QTL. We start by

presenting the transformation and deriving the bound for an infinite size population and then move to the

more realistic situation where QTL mapping for a finite size population is performed.

4.1. Infinite size population

Consider an infinite size population. The total variance is the sum of genetic variance and environmental

variance. If there are d QTL, then all genetic variance is explainable by them. We start by analyzing d = 1

and then show how these results can be generalized to higher dimensions. Assume there is a QTL at

692 NETTELBLAD ET AL.



position x0. The total variance is the ‘‘mean squared error.’’ We split the total variance into a sum of

undiscovered genetic variance and the discovered genetic variance at position x + x0:

Vtotal = Vgenetic + Venviromental = Vg - discovered(x + x0) + Vg - undiscovered(x + x0) + Ve‚

which can be abbreviated into Vt = Vgd(x + x0) + Vgu(x + x0) + Ve:
(8)

Then define Vr(x + x0) = Vgu(x + x0) + Ve as the unexplainable variance at position x + x0. The goal is to

express Vr(x + x0) as a function of the recombination frequency and then find a bound for it. For simplicity,

we start by letting Ve = 0 and later we add Ve back to the calculation.

Assume that the phenotype values for the two QTL genotypes are 0 and 1. Due to the symmetric

structure of individuals with phenotype value 0 and individuals with phenotype value 1, Vr(x + x0) for each

class is equal to the total residual variance. Hence:

Vr(x + x0) = Vr(x + x0 for class 1) = Prob(no recombination) · (1 - l(x + x0 for class 1))2

+ Prob(recombination) · (0 - l(x + x0 for class1))2
(9)

where:

l(x + x0 for class 1) = 1 · Prob(No recombination) + 0 · Prob(recombination)

= p(x + x0):
(10)

Hence, from substituting (10) in (9) and denoting the recombination frequency at position x + x0 by

p(x + x0) we get:

Vr(x + x0) = (1 - p(x + x0))(1 - p(x + x0))2 + p(x + x0)(0 - p(x + x0))2

= p(x + x0) - p(x + x0)2:
(11)

This result for Vr should be related to the total phenotypic variance, which is the genetic variance at

position x0 since we defined Ve = 0. We know that all the variance at a QTL point is the discovered

variance, hence:

Vt = Vg(x0) = Vgd(x0) + vgu(x0) = [0:5 · (1 - 0:5)2 + 0:5 · (0 - 0:5)2] + 0 = 0:25: (12)

At last, we need to have a recombination map, relating genetic distance to the recombination frequency. We

use Haldane’s mapping function (Haldane, 1919):

p(x + x0) = 0:5 + 0:5e - 2x
100‚ (13)

where x is the genetic distance from a fixed point x0 measured in centimorgan. Inserting p(x + x0) from (13)

into equation (11) we get:

Vr(x + x0) = (0:5 + 0:5e - 2x
100)(1 - (0:5 + 0:5e - 2x

100)) (14)

= 0:25 - 0:25e - 4x
100 (15)

= Vt - Vg(x0)e - 4x
100 (from12): (16)

Here, Ve can be added to the final calculation since variance is additive. Alternatively, it is safe to assume

that Ve is already included in calculating Vt. Now that we have the formula for calculating the explainable

variance as a function of genetic distance, we can introduce a transformation of the objective function in the

DIRECT optimization. Ignoring a scaling factor, the RSS is equivalent to the residual variance Vr. Adding a

constant will not affect the location of minima, so we can instead consider g(x) = Vr(x) - Vt = - Vge - j4xj
100

based on (16), assuming x0 = 0. Furthermore, the function g(x) is always negative, so f (x) = - ln(- g(x))

will always be defined and share the locations of minima with g(x). Hence, we can introduce a transformed

objective function; call it LogVar objective function:

f (x) = - ln (-Vr(x) + Vt) = - ln Vge - j4xj
100

� �
: (17)
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Here, it is easy to verify the derivative of the transformed objective function is bounded:

df (x)

dx
=

d

dx
- ln Vge - j4xj

100

� �
= � 0:04: (18)

The use of jxj in the definition of g(x) is related to the fact that x is defined as the distance from the QTL,

while a position in the chromosome can naturally be both upstream and downstream from this position. It is

possible to shift the function by introducing the true QTL position y, resulting in f (x) = ln Vg - 0.04jx - yj.
The result above can be further generalized, maintaining the bound on K. First, we have assumed that all

genetic variance was attributable to a single locus (at y). We can now assume a single-locus model for

analysis, but that the true QTL, with respective components of Vg are represented as a vector

y = y1‚ y2‚ . . . ‚ ynf g, resulting in the following expression for the residual variance (assuming all yi being

unlinked):

Vr(x) = Vt -
Xn

i = 1

Vgi
e - 4jx - yi j

100 : (19)

If all QTL are indeed unlinked, the positions yi relative to any point considered in a single-QTL model

will be –N, except for at most one yj. Since linkage is transitive, the observation position x can at most be

linked to a single QTL. Thus, (19) reduces to:

Vr(x) = Vt - Vgj
e -

4jx - yj j
100 ‚ (20)

and the derivative bound on (20) follows from the result in (18).

The next extension is to make the search landscape itself multidimensional, replacing the scalar x with a

vector x = x1‚ x2 . . . ‚ xmf g. Assume that each xi is defined with a point of reference in linkage with the

corresponding QTL zi. Modeled locations not in linkage with any true QTL will result in no explainable

variance, and therefore do not need to be considered. As the numbering of both vectors is essentially

arbitrary, all other cases are also symmetrical to this one. Using the earlier result, each xi will only have a

term for the corresponding zi, as all other mapping distances jxi - zjj would be +N. This results in:

Vr(x) = Vt -
Xn

i = 1

Vgi
e - 4jxi - zi j

100 : (21)

We then have:

f (x) = -ln (-Vr(x) + Vt)‚ (22)

where the logarithm does not affect the location of minima.

Equation (21) can be rewritten as:

Vr(x) = Vt - Vgj
e - 4jxi - zi j

100 -
Xn

i = 1‚ i 6¼j

Vgi
e - 4jxi - zi j

100

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
C

‚ (23)

for any arbitrary j 2 N‚ jpn. Based on (23), (22) becomes:

f (x) = -ln Vgj
e -

4jxj - yj j
100 + C

� �
: (24)

From basic calculus, we know that j d
dx

ln (ekx + C)j = j kekx

ekx + C
jp d

dx
ln (ekx) = kekx

ekx
= k for any C 2 R‚ Cq0.

Hence, all partial derivatives qf
qxj

are confined by the bound given for the single-dimensional first derivative

presented earlier. Thus, the LogVar objective function f (x) as defined above will again have a well-defined

Lipschitz bound.

4.2. Explainable variance as a function of genetic distance (finite size population)

The bound derived for an infinite size population does not apply directly to the derivative of the actual

residual variance in experimental data, but to the expected value of the derivative, corresponding to the

relation between the mapping distance and the expected number of crossover events. Depending on what
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recombinations are actually present (i.e., in which individuals, with accompanying phenotype values), the

actual residual variance can, and will, be different from the relationship predicted. This is an effect of

sampling, which should decrease with an increasing size in population and vanish at a theoretical infinite

population size. However, experimental populations tend to be rather small, and thus the infinite-size

approximation cannot be used directly.

In this section, we derive an approximation to the distribution of the residual sum of errors in the vicinity

of any point in the search space for a backcross. We revisit the linear model for a single QTL. Assuming

there is a QTL at point x0 = 0, the model is presented as:

yi = l(x) + a(x)Zi(x) + ei(x)‚ where: Zi(x) = 1‚ Qq at x;
0‚ qq at x:

�
(25)

Our goal is to calculate the distribution of the residual sum of squares (RSS) at point x. At first, we

introduce some definitions:

n = total number of individuals (26)

n0(x) = number of 0’s at x (27)

n1(x) = number of 1’s at x (28)

m10(x) = number of 0’s at x that are 1 at zero (29)

m01(x) = number of 1’s at x that were 0 at zero (30)

M10(x) = set of indices of individuals that recombined from 1 at zero to 0 at x (31)

M01(x) = set of indices of individuals that recombined from 0 at zero to 1 at x (32)

p = recombination frequency (33)

S0 = S1 = within - class environmental variance = 1 (34)

The last definitions are simplifying assumptions relating to the normal residual assumption underlying

linear regression. Based on the above definitions we get:

n0(x) = n0(0) + m10(x) - m01(x) (35)

n1(x) = n1(0) + m01(x) - m10(x) (36)

Z(x) =
n1(x)

n
(37)

For now, consider m01(x) and m10(x) to be fixed and known. We also assume that n0(0) = n1(0) = n /2

for simplicity. We introduce the estimates for l̂(x)‚ â(x), and RSSx. Set a1 =
P

(Zi(x) - Z(x))yi (pro-

portional to the covariance between Z and y) and a2 =
P

(Zi(x) - Z(x))2 (proportional to the variance

of Z), then:

â(x) =
a1

a2

(38)

l̂(x) = y - â(x)Z(x) (39)

After some calculation we get the values for a1 and a2:

a1 =
X

i2NnNr (x)

(Zi(x) - Z(x))yi +
X

i2Nr (x)

(Zi(x) - Z(x))yi (40)

=
X

i2Nr (x)

(1 - 2Zi(0))yi +
X
i2N

(Zi(0) - Z(x))yi (41)

where N = f1‚ 2‚. . . ‚ ng and Nr(x) = {indices for recombined individuals at point x}
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As Equation (41) shows, we split a1 into two sums, one of recombinants and the other nonrecombinant,

which can be summarized as:

a1 = a11 + a12 (42)

where:

a11 =
X

i2Nr(x)

(1 - 2Zi(0))yi =
X

i2M01

yi -
X

i2M10

yi (43)

a12 =
X
i2N

(Zi(0) - Z(x))yi (44)

a11 is a random weighted sum of phonotypes of recombinants and is the only stochastic variable involved in

â(x). The stochastic behavior of a11 comes from the fact that Nr(x) is a random variable related to the

recombination process. Generally speaking, one can say that a11 captures all the stochasticity of â(x). We

approximate the value of a11 by assuming yi’s in a11 to be normally distributed:

Assume (only for recombinant individuals) : yi~N(l(0) + a(0)Zi(0)‚ 1) (45)

then:

a11~N(la11
‚ r2

a11
) (46)

where from (43):

la11
= l(0)(m01(x) - m10(x)) - a(0)m10(x)‚ (47)

r2
a11

= S0m01(x) 1 -
m01(x) - 1

n0(x) - 1

� �
+ S1m10(x) 1 -

m10(x) - 1

n1(x) - 1

� �
(48)

S0 = 1‚ S1 = 1 (49)

We are using population correction coefficients (1 - m01(x) - 1
n0(x) - 1

) and (1 - m10(x) - 1
n1(x) - 1

), since we are sampling from

a finite size population. If, for example, all individuals would recombine, all randomness in a11 would also

disappear, which this correction reflects.

We also need to simplify a2. After some calculations, one gets

a2 = n0(x)Z(x)2 + n1(x)(1 - Z(x))2 (50)

Now that we have a1 and a2, we should calculate RSS. If a dataset is divided into disjoint categories, it is

known that one can write RSSx as:

RSSx =
X

(yi - y)2 - n0(x)(l̂0(x) - y)2 - n1(x)(l̂1(x) - y)2 (51)

where l̂0(x) and l̂1(x) are the means of each category. Using this formula we get:

RSSx = RSStotal - n0(x)(l̂0(x) - y)2 - n1(x)(l̂1(x) + â(x) - y)2

= RSSt - a2â(x)2 (52)

Given the above description, we calculate the cumulative distribution function (CDF) of RSSx:

FRSSx
(rssx) = Pa11

â(x)2p rssx - RSSt

- a2

� �
= 1 - Pa11

a11p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(RSSt - rssx)a2

p
- a12

� �
+ Pa11

a11p -
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(RSSt - rssx)a2

p
- a12

� �
(53)

Set R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(RSSt - rssx)a2

p
and then normalize the CDF to get the standard normal:

Set : z =
a11 - la11

ra11

‚ then : (54)

FRSSx
(rssxjm01(x)‚ m10(x)‚ y‚ Z(0)‚ p) = 1 -F

R - a12 - la11

ra11

� �
+F

- R - a12 - la11

ra11

� �
(55)
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where F is the CDF of standard normal distribution. Given this result, we remove the constrains on m01(x)

and m10(x) by summing over all values they can take. Since n0(0) = n1(0) = n/2, we have

m01(x)‚ m01(x) 2 f0‚ 1‚ . . . ‚ n=2g. Hence, one gets:

FRSSx
(rssxjy‚ Z(0)‚ p) =X
m01(x)

[B(m01(x)‚ n0(0)‚ p)
X

m10(x)

B(m10(x)‚ n1(0)‚ p)FRSSx
(rssxjm01(x)‚ m10(x)‚ y‚ Z(0)‚ p)] (56)

Where B is the binomial probability mass function, and the sums are over all values of

m01(x)‚ m01(x) 2 f0‚ 1‚. . . ‚ n0=1(0)g.
In this section, we derived the CDF of RSSx(x + x0), the residual sum of squares at point x in the vicinity

of x0, conditional on known m01 and m10, by approximating the phenotypes of recombinants with a normal

distribution. Then, we removed the condition on m01 and m10 by computing a probability-weighted sum

over all values they can take. This sum forms an approximation of the CDF for RSSx for fixed yi’s. This

CDF is then a two-leveled binomially weighted sum of mixture normals. One can find the value of rssx for

which this CDF is arbitrarily close to 1, for example, the 1 - e quantile. We thus have an upper bound for

the value of rssx at location x + x0, which holds with probability 1 - e.

4.3. Applications

Based on the derivation in Section 3.3, the PruneDIRECT algorithm, and the Lipschitz bound for the

LogVar objective function in Equation (17), a method can be devised for accelerating multidimensional

QTL searches and especially permutation testing for significance of an existing candidate QTL.

As indicated in the previous section, Equation (56) can be used to compute a quantile for the distribution

of the residual sum of squares for a finite-size population, that is, FRSSx, at a specific distance from a

hypothetical QTL explaining all genetic variance. We define a bound for the LogVar objective function

based on the quantile of FRSSx instead of a Lipschitz bound. All boxes are compared against the LogVar

transform for an FRSSx distribution based on the currently found optimum. Pruning of a box is possible if the

1 - e quantile for the LogVar distribution at distance x lies below the value evaluated in the centroid of a

box with Manhattan radius x. If that condition is fulfilled, then the probability that there would be a new

optimum, surpassing the current one, within the box is less than e. The value for e will then need to be

chosen so that the aggregate probability of missing a minimum over all splits in a QTL search (and any

permutation testing) is limited to an acceptable level.

In practice, the set of possible box radii appearing in the DIRECT search for a specific dataset is limited

by the structure of the marker map. For a specific minimum value, the set of quantile limits can therefore be

reused after first calculated, reducing the load of computing the sum of Gaussian-binomial products.

Furthermore, the set of all binomial distribution coefficients for a specific distance can be computed in

almost linear time with respect to the total number of individuals (see Appendix B). If, instead, each

coefficient would be determined individually when computing the sum, the complexity per term would be

on the order of O(log n), with a rather larger constant term, even when using an efficient implementation

such as the ones in the Boost Project (2012) and R Development Core Team (2011).

Finally, the binomial distribution is rather thin-tailed. Therefore, it is not necessary to sum over all

m01, m10, but rather only the subset from, for example, np=2 - 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 - p)=2

p
to np=2 + 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 - p)=2

p
, still

capturing almost all of the probability mass. This reduces the growth rate of the number of terms in the sum

from O(n2) to O(n). The resulting bound is also only slightly more conservative, as the quantiles will get

shifted upward. Details for calculating the quantiles can be found in Appendix A.

In all, these adaptations and implementation aspects make it possible to use the defined bound for finite-

population online within the Prune-DIRECT algorithm, while avoiding it representing a major part of the

total computational load. Using LogVar as the objective function rather than the RSS directly is also

beneficial even when the bound is not as simple as the Lipschitz bound, since the expectation will still be a

matter of (close to) linear behavior with a bounded slope. This fact makes the splitting strategy used within

DIRECT more efficient.

For intercrosses and other configurations with more than two states, we are still using the finite-size

distribution determined for the backcross as an approximation, with an added condition. When more

parameters are added, the computed RSS can fluctuate more. If the RSS and then LogVar value computed

in a box is higher than what would be determined by average in any single linear regression with the same
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number of degrees of freedom, that is, the mean of the v2 distribution, then the LogVar transform of the v2

mean, rather than the actually computed LogVar value, is used in determining the pruning condition. At this

level, small disturbances due to the specific phenotype values overtake the general Gaussian assumptions.

5. RESULTS

The use of DIRECT in Ljungberg et al. (2004) only resulted in a very small bias when used for

permutation testing. Evaluating our PruneDIRECT method with too few permutations and with a specific

experimental dataset might render a false positive, such as the case in which an exhaustive search finds a

different optimum that can be assumed to be very rare. Also, using a purely simulated dataset might hide

nonideal properties of experimental datasets, giving a validation of our bound that would not work out in

practice. For example, the patterns of missing genotype data can give additional confounding and sampling

effects.

For these reasons, we decided to use an unpublished experimental dataset with a combination of

microsatellite and SNP markers and varying patterns of missing data for our experiments. The dataset is

described in Nettelblad et al. (2009). Based on inferred haplotypes in the F0 generation, derived using the

tool presented in that article, multiple replicates based on this population structure were constructed and

QTL with varying dimensionality simulated accordingly. These replicates could then be analyzed for

main effects and permuted runs. By creating hundreds or thousands of replicates, with hundreds of

permutations within each, we can expect to discover any deviations between exhaustive search and

running PruneDIRECT with a combined termination condition of minimum resolution equivalent to the

exhaustive search lattice, and a pruning of impossible split candidates based on the strategy outlined in

Section 4.3.

5.1. Simulations

The simulations were performed on the Tintin cluster at the UPPMAX computational resource center,

running as single threads on nodes with AMD Opteron 6220 CPUs. The code is parallel, but since a very

large number of replicates were used, many jobs corresponding to individual replicates were executed

simultaneously, where each job executed the serial version of the code.

For each run, first the non permuted QTL model of specified size was fit, allowing all levels of inter-

action (each genotype–phenotype mean was a free parameter). Then, permutations were created. For

exhaustive search, all possible candidate loci sets were explored in a 1 cM lattice. For PruneDIRECT, the

minimum resolution was that same lattice, but in addition the bound was used to avoid splitting of some

boxes, if it was definite that the values within that box could not improve upon the minimum found in the

original main run. The e value used in PruneDIRECT was 10 - 9.

Table 1 presents the specific number of replicates, the simulated broad-sense heritability h2, and the

number of permutations done for each replicate. Table 2 presents average, minimum and median number of

function evaluations for complete sets of main run plus permutations. Timings show that objective function

evaluations exceed 90% of the time used in the PruneDIRECT version. The maximum number of function

evaluations can exceed the number of an exhaustive search, as the DIRECT implementation we started out

from did not natively implement a discretized search grid and thus points coinciding in the discrete lattice

could be evaluated multiple times.

Out of 500 simulated 2D QTL, the loci recovered in 25 of them resulted in more than 10 permuted

datasets surpassing the simulated QTL, that is, less than 99% significant. These runs were also more time-

Table 1. Size of Validation Tests for Two and Three Dimensions

d Heritability (h2) Number of replicates Number of permutations

2 0.09 500 1000

3 0.14 500 100

Time use for validating exhaustive search runs limits the possible size for 3D. Permutations

were done per replicate.
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consuming, since the efficiency from the PruneDIRECT algorithm arises from the optimum being rare. If

the QTL is not significant, then more boxes will be similar by random and thus fewer boxes can be pruned.

If these are removed from the computed number of function evaluations, the average number of evaluations

decreases to 7529 thousand. Acceleration compared to exhaustive search is only possible when the result

from the main run rises above the noise floor defined by the quantiles and v2 distributions. The possible

accelerations increase rapidly with stronger QTL signals. Finally, we tested simulating a single four-locus

network with a total heritability of 0.30. Finding this took 9.0 million function evaluations, which compares

favorably to the 963 millions just finding that network, that is, omitting any permutation testing, would

require using an exhaustive search.

We also created 10,000 random QTL searches in a backcross templated on this intercross dataset (by

fixing allele origin for either parent). Full concordance was achieved in classical one-dimensional QTL

searches between the minimum found through exhaustive search and using PruneDIRECT.

6. DISCUSSION

This article presents an efficient scheme, named PruneDIRECT, for simultaneous mapping of several

QTL, including permutation testing to determine significance.

The global optimization scheme DIRECT has earlier been adopted to QTL analysis in Ljungberg et al.

(2004), and the reported speedups are several orders of magnitude Ljungberg et al. (2004). The work

presented in this article does not improve on those speedup results. Instead, PruneDIRECT provides an

option for performing QTL scans in settings where accuracy and guaranteed results are of imperative

importance. We do so by letting the DIRECT process continue, executing until a full exhaustive search has

in some sense been performed, but with a pruning taking place removing boxes that are not possible optima.

This allows PruneDIRECT to be used not only for finding QTL candidates, but also to be reliably used in

permutation testing to find the extreme end of the null hypothesis distribution. These computations can be

used to compute significance thresholds as well as assessing the extreme value distribution, something which

could form a basis for comparisons between models with different dimensionality and parametrization.

We finally propose to use a bound based on quantiles of an analytically derived distribution of the

objective function at any distance from a minimum, in order to handle the fact that any real finite-sized

population will be affected by the random and discrete nature of recombination and thus not be perfectly

linear. We then used this bound in pruning the search trees. Our new objective function accelerates the

performance of the DIRECT process, even when the pruning step is not added. The reason is that DIRECT

performs best if the function is linear (finding the top of a single triangle in only a few iterations), and our

transformed objective function will in general be almost piecewise linear. This understanding of the

expected local form of the objective function, when full genotype information is available, could also be

used to better assess probable QTL locations in cases of partial and incomplete genetic information.

It should be noted that the performance for PruneDIRECT is dependent on the heritability. For a trait

with no heritability at all, finding the true optimum can in principle only be done by an exhaustive search,

as very limited correlations are expected in the objective function between loci. Previous incarnations of

DIRECT would have failed in those cases, while PruneDIRECT is adaptive and will perform more function

evaluations. If one knows beforehand that QTL with a heritability below some limit h2
min are not relevant,

then such information can be added to the pruning process and give better performance even in those cases.

Table 2. Number of Function Evaluations for Two and Three Dimensions with Exhaustive

Search and PruneDIRECT, Respectively

d Method Min Median Avg Maximum

2 Exhaustive 76,126 76,126 76,126 76,126

PruneDIRECT 453 2,480 11,012 201,514

3 Exhaustive 998,536 998,536 998,536 998,536

PruneDIRECT 1,565 17,826 54,457 323,628

Minimum, mean, median and maximum number of function evaluations per full run of main QTL search followed by the number of

permutations given in Table 1 are reported. A very low number of PruneDIRECT runs resulted in full exhaustive searches. Note that

the 3-dimensional scan used a lower number of permutations. All numbers are in thousands of function evaluations.
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We propose that in the future such a scheme could be used to effectively and effortlessly scan for highly

significant multidimensional QTL in expression QTL data, where tens of thousands of putative phenotypes

should be tested.

If the goal is to establish the exact significance level of a highly significant set of QTL, then our

PruneDIRECT approach will excel. If most null hypothesis permutations for a dataset have a minimum that

is inferior to that determined for the main model, the permuted runs can exit after only a hundred or so

function evaluations, even in multiple dimensions. This allows doing runs equivalent to 100,000 or more

permutations for loci, where significance levels above 99.9% would be relevant.

It should be noted that our approach for providing accuracy guarantees is based on some underlying

assumptions. If phenotype distributions are far from normal, our approximation for the finite-size objective

function distribution will not be accurate. It is also necessary that the number of recombinants in any

interval is reflected by the mapping distances given. Our approximation takes the randomness of recom-

bination into account, but if a marker map, for example, states a zero or very small distance in a region

where the actual number of recombinants is much higher, then the approximation breaks down. Hence, it is

important to use a genetic map that reflects the actual population studied. Naturally, additional tolerances

could be entered into the method by, for example using a higher p value than that provided by the map. The

results presented here could easily be extended to more generations than an F2 intercross or a backcross, as

the main difference will be that the rate of crossovers with regard to founder origin is multiplied.

For linked QTL, PruneDIRECT does well as long as the effects do not cancel each other out. When a

single QTL effect is fitted, the effects from different QTL are, at least partially, confounded, as there is only

a single variable (the indicator position within the linkage group), relating back to both components. Among

other things, this means that the total explainable variance can be 0 at some point in the region between two

linked QTL if the effects at the QTL have opposite signs. However, outside of the interval between the

linked QTL, the behavior is completely identical to the presence of a single QTL at the position of the

closest QTL in the set, with an effect equivalent to the combined average effect of all the linked QTL

observed from that position. This can intuitively be understood from the memoryless nature of the expo-

nential function. To avoid these issues, one could, for example, imagine enforcing a coarse-grain splitting of

all boxes down to some resolution level and only then applying the prune mode in PruneDIRECT.

7. APPENDICES

A. Quantile calculations

We want to find the value of rssx such that:

FRSSx
(rssxjy‚ Z(0)‚ p) = 1 - � (57)

One knows that B(x,n,p) for x outside the interval [l - 8r, l + 8r] is almost 0, where l and r are the mean

and standard deviations of the binomial distribution considered. By using this, one gets:

FRSSx
(rssxjy‚ Z(0)‚ p) = (58)X
m0

01
(x)

[B(m001(x)‚ n0(0)‚ p)
X

m0
10

(x)

B(m010(x)‚ n1(0)‚ p)FRSSx
(rssxjm001(x)‚ m010(x)‚ y‚ Z(0)‚ p)] + d

where : d � 0‚ (59)

m001(x)‚ m010(x) 2 np

2
- 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 - p)

2

r
‚

np

2
+ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 - p)

2

r" #
(60)

An alternate region for m001(x)‚ m010(x) is to choose m010(x) 2 [np=2 - 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 - p)=2

p
‚ np=2 + 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 - p)=2

p
]

and then m001(x) in a circle around m001(x) with radius 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 - p)=2

p
. After all, one should find rssx such that:X

m0
01

(x)

[B(m001(x)‚ n0(0)‚ p)
X

m0
10

(x)

B(m010(x)‚ n1(0)‚ p)FRSSx
(rssxjm001(x)‚ m010(x)‚ y‚ Z(0)‚ p)] = 1 - �

(61)

This equation can be solved efficiently numerically by, for example, the bisection method. In our

implementation, we only solve it down to a resolution level of 0.04, overestimating the location of the
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LogVar quantile by at most the equivalent of 1 cM in the inifite-size population case. Furthermore, since we

know the quantile location to be monotonous in terms of increasing x, our precalculation scheme for different

box radii can select the low and high initial bisection bounds based on previously calculated solutions for

lower and higher x, respectively. In all, this can reduce the amortized number of bisection steps for computing

the sum to a handful per unique x. For different x, the f values going into the sum are also unchanged and can

thus be stored precalculated, since evaluating the normal CDF is relatively time-consuming.

B. Calculating the full set of binomial coefficients

Most library implementations supporting the binomial distribution compute single values individually.

Even if one is using, for example, R (R Development Core Team, 2011) and provides a vector as x when

computing B(x,n,p), each step will be performed independently. The computational complexity for these

steps is nontrivial and on the order of O(log(x) + log(n)).

If one knows that all binomial coefficients will be used in a sum, it is instead far more efficient to

compute them all as part of the same process. The total computational complexity then becomes linear,

with only a few multiplications and divisions per iteration, augmented by a few exponentializations to

renormalize the carry values in order to avoid falling outside the dynamic range of conventional floating

point implementations.
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